Skip to main content
Log in

Adaptive finite-time congestion controller design of TCP/AQM systems based on neural network and funnel control

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This work investigates an adaptive finite-time congestion control problem of transmission control protocol/active queue management. By means of the funnel control, neural networks and sliding mode control, a new AQM algorithm is proposed to ensure that the tracking error \(e_{1}\left( t\right) \) converges to the prescribed boundary in finite time and the transient and steady-state performances of \(e_{1}\left( t\right) \) can be satisfied. The stability analysis is given to prove that all the signals of the closed-loop system are finite-time bounded. Finally, a comparison example is considered to demonstrate the feasibility and superiority of the presented scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ding D, Qin X, Wu T et al (2014) Hopf bifurcation control of congestion control model in a wireless access network. Neurocomputing 144:159–168

    Google Scholar 

  2. Adams R (2013) Active queue management: a survey. IEEE Commun Surv Tutor 15:1425–1476

    Google Scholar 

  3. Floyd S, Jacobson V (1993) Random early detection gateways for congestion avoidance. IEEE/ACM Trans Netw 1:397–413

    Google Scholar 

  4. Pei LJ, Mu XW, Wang RM et al (2011) Dynamics of the internet TCP–RED congestion control system. Nonlinear Anal Real World Appl 12:947–955

    MathSciNet  MATH  Google Scholar 

  5. Tan L, Zhang W, Peng G et al (2006) Stability of TCP/RED systems in AQM routers. IEEE Trans Autom Control 51:1393–1398

    MathSciNet  MATH  Google Scholar 

  6. Zhou K, Yeung KL, Li VO (2006) Nonlinear RED: a simple yet efficient active queue management scheme. Comput Netw 50:3784–3794

    MATH  Google Scholar 

  7. Woo S, Kim K (2010) Tight upper bound for stability of TCP/RED systems in AQM routers. IEEE Commun Lett 14(7):682–684

    Google Scholar 

  8. Hollot CV, Misra V, Towsley D et al (2001) On designing improved controllers for AQM routers supporting TCP flows. In: Proceedings of IEEE INFOCOM, pp 1726–1734

  9. Wang L, Cai L, Liu X et al (2007) Stability and TCP-friendliness of AIMD/RED systems with feedback delays. Comput Netw 51(15):4475–4491

    Google Scholar 

  10. Wang L, Cai L, Liu X et al (2009) Stability analysis of multiple-bottleneck networks. Comput Netw 53(3):338–352

    MATH  Google Scholar 

  11. Xu Q, Li F, Sun J et al (2015) A new TCP/AQM system analysis. J Netw Comput Appl 57:43–60

    Google Scholar 

  12. Alaoui SB, Tissir EH, Chaibi N (2018) Active queue management based feedback control for TCP with successive delays in single and multiple bottleneck topology. Comput Commun 117:58–70

    Google Scholar 

  13. Ignaciuk P, Bartoszewicz A (2011) Discrete-time sliding-mode congestion control in multisource communication networks with time-varying delay. IEEE Trans Control Syst Technol 19(4):852–867

    Google Scholar 

  14. Zheng F, Nelson J (2009) An \(H_{\infty }\) approach to the controller design of AQM routers supporting TCP flows. Automatica 45(3):757–763

    MathSciNet  MATH  Google Scholar 

  15. Liu Y, Liu XP, Jing YW et al (2018) Adaptive backstepping \( H_{\infty }\) tracking control with prescribed performance for internet congestion. ISA Trans 72:92–99

    Google Scholar 

  16. Liu Y, Liu XP, Jing YW et al (2019) Congestion tracking control for uncertain TCP/AQM network based on integral backstepping. ISA Trans 89:131–138

    Google Scholar 

  17. Zhu W, Yang X, Duan F et al (2019) Design and adaptive terminal sliding mode control of a fast tool servo system for diamond machining of freeform surfaces. IEEE Trans Ind Electron 66(6):4912–4922

    Google Scholar 

  18. Zheng X, Feng Y, Han F et al (2019) Integral-type terminal sliding-mode control for grid-side converter in wind energy conversion systems. IEEE Trans Ind Electron 66(5):3702–3711

    Google Scholar 

  19. Zhang P, Lai X, Wang Y et al (2019) Motion planning and adaptive neural sliding mode tracking control for positioning of uncertain planar underactuated manipulator. Neurocomputing 334:197–205

    Google Scholar 

  20. Xu L, Yu X, Feng Y, et al. (2015) A fast terminal sliding mode observer for TCP/IP network anomaly traffic detection. In: 2015 IEEE international conference on industrial technology (ICIT). IEEE, pp. 28–33

  21. Ren F, Lin C, Yin X (2005) Design a congestion controller based on sliding mode variable structure control. Comput Commun 28(9):1050–1061

    Google Scholar 

  22. Wang H, Meng B, Jing Y et al. (2008) An adaptive fuzzy sliding mode control for AQM systems. In: 2008 American control conference. IEEE, pp 4445–4450

  23. Asl RM, Hagh YS, Palm R (2017) Robust control by adaptive non-singular terminal sliding mode. Eng Appl Artif Intell 59:205–217

    Google Scholar 

  24. Tran MD, Kang HJ (2017) Adaptive terminal sliding mode control of uncertain robotic manipulators based on local approximation of a dynamic system. Neurocomputing 228:231–240

    Google Scholar 

  25. Wang L, Chai T, Zhai L (2009) Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans Ind Electron 56(9):3296–3304

    Google Scholar 

  26. Ye CM, Jing YW (2011) Adaptive sliding mode control using RBF for TCP networks. J Northeast Univ (Nat Sci) 32(6):765–768

    MathSciNet  Google Scholar 

  27. Ye CY, Jing YW (2012) Nonlinear active queue management based on adaptive global sliding mode control. Control Decis 27(10):1557–1560

    MathSciNet  Google Scholar 

  28. Wei HP, Ye CY (2016) Adaptive finite-time active queue management based on terminal sliding mode. Control Eng China 23(10):1510–1514

    Google Scholar 

  29. Liu YJ, Tong S (2016) Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64:70–75

    MathSciNet  MATH  Google Scholar 

  30. Wang CC, Yang GH (2018) Observer-based adaptive prescribed performance tracking control for nonlinear systems with unknown control direction and input saturation. Neurocomputing 284:17–26

    Google Scholar 

  31. Ilchmann A, Ryan EP, Trenn S (2005) Tracking control: performance funnels and prescribed transient behaviour. Syst Control Lett 54(7):655–670

    MathSciNet  MATH  Google Scholar 

  32. Ilchman A, Ryan EP, Sangwin CJ (2002) Tracking with prescribed transient behavior. ESAIM Control Optim Calc Var 7:471–493

    MathSciNet  MATH  Google Scholar 

  33. Ilchmann A, Ryan EP (2009) Performance funnels and tracking control. Int J Control 82(10):1828–1840

    MathSciNet  MATH  Google Scholar 

  34. Hopfe N, Ilchmann A, Ryan EP (2010) Funnel control with saturation: nonlinear SISO systems. IEEE Trans Autom Control 55(9):2177–2182

    MathSciNet  MATH  Google Scholar 

  35. Wang S, Ren X, Na J et al (2017) Extended-state-observer-based funnel control for nonlinear servomechanisms with prescribed tracking performance. IEEE Trans Autom Sci Eng 14(1):98–108

    Google Scholar 

  36. Han SI, Lee JM (2014) Fuzzy echo state neural networks and funnel dynamic surface control for prescribed performance of a nonlinear dynamic system. IEEE Trans Ind Electron 61(2):1099–1112

    Google Scholar 

  37. Bechlioulis CP, Rovithakis GA (2009) Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica 45(2):532–538

    MathSciNet  MATH  Google Scholar 

  38. Liu X, Wang H, Gao C et al (2017) Adaptive fuzzy funnel control for a class of strict feedback nonlinear systems. Neurocomputing 241:71–80

    Google Scholar 

  39. Wang H, Zou Y, Liu PX et al (2018) Robust fuzzy adaptive funnel control of nonlinear systems with dynamic uncertainties. Neurocomputing 314:299–309

    Google Scholar 

  40. Hackl CM, Hopfe N, Ilchmann A et al (2013) Funnel control for systems with relative degree two. SIAM J Control Optim 51(2):965–995

    MathSciNet  MATH  Google Scholar 

  41. Berger T, Reis T (2018) Funnel control via funnel precompensator for minimum phase systems with relative degree two. IEEE Trans Autom Control 63(7):2264–2271

    MathSciNet  MATH  Google Scholar 

  42. Berger T, L HH, Reis T (2018) Funnel control for nonlinear systems with known strict relative degree. Automatica 87:345–357

    MathSciNet  MATH  Google Scholar 

  43. Hackl CM, Kennel RM (2012) Position funnel control for rigid revolute joint robotic manipulators with known inertia matrix. In: 2012 20th Mediterranean conference on control & automation (MED). IEEE, pp 615–620

  44. Bu X (2018) Air-breathing hypersonic vehicles funnel control using neural approximation of non-affine dynamics. IEEE/ASME Trans Mechatron 23(5):2099–2108

    Google Scholar 

  45. Ilchmann A, Trenn S (2004) Input constrained funnel control with applications to chemical reactor models. Syst Control Lett 53(5):361–375

    MathSciNet  MATH  Google Scholar 

  46. Chen Q, Tang X, Nan Y et al (2017) Finite-time neural funnel control for motor servo systems with unknown input constraint. J Syst Sci Complex 30(3):579–594

    MathSciNet  MATH  Google Scholar 

  47. Wang S, Na J, Ren X et al (2018) Unknown input observer-based robust adaptive funnel motion control for nonlinear servomechanisms. Int J Robust Nonlinear Control 28(18):6163–6179

    MathSciNet  MATH  Google Scholar 

  48. Cui Y, Fei M, Du D (2016) Design of a robust observer-based memoryless \(H_{\infty }\) control for internet congestion. Int J Robust Nonlinear Control 26(8):1732–1747

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by The National Natual Science Funds of China (Grant No.61773108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanwei Jing.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Jing, Y., Liu, Y. et al. Adaptive finite-time congestion controller design of TCP/AQM systems based on neural network and funnel control. Neural Comput & Applic 32, 9471–9478 (2020). https://doi.org/10.1007/s00521-019-04459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04459-4

Keywords

Navigation