Skip to main content
Log in

Formulation and application of quantum-inspired tidal firefly technique for multiple-objective mixed cost-effective emission dispatch

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this manuscript, a new quantum computing-based optimization algorithm is proposed to solve multiple-objective mixed cost-effective emission dispatch (MEED) problem of electrical power system. The MEED problem aims at maintaining proper balance between emission of pollutants and generation of power. The problem has been formulated here using cubic equation to reduce the nonlinearities of the system. It is transformed to single-objective problem by considering max to max penalty factor. The proposed optimization technique is inspired by the concept of quantum mechanics, gravitational force and firefly algorithm (FA) and is termed as quantum-inspired tidal FA (QITFA). The proposed QITFA is tested on IEEE 14-bus and IEEE 30-bus test system for four different load conditions. The obtained results are compared with the results yielded by some other state-of-the-art methods like Lagrangian relaxation method, particle swarm optimization (PSO), simulated annealing, quantum-behaved bat algorithm and quantum PSO. This paper proves the superiority of the proposed QITFA over all these methods. Further, the obtained results also suggest its effective and efficient implementation in MEED problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A2MO:

Artificial mountain ape optimization

ABC:

Artificial bee colony

COOA:

Competitive optimization algorithm

DBC:

Dance bee colony

FA:

Firefly algorithm

FMOPSO:

Fuzzified many-objective PSO

FSA:

Fractal search algorithm

GA:

Genetic algorithm

GSA:

Gravitational search algorithm

IEEE:

Institute of Electrical and Electronics Engineers

LF-VPSO:

Levy flight-based voltage PSO

LR:

Lagrangian relaxation

MEED:

Multiple-objective mixed cost-effective emission dispatch

MHSA:

Modified harmony search algorithm

PF:

Penalty factor

PSO:

Particle swarm optimization

QBAT:

Quantum-behaved bat algorithm

QITFA:

Quantum-inspired tidal FA

QPSO:

Quantum PSO

SA:

Simulated annealing

SOA:

Spiral optimization algorithm

TDSE:

Time-dependent Schrodinger equation

TFA:

Tidal FA

TLBA:

Teacher-learning-based algorithm

\({\text{CO}}_{2}\) :

Carbon dioxide

\(d_{ij}\) :

Gap between firefly i and j

\(D\) :

Number of dimensions

\(f_{i}\) :

Tidal component of the ith firefly

G :

Exploration factor

G:

Gravitational constant

\(h_{{i( {\max/\max} )}}\) :

Max/max penalty factor of the ith generating unit

\(J_{i} \left( {P_{i} } \right)\) :

Emission function of the ith generator

\(J_{{i,{\text{SO}}_{\text{x}} }} \left( {P_{i} } \right)\) :

Emission function for SOx

\(J_{{i,{\text{NO}}_{\text{x}} }} \left( {P_{i} } \right)\) :

Emission function for NOx

\(J_{{i,{\text{CO}}_{2} }} \left( {P_{i} } \right)\) :

Emission function for CO2

\(m_{1}\) :

Mass of one particle

\(m_{2}\) :

Mass of the other particle

\(n_{g}\) :

Total numbers of generators till last generating unit

\(n_{f}\) :

Number of fireflies

\({\text{NO}}_{\text{x}}\) :

Nitrogen oxide

P :

Generated power

\(P_{\text{D}}\) :

Power demand

\(P_{\text{L}}\) :

Total losses

\(P_{i,mu}\) :

Least power limit of the ith generator

\(P_{i,mx}\) :

Extreme power limit of the ith generator

\({\text{SO}}_{\text{x}}\) :

Sulfur oxide

\(x_{i,m}\) :

The position of the ith firefly in mth dimension

\(x_{j,m}\) :

The position of the jth firefly in mth dimension

\(\alpha\) :

Damping factor

\(\alpha_{0}^{{\prime }}\) :

Random constants in [0, 1]

\(\beta^{{\prime }}\) :

Random constants in [0, 1]

\(\beta\) :

Attraction factor

\(\beta_{0} , \gamma\) :

Random constants lying in between 0 and 1

\(\alpha_{0,i} , \alpha_{1,i} , \alpha_{2,i} ,\alpha_{3,i}\) :

Emission coefficient of the ith generator

\(\omega_{0,i} , \omega_{1,i} , \omega_{2,i} , \omega_{3,i}\) :

Fuel cost coefficient of the ith generator

\(\alpha_{{0\left( {{\text{SO}}_{\text{x}} } \right),i}} , \alpha_{{1\left( {{\text{SO}}_{\text{x}} } \right),i}} ,\alpha_{{2\left( {{\text{SO}}_{\text{x}} } \right),i}} , \alpha_{{3\left( {{\text{SO}}_{\text{x}} } \right),i}}\) :

SOx emission coefficient of the ith generator

\(\alpha_{{0\left( {{\text{CO}}_{2} } \right),i}} , \alpha_{{1\left( {{\text{CO}}_{2} } \right),i}} ,\alpha_{{2\left( {{\text{CO}}_{2} } \right),i}} , \alpha_{{3\left( {{\text{CO}}_{2} } \right),i}}\) :

CO2 emission coefficient of the ith generator

\(\alpha_{{0\left( {{\text{NO}}_{\text{x}} } \right),i}} , \alpha_{{1\left( {{\text{NO}}_{\text{x}} } \right),i}} ,\alpha_{{2\left( {{\text{NO}}_{\text{x}} } \right),i}} , \alpha_{{3\left( {{\text{NO}}_{\text{x}} } \right),i}}\) :

NOx emission coefficient of the ith generator

\(\varPsi \left( {d,t} \right)\) :

Position of the wave

\(\hbar\) :

Planck’s constant

\(u\) :

Random variable ranging from 0 to 1

\(\nabla^{2}\) :

Laplace operator

\(t_{\max }\) :

Maximum number of iterations

References

  1. Caldeira K, Kasting J (1993) Insensitivity of global warming potentials to carbon dioxide emission scenarios. Nature 366:251–252

    Article  Google Scholar 

  2. Smith J, Wigley ML (2000) Global warming potentials: 1. Climatic implications of emissions reductions. Clim Change 44:445–457

    Article  Google Scholar 

  3. Shang N, Guo L, Ding Y, Lin Y, Liu L, Shao C, Song Y (2017) Analysis of the influence of renewable energy generation on market power. J Eng 2017:1928–1933

    Google Scholar 

  4. Song YH et al (1997) Environmental/economic dispatch using fuzzy logic controlled genetic algorithms. IEEE Proc Gener Transm Distrib 144:377–382. https://doi.org/10.1049/ip-gtd:19971100

    Article  Google Scholar 

  5. Nanda J, Kothari D, Lingamurthy K (1988) Economic-emission load dispatch though goal programming techniques. IEEE Trans Energy Convers 3:26–32. https://doi.org/10.1109/60.4195

    Article  Google Scholar 

  6. Venkatesh P, Gnanadass R, Narayana PP (2003) Comparison and application of evolutionary programming techniques to combined economic emission dispatch with line flow constraints. IEEE Trans Power Syst 18:688–697. https://doi.org/10.1109/TPWRS.2003.811008

    Article  Google Scholar 

  7. Abido MA (2003) Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Trans Power Syst 18:1529–1537. https://doi.org/10.1109/TPWRS.2003.818693

    Article  Google Scholar 

  8. Wang L, Singh C (2007) Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm. Electr Power Syst Res 77:1654–1664. https://doi.org/10.1016/j.epsr.2006.11.012

    Article  Google Scholar 

  9. Raglend IJ et al (2010) Comparison of AI techniques to solve combined economic emission dispatch problem with line flow constraints. Int J Electr Power Energy Syst 32:592–598. https://doi.org/10.1016/j.ijepes.2009.11.015

    Article  Google Scholar 

  10. Jiejin C et al (2010) A multi-objective chaotic ant swarm optimization for environmental/economic dispatch. Int J Electr Power Energy Syst 32:337–344. https://doi.org/10.1016/j.ijepes.20

    Article  Google Scholar 

  11. Güvenç U et al (2012) Combined economic and emission dispatch solution using gravitational search algorithm. Sci Iran 19(6):1754–1762. https://doi.org/10.1016/j.scient.2012.02.030

    Article  Google Scholar 

  12. Gopalakrishnan R, Krishnan A (2013) An efficient technique to solve combined economic and emission dispatch problem using modified Ant colony optimization. Sadhana 38(4):545–556. https://doi.org/10.1007/s12046-013-0153-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Varma TD, Kumar V (2014) Multi-objective economic emission load dispatch using teacher-learning-based optimization technique. IFAC Proc Vol 47(1):819–826. https://doi.org/10.3182/20140313-3-IN-3024.00153

    Article  Google Scholar 

  14. Doğan A et al (2014) Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem. Int J Electr Power Energy Syst 54:144–153. https://doi.org/10.1016/j.ijepes.2013.06.020

    Article  Google Scholar 

  15. Hadji B et al (2015) Multi-objective economic emission dispatch solution using dance bee colony with dynamic step size. Energy Procedia 74:65–76. https://doi.org/10.1016/j.egypro.2015.07.524

    Article  Google Scholar 

  16. Tamura K, Yasuda K (2017) The spiral optimization algorithm: convergence condition and settings. IEEE Trans Syst Man Cybern. https://doi.org/10.1109/TSMC.2017.2695577

    Article  Google Scholar 

  17. Nasir ANK, Tokhi MO (2015) An improved spiral dynamic optimization algorithm with engineering application. IEEE Trans Syst Man Cybern Syst 45:943–954. https://doi.org/10.1109/TSMC.2014.2383995

    Article  Google Scholar 

  18. Cruz-Duarte JM et al (2017) Primary study on the stochastic spiral optimization algorithm. In: IEEE international autumn meeting on power, electronics and computing (ROPEC 2017) Mexico. https://doi.org/10.1109/ROPEC.2017.8261609

  19. Mahdi FP et al (2016) Emission dispatch problem with cubic function considering transmission loss using particle swarm optimization. J Telecommun Electron Comput Eng (JTEC) 8(12):17–21

    Google Scholar 

  20. Abbas G et al (2017) Solution of an economic dispatch problem though particle swarm optimization: a detailed survey—part I. IEEE Access 5:15105–15141. https://doi.org/10.1109/ACCESS.2017.2723862

    Article  Google Scholar 

  21. Abbas G et al (2017) “Solution of an economic dispatch problem through particle swarm optimization: a detailed survey-part II. IEEE Access 5:24426–24445. https://doi.org/10.1109/ACCESS.2017.2768522

    Article  Google Scholar 

  22. Sharafia Y, Khanesar MA, Teshnehla M (2016) COOA: competitive optimization algorithm. Swarm Evol Comput 30:39–63. https://doi.org/10.1016/j.swevo.2016.04.002

    Article  Google Scholar 

  23. Roy PK, Sur A, Pradhan DK (2013) Optimal short-term hydro-thermal scheduling using quasi-oppositional teaching learning based optimization. Eng Appl Artif Intell 26:2516–2524. https://doi.org/10.1016/j.engappai.2013.08.002

    Article  Google Scholar 

  24. Roy PK, Bhui S (2013) Multi-objective quasi-oppositional teaching learning based optimization for economic emission load dispatch problem. Int J Electr Power Energy Syst 53:937–948. https://doi.org/10.1016/j.ijepes.2013.06.015

    Article  Google Scholar 

  25. Gupta S, Kumar S (2017) Artificial mountain ape optimization algorithm for maximum power point tracking under partial shading condition. In: International conference on energy, communication, data analytics and soft computing. https://doi.org/10.1109/icecds.2017.8389547

  26. Bodha KD et al (2018) A levy flight based voltage particle swarm optimization for multiple-objective mixed cost-effective emission dispatch cloud computing. In: IEEE international conference on. data science & engineering (CONFLUENCE). https://doi.org/10.1109/confluence.2018.8442919

  27. Yao F et al (2012) Quantum-inspired particle swarm optimization for power system operations considering wind power uncertainty and carbon tax in Australia. IEEE Trans Ind Inform 8(4):880–888. https://doi.org/10.1109/TII.2012.2210431

    Article  Google Scholar 

  28. Babak J, Vahidinasab V (2014) A modified harmony search method for environmental/economic load dispatch of real-world power systems. Energy Convers Manag 78:661–675. https://doi.org/10.1016/j.enconman.2013.11.027

    Article  Google Scholar 

  29. Muwaffaq IA, Oweis ZB (2018) Environmental economic dispatch using stochastic fractal search algorithm. Int Transactions on Electr Energy Syst 28:e2530. https://doi.org/10.1002/etep.2530

    Article  Google Scholar 

  30. Krishnamurthy S, Tzoneva R (2012) Impact of price penalty factors on the solution of the combined economic emission dispatch problem using cubic criterion functions. In: Power and Energy Society General Meeting, 2012 IEEE. https://doi.org/10.1109/PESGM.2012.6345312

  31. Ziane I, Benhamida F, Graa A (2017) Simulated annealing algorithm for combined economic and emission power dispatch using max/max price penalty factor. Neural Comput Appl 28:197–205. https://doi.org/10.1007/s00521-016-2335-3

    Article  Google Scholar 

  32. Yelghi A, Köse C (2018) A modified firefly algorithm for global minimum optimization. Appl Soft Comput 62:29–44. https://doi.org/10.1016/j.asoc.2017.10.032

    Article  Google Scholar 

  33. Abido MA (2006) Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE Trans Evol Comput 10(3):315–329. https://doi.org/10.1109/TEVC.2005.857073

    Article  Google Scholar 

  34. Pitono J, Soepriyanto A, Purnomo MH (2014) Advance optimization of economic emission dispatch by particle swarm optimization (PSO) using cubic criterion functions and various price penalty factors. Kursor (KL) 7(3):153–164

    Google Scholar 

  35. Qu BY et al (2017) Solving dynamic economic emission dispatch problem considering wind power by multi-objective differential evolution with ensemble of selection method. Nat Comput. https://doi.org/10.1007/s11047-016-9598-6

    Google Scholar 

  36. Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, Bristol

    Google Scholar 

  37. Abdullah A et al (2012) A new hybrid firefly algorithm for complex and nonlinear problem. In: Omatu S, De Paz Santana J, González S, Molina J, Bernardos A, Rodríguez J (eds) Distributed computing and artificial intelligence. Advances in intelligent and soft computing, vol 151. Springer, Berlin

    Google Scholar 

  38. Zouache D, Nouioua F, Moussaoui A (2016) A Quantum-inspired firefly algorithm with particle swarm optimization for discrete optimization problems. Soft Comput 20(7):2781–2799. https://doi.org/10.1007/s00500-015-1681-x

    Article  Google Scholar 

  39. Wong LA et al (2014) Novel quantum-inspired firefly algorithm for optimal power quality monitor placement. Front Energy 8(2):254–260. https://doi.org/10.1007/s11708-014-0302-1

    Article  MathSciNet  Google Scholar 

  40. Manju A, Nigam MJ (2014) Applications of quantum inspired computational intelligence: a survey. Artif Intell Rev 42:79–156. https://doi.org/10.1007/s10462-012-9330-6

    Article  Google Scholar 

  41. Yumin D, Li Z (2014). Quantum behaved particle swarm optimization algorithm based on artificial fish swarm. In: Mathematical problems in engineering. http://dx.doi.org/10.1155/2014/592682

  42. Adhinarayanan T, Sydulu M (2006) Particle swarm optimization for economic dispatch with cubic fuel cost function. In: TENCON 2006. 2006 IEEE Region 10 Conference, pp 1–4. https://doi.org/10.1109/TENCON.2006.344059

  43. Mahdi FP et al (2017) A quantum inspired particle swarm optimization approach for environmental/economic power dispatch problem using cubic criterion function. Int Trans Electr Energy Syst 28:2497. https://doi.org/10.1002/etep.2497

    Article  Google Scholar 

  44. Mahdi FP et al (2018) Quantum-behaved bat algorithm for many-objective combined economic emission dispatch problem using cubic criterion function. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3399-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kumar Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodha, K.D., Yadav, V.K. & Mukherjee, V. Formulation and application of quantum-inspired tidal firefly technique for multiple-objective mixed cost-effective emission dispatch. Neural Comput & Applic 32, 9217–9232 (2020). https://doi.org/10.1007/s00521-019-04433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04433-0

Keywords

Navigation