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Ramp-based Twin Support Vector Clustering
Zhen Wang, Xu Chen, Chun-Na Li, and Yuan-Hai Shao

Abstract—Traditional plane-based clustering methods measure
the cost of within-cluster and between-cluster by quadratic, linear
or some other unbounded functions, which may amplify the
impact of cost. This letter introduces a ramp cost function into the
plane-based clustering to propose a new clustering method, called
ramp-based twin support vector clustering (RampTWSVC).
RampTWSVC is more robust because of its boundness, and thus
it is more easier to find the intrinsic clusters than other plane-
based clustering methods. The non-convex programming problem
in RampTWSVC is solved efficiently through an alternating
iteration algorithm, and its local solution can be obtained in a
finite number of iterations theoretically. In addition, the nonlinear
manifold-based formation of RampTWSVC is also proposed by
kernel trick. Experimental results on several benchmark datasets
show the better performance of our RampTWSVC compared
with other plane-based clustering methods.

Index Terms—Nonlinear clustering, plane-based clustering,
ramp cost, twin support vector machines, unsupervised learning.

I. INTRODUCTION

C
LUSTERING that discovers the relationship among data

samples, is one of the most fundamental problems in

machine learning [1]–[4]. It has been applied to many real-

world problems, e.g., marketing, text mining, and web analysis

[5], [6]. In particular, the partition clustering methods [1],

[7] are widely used in real application for their simplicity,

e.g., the classical kmeans [8] with points as cluster centers,

the k-plane clustering (kPC) [9] and proximal-plane clustering

(PPC) [10], [11] with planes as cluster centers. As an extension

of point center, the plane center has the ability to discover

comprehensive structures in the sample space.

The plane-based clustering seeks the cluster centers depend-

ing on the current cluster assignment. When a cluster center

is constructed, the similarity of within-cluster is intensified

(in some methods, the dissimilarity of between-cluster is also

intensified simultaneously). Therefore, the noises or outliers

would significantly influence the cluster centers in plane-based

clustering. For instance, kPC minimizes the cost of within-

cluster by a quadratic function, and PPC minimizes the cost

of within-cluster and between-cluster by the same one. Subse-

quently, the twin support vector clustering (TWSVC) [12] was

Submitted in December 11, 2018. This work is supported in part by National
Natural Science Foundation of China (Nos. 11501310, 61866010, 11871183,
and 61703370), in part by Natural Science Foundation of Hainan Province
(No. 118QN181), and in part by Scientific Research Foundation of Hainan
University (No. kyqd(sk)1804).

Zhen Wang is with the School of Mathematical Sciences, Inner Mongolia
University, Hohhot, 010021 P.R.China (e-mail: wangzhen@imu.edu.cn).

Xu Chen is with the School of Mathematical Sciences, Inner Mongolia
University, Hohhot, 010021 P.R.China (e-mail: pohuozhe@163.com).

Chun-Na Li is with the Zhijiang College, Zhejiang University of Technol-
ogy, Hangzhou 310024, P.R.China (e-mail: na1013na@163.com).

Yuan-Hai Shao (*Corresponding Author) is with the School of Economics
and Management, Hainan University, Haikou, 570228, P.R.China (e-mail:
shaoyuanhai21@163.com).

(a) Within-cluster (b) Between-cluster

Fig. 1. Functions used in kPC, PPC, TWSVC, RTWSVC, FRTWSVC, and
RampTWSVC to measure the cost of within-cluster and between-cluster. The
horizontal axis denotes the deviation of a sample from the cluster center,
and the vertical one denotes the cost to fit the sample. When a cost value is
negative, the cost becomes a reward.

proposed, which hired a piecewise linear function to measure

the cost of between-cluster but persisted in using the quadratic

function for the within-cluster. Recently, another plane-based

clustering method, called robust twin support vector clustering

(RTWSVC) [13], was proposed by hiring a linear function to

measure the cost of within-cluster and between-cluster. Both

TWSVC and RTWSVC reduce the influence of noises or

outliers to some extent.

The ramp function [14], which has been applied in semi-

supervised and supervised learning successfully [15]–[17], is a

bounded piecewise linear function. Therefore, in this letter, we

propose a ramp-based twin support vector clustering method

(RampTWSVC) to further reduce the influence of noises

or outliers both from within-cluster and between-cluster, by

introducing the ramp function in the construction of the cluster

center planes. The problem of RampTWSVC is a non-convex

programming problem, and it is recast to a mixed integer

programming problem. We propose an iterative algorithm to

solve the mixed integer programming problem, and we prove

that the algorithm terminates in a finite number of iterations

at a local solution. In addition, RampTWSVC is extended

to nonlinear case by kernel trick to cope with the manifold

clustering [18], [19]. Fig. 1 exhibits the cost functions used

in several plane-based clustering methods, where FRTWSVC

[13] is a plane-based clustering method called fast robust

twin support vector clustering. It is obvious from Fig. 1 that

only our RampTWSVC uses the bounded cost functions both

in within-cluster and between-cluster, which can reduce the

influence of noises or outliers much more than other methods.

Experimental results on the benchmark datasets show the

better performance of the proposed RampTWSVC compared

with other plane-based clustering methods.

http://arxiv.org/abs/1812.03710v1
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II. REVIEW OF PLANE-BASED CLUSTERING

In this paper, we consider m data samples {x1, x2, . . . , xm}
in the n-dimensional real vector space Rn. Assuming these

m samples belong to k clusters with their corresponding

labels in {1, 2, . . . , k}, and they are represented by a matrix

X = (x1, x2, . . . , xm) ∈ Rn×m. We further organize the

samples from X with the current label i into a matrix

Xi and those with the rest labels into a matrix X̂i, where

i = 1, 2, . . . , k. For readers’ convenience, the symbols X ,

Xi, and X̂i will also refer to the corresponding sets, depending

on the specific context they appear. For example, the symbol

X can be comprehended as a matrix belonging to Rn×m or

a set that contains m samples. The ith cluster center plane

(i = 1, . . . , k) is defined as

fi(x) = w⊤
i x+ bi = 0, (1)

where wi ∈ Rn and bi ∈ R.

The following plane-based clustering methods share the

same kmeans-like clustering procedure. Starting from an initial

assignment of the m samples into k clusters, all the cluster

center planes (1) are constructed by the current cluster as-

signment. Once obtained all the cluster center planes, the m

samples are reassigned by

y = arg
i

min |w⊤
i x+ bi|, (2)

where | · | denotes the absolute value. The cluster center

planes and the sample labels are updated alternately until some

terminate conditions are satisfied. In the following, we briefly

describe the different constructions of the cluster center plane

by kPC, PPC, TWSVC, and RTWSVC.

A. kPC and PPC

kPC [9] wishes the cluster center plane close to the current

cluster samples. Further on, PPC [10] considers it should also

be far away from the different cluster samples. Therefore, the

ith (i = 1, . . . , k) cluster center plane in PPC is constructed

by solving the following problem

min
wi,bi

||X⊤
i wi + bie||

2 − c||X̂⊤
i wi + bie||

2

s.t. ||wi||
2 = 1,

(3)

where || · || denotes the L2 norm, e is a column vector of ones

with appropriate dimension, and c > 0 is a user-set parameter.

The optimization problem in kPC is just of the first term of

the objective of (3).

From the objective of (3), it is obvious that a sample from

the current cluster receives a quadratic cost, and a sample

from a different cluster receives a quadratic reward. Therefore,

noises or outliers from the current cluster or different clusters

will have great impact on the potential cluster center plane.

B. TWSVC and RTWSVC

PPC may obtain a cluster center plane which is far from

the current cluster, because the samples from different clusters

receive high rewards when they are far away from the cluster

center plane. In contrast, TWSVC [12] degrades the reward of

the samples from different clusters by considering the problem

with i = 1, . . . , k as

min
wi,bi

1
2‖X

⊤
i wi + bie‖

2 + ce⊤(e− |X̂⊤
i wi + bie|)+, (4)

where (·)+ replaces the negative part by zeros.

From the second part of (4), it is available that a sample

with a deviation in [0, 1) has impact on the cluster center plane.

Thus, TWSVC is more robust than PPC. However, the issue

of current cluster also exists because of the quadratic cost

in the first part of (4). Thus, RTWSVC [13] was proposed

to decreases the influence of current cluster by replacing

the L2 norm in (4) with L1 norm. RTWSVC inherits the

advantage of TWSVC and decreases the requirement from

current cluster. However, the cost of RTWSVC from within-

cluster is unbounded from Fig. 1. In order to eradicate the

influence of noises or outliers, it is reasonable to hire a

bounded function for the within-cluster, whose principle is

similar to the cost for the between-cluster used in TWSVC.

III. RAMPTWSVC

Similar to the above plane-based clustering methods men-

tioned in section 2, our RampTWSVC starts with an initial

sample labels, then computes each cluster center plane for

the current sample labels iteratively, until some terminate

conditions are satisfied. In the following, we consider to obtain

one of the cluster center planes for the given samples with their

labels.

A. Formation

To obtain the ith (i = 1, . . . , k) cluster center plane, our

RampTWSVC considers the following problem

min
wi,bi

1
2 (||wi||

2 + b2i ) + c1
∑

xj∈Xi

R1(xj) + c2
∑

xj∈X̂i

R2(xj),

(5)

where c1 > 0 and c2 > 0 are parameters. R1(x) and R2(x)
are two piecewise linear functions w.r.t. the deviation |fi(x)| =
|w⊤

i x+ bi| (see Fig. 1) as

R1(x) =







0 if |fi(x)| ≤ 1−∆,

1− s if |fi(x)| ≥ 2−∆− s,

|fi(x)| − 1 + ∆ otherwise,

(6)

R2(x) =







2 + 2∆ if |fi(x)| ≤ −s,

1 + ∆− s if |fi(x)| ≥ 1 + ∆,

−|fi(x)|+ 2 + 2∆− s otherwise,

(7)

where ∆ ∈ [0, 1) and s ∈ (−1, 0] are two parameters to control

the function form (typically, we set ∆ = 0.3 and s = −0.2 in

this letter).

It is obvious that both of the cost functions R1(x) (for the

current cluster Xi) and R2(x) (for the different clusters X̂i)

have bounds for large deviation. Thus, the noises or outliers

much further from the cluster center plane do not have greater

impact on the cluster center plane when they meet the bound.
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The above property indicates our RampTWSVC is more robust

than RTWSVC.

In the following, we extend the RampTWSVC to nonlinear

manifold clustering, and the solutions to the problems in linear

and nonlinear RampTWSVC are elaborated in next subsetion.

The plane-based clustering method can be extend to nonlinear

manifold clustering easily by the kernel trick [20], [21]. By

introducing a pre-defined kernel function K(·, ·), the plane-

based nonlinear clustering seeks k cluster center manifolds in

the kernel generated space as

gi(x) = K(x,X)⊤wi + bi = 0, i = 1, . . . , k. (8)

Then, the nonlinear RampTWSVC considers to introduce the

ramp functions into the plane-based nonlinear clustering. By

replacing fi(x) with gi(x) in (6) and (7), and substituting

them into (5), one can easily obtain k optimization problems

to construct the cluster center manifolds (8). When we obtain

the k cluster centers (8), a sample x is assigned to which

cluster depending on

y = arg
i

min |K(x,X)⊤wi + bi|. (9)

The procedure of the nonlinear case is the same as the linear

one, so the details are omitted.

B. Solution

In this subsection, we study the solution to the problem

(5). The corresponding problem in nonlinear RampTWSVC is

similar to the one in linear case. For convenience, let ui =
(w⊤

i , bi)
⊤, Zi be a matrix whose jth column zj is xj with

an additional feature 1 (where the corresponding xj belongs

to the ith cluster), and Ẑi be a matrix whose column similar

as zj (where the corresponding xj does not belongs to the ith

cluster). Then, the problem (5) is recast to

min
ui

1
2 ||uj ||

2 + c1e
⊤(−1 + ∆− Z⊤

i ui)+ + c1e
⊤(−1 + ∆

+Z⊤
i ui)+ + c2e

⊤(1 + ∆− Ẑ⊤
i ui)+ + c2e

⊤(1 + ∆

+Ẑ⊤
i ui)+ − c1e

⊤(s− 2 + ∆− Z⊤
i ui)+ − c1e

⊤(s− 2 + ∆

+Z⊤
i ui)+ − c2e

⊤(s− Ẑ⊤
i ui)+ − c2e

⊤(s+ Ẑ⊤
i ui)+.

(10)

It is easy to see that the above problem is a non-convex

programming problem because of the concave part −(·)+.

By introducing two auxiliary vectors p1 ∈ {−1, 0, 1}mi and

p2 ∈ {−1, 0, 1}m−mi (where mi is the sample number of the

current ith cluster), the above problem is equivalent to the

following mixed-integer programming problem

min
ui,p1,p2

1
2 ||ui||

2 + c1e
⊤(−1 + ∆− Z⊤

i ui)+

+c1e
⊤(−1 + ∆ + Z⊤

i ui)+ + c2e
⊤(1 + ∆− Ẑ⊤

i ui)+
+c2e

⊤(1 + ∆ + Ẑ⊤
i ui)+ + c1p

⊤
1 Z

⊤
i ui + c2p

⊤
2 Ẑ

⊤
i ui

s.t. p1(j) =







−1 if z⊤j ui > 2−∆− s,

1 if z⊤j ui < −2 + ∆ + s,

0 otherwise,

∀zj ∈ Zi

p2(j) =







−1 if z⊤j ui > −s,

1 if z⊤j ui < s,

0 otherwise,

∀zj ∈ Ẑi

(11)

TABLE I
DETAILS OF THE BENCHMARK DATASETS

Data m n k

(a) Arrhythmia 452 278 13

(b) Dermatology 366 34 6

(c) Ecoli 336 7 8

(d) Glass 214 9 6

(e) Iris 150 4 3

(f) Libras 360 90 15

(g) Seeds 210 7 3

(h) Wine 178 13 3

(i) Zoo 101 16 7

(j) Bupa 345 6 2

(k) Echocardiogram 131 10 2

(l) Heartstatlog 270 13 2

(m) Housevotes 435 16 2

(n) Ionosphere 351 33 2

(o) Sonar 208 60 2

(p) Soybean 47 35 2

(q) Spect 267 44 2

(r) Wpbc 198 34 2

*m is the number of samples, n is the one of dimension, and k is the one of classes.

where p1(j) and p2(j) are the corresponding jth elements of

p1 and p2, respectively.

Here, we propose an alternating iteration algorithm to solve

the mixed-integer programming problem (11). Starting with

an initialized u
(0)
i , it is easy to calculate p

(0)
1 and p

(0)
2 by the

constraints of (11). For fixed p
(t−1)
1 and p

(t−1)
2 (t = 1, 2, . . .),

the problem (11) becomes to an unconstrained convex problem

and its solution can be obtained by many algorithms easily

(e.g., sequential minimal optimization (SMO) [22] and fast

Newton-Amijio algorithm [23]). Once obtained u
(t)
i , p

(t)
1 and

p
(t)
2 are updated again. The loop will be continued until the

objective of (11) does not decrease any more.

Theorem III.1. The above alternating iteration algorithm to

solve (11) terminates in a finite number of iterations at a local

optimal point, where a local optimal point of the mixed integer

programming problem (11) is defined as the point (u∗
i , p

∗
1, p

∗
2)

if u∗
i is the global solution to the problem (11) with fixed

(p∗1, p
∗
2) and vice versa.

Proof. From the procedure of the alternating iteration algo-

rithm, it is obvious that the global solutions to the problem

(11) with fixed ui or (p1, p2) are obtained in iteration. Since

there is a finite number of ways to select p1 and p2, there

are two finite numbers r1, r2 > 0 such that (p
(r1)
1 , p

(r1)
2 ) =

(p
(r2)
1 , p

(r2)
2 ). Thus, we have u

(r1)
i = u

(r2)
i . That is to say, the

objective values are equal in the r1th and r2th iterations. Since

p⊤1 Z
⊤
i ui ≤ 0 and p⊤2 Ẑ

⊤
i ui ≤ 0 are always holds, the objective

value of (11) keeps non-increasing in iteration. Therefore, the

objective is invariant after the r1th iteration, and then the

algorithm would terminate at the r1th iteration.

Let us consider the point (u
(r1)
i , p

(r1)
1 , p

(r1)
2 ). From

the above proof, we have G(u
(r1)
i , p

(r1)
1 , p

(r1)
2 ) =

G(u
(r1)
i , p

(r1+1)
1 , p

(r1+1)
2 ), where G(·) is the objective

value of (11). If there are more than one global solution to the

problem (11) with fixed ui, we always select the same one for

the same ui. Thus, we have (p
(r1)
1 , p

(r1)
2 ) = (p

(r1+1)
1 , p

(r1+1)
2 ),

which indicates the point (u
(r1)
i , p

(r1)
1 , p

(r1)
2 ) is a local optimal

point.
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IV. EXPERIMENTAL RESULTS

In this section, we analyze the performance of our

RampTWSVC compared with kmeans [8], kPC [9], PPC [10],

TWSVC [12], RTWSVC [13], and FRTWSVC [13] on several

benchmark datasets [24]. All the methods were implemented

by MATLAB2017 on a PC with an Intel Core Duo processor

(double 4.2 GHz) with 16GB RAM. The parameters c in PPC,

TWSVC, RTWSVC, FRTWSVC, and c1, c2 in RampTWSVC

were selected from {2i|i = −8,−7, . . . , 7}. For nonlinear

case, the Gaussian kernel K(x1, x2) = exp{−µ||x1 − x2||
2}

[20] was used, and its parameter µ was selected from

{2i|i = −10,−9, . . . , 5}. The random initialization was used

on kmeans, and the nearest neighbor graph (NNG) initializa-

tion [12] was used on other methods. In the experiments, we

used the metric accuracy (AC) [12] and mutual information

(MI) [25] to measure the performance of these methods.

Table I shows the details of the benchmark datasets. Tables

II and III exhibit the linear and nonlinear clustering methods

on the benchmark datasets, respectively. The highest metrics

among these methods on each dataset are in bold. Besides, we

also reported the statistics of these methods in the last rows

in Tables II and III, which is the number of the datasets that

each method is the highest one in terms of AC, MI, or both.

From Table II, it can be seen that our linear RampTWSVC

performs better than other linear methods on five datasets in

terms of both AC and MI, and it is more accurate than other

methods on other five datasets. On the rest eight datasets, our

linear RampTWSVC is also competitive with the best one.

From Table III, it is obvious that our nonlinear RampTWSVC

has much higher AC and MI over other methods on many

datasets.

V. CONCLUSIONS

A plane-based clustering method (RampTWSVC) has

been proposed with the ramp function. It contains both

the linear and nonlinear formations. The cluster center

planes in RampTWSVC are obtained by solving a series

of non-convex problems, and their local solutions are

guaranteed by a proposed alternating iteration algorithm

in theory. Experimental results on several benchmark

datasets have indicated that our RampTWSVC performs

much better than other plane-based clustering methods on

many datasets. For practical convenience, the corresponding

RampTWSVC Matlab code has been uploaded upon

http://www.optimal-group.org/Resources/Code/RampTWSVC.html.

Future work includes the parameter regulation and efficient

solver design for our non-convex problems.
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TABLE II
LINEAR CLUSTERING ON BENCHMARK DATASETS

kmeans kPC PPC TWSVC RTWSVC FRTWSVC Ours

Data AC(%) AC(%) AC(%) AC(%) AC(%) AC(%) AC(%)

MI(%) MI(%) MI(%) MI(%) MI(%) MI(%) MI(%)

(a) 65.72±0.53 32.31 65.20 32.31 32.31 32.31 79.42

19.55±0.99 5.49 6.70 5.49 5.49 5.49 10.10

(b) 69.76±0.77 60.50 70.36 71.93 60.50 60.50 72.67

11.47±2.15 29.65 3.48 27.40 28.95 28.95 24.42

(c) 82.19±2.68 33.11 66.46 85.74 34.33 34.33 79.42

56.84±4.42 8.61 9.65 33.43 10.42 10.42 43.35

(d) 65.58±3.22 57.73 66.75 66.62 57.59 57.40 62.77

35.76±2.23 22.55 8.54 35.40 17.69 18.20 20.95

(e) 84.57±6.86 67.54 60.95 91.24 92.67 94.95 86.79

70.47±9.10 25.41 12.04 85.59 82.31 86.97 71.71

(f) 90.84±0.41 89.42 87.93 89.97 89.42 89.42 87.11

57.50±2.28 56.40 15.84 56.40 56.40 56.40 44.47

(g) 87.35±0.15 71.80 62.39 63.40 72.24 76.16 74.07

69.77±0.68 42.43 18.33 51.27 43.17 52.09 45.74

(h) 71.06±1.29 52.73 57.49 66.90 72.20 70.26 69.45

41.97±1.44 7.33 4.70 35.48 45.35 41.08 35.16

(i) 87.49±1.96 54.12 84.06 88.83 54.12 54.12 90.22

71.93±3.15 34.23 55.56 73.33 32.15 32.15 76.98

(j) 50.39±0.03 50.31 51.13 51.22 53.34 52.10 55.82

0.09±0.02 0.22 0.23 0.42 3.73 1.86 7.07

(k) 66.41±7.92 52.81 56.66 56.10 75.01 75.01 71.84

24.79±17.27 0.54 2.99 36.87 39.64 39.64 35.46

(l) 51.45±0.07 50.04 50.35 50.81 51.40 51.40 51.82

1.87±0.07 0.02 0.15 13.11 1.63 1.67 2.40

(m) 78.83±0.15 63.77 68.77 75.83 71.40 71.40 79.61

48.07±0.38 34.16 27.27 45.19 39.36 39.36 50.15

(n) 58.89±0.00 61.76 53.23 53.85 67.64 66.63 61.76

13.12±0.00 13.00 3.26 21.13 23.04 21.26 12.91

(o) 50.22±0.18 49.80 49.99 50.43 51.26 50.06 51.62

0.74±0.28 0.01 0.23 0.01 2.06 0.67 4.05

(p) 93.41±13.90 91.67 100.0 50.05 91.67 91.67 100.0

86.95±27.53 78.05 100.0 1.70 78.05 78.05 100.0

(q) 52.97±0.00 65.86 50.67 65.86 50.88 50.58 67.17

8.48±0.00 0.51 0.51 0.51 0.35 0.34 1.15

(r) 56.03±0.00 52.95 57.95 56.03 53.48 57.15 64.15

0.08±0.00 0.21 0.27 0.05 0.01 2.95 1.33

AC 2 0 2 1 3 2 10

MI 6 1 1 1 3 3 5

Both 2 0 1 0 3 2 5

TABLE III
NONLINEAR CLUSTERING ON BENCHMARK DATASETS

kmeans kPC PPC TWSVC RTWSVC FRTWSVC Ours

Data AC(%) AC(%) AC(%) AC(%) AC(%) AC(%) AC(%)

MI(%) MI(%) MI(%) MI(%) MI(%) MI(%) MI(%)

(a) 47.32±3.08 62.17 64.82 46.89 62.17 62.17 62.19

10.76±1.24 10.14 6.51 9.65 10.14 10.14 8.93

(b) 71.66±1.26 72.60 70.62 72.60 72.60 72.60 72.90

17.84±3.67 18.00 3.65 18.00 18.00 18.00 26.79

(c) 79.93±1.24 82.49 69.13 88.29 82.49 82.68 83.01

49.31±2.28 57.79 16.46 62.21 57.79 57.57 49.97

(d) 69.27±1.45 69.04 66.82 70.10 69.04 69.04 70.77

37.50±2.09 41.42 7.35 23.42 41.42 41.42 0.2918

(e) 87.63±8.09 91.24 59.47 91.24 91.24 91.24 94.95

76.26±9.85 79.15 13.93 79.15 79.15 79.15 86.23

(f) 90.60±0.42 85.67 88.04 90.08 86.38 86.38 89.60

54.86±1.24 17.95 17.79 56.98 22.28 22.28 51.18

(g) 87.02±0.77 78.41 68.48 81.54 79.03 78.41 87.14

69.74±0.55 58.81 26.95 63.48 54.07 58.81 69.98

(h) 52.07±4.07 60.75 72.55 44.89 60.75 60.75 64.06

13.84±3.04 20.35 41.23 6.12 20.35 20.35 25.98

(i) 87.14±3.39 90.63 89.52 90.63 90.63 90.63 91.25
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