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Abstract: In this paper, a novel application of biologically inspired computing paradigm is 
presented for solving initial value problem (IVP) of electric circuits based on nonlinear RL 
model by exploiting the competency of accurate modeling with feed forward artificial neural 
network (FF-ANN), global search efficacy of Genetic algorithms (GA), and rapid local search 
with sequential quadratic programming (SQP). The fitness function for IVP of associated 
nonlinear RL circuit is developed by exploiting the approximation theory in mean squared error 
sense using an approximate FF-ANN model. Training of the networks is conducted by integrated 
computational heuristic based on GA aided with SQP, i.e., GA-SQP. The designed methodology 
is evaluated to variants of nonlinear RL systems based on both AC and DC excitations for 
number of scenarios with different voltages, resistances and inductance parameters. The 
comparative studies of the proposed results with Adams numerical solutions in terms of various 
performance measures verify the accuracy of the scheme. Results of statistics based on Monte-
Carlo simulations validate the accuracy, convergence, stability and robustness of the designed 
scheme for solving problem in nonlinear circuit theory. 
Keywords: Artificial neural networks; Nonlinear systems; Nonlinear electric circuits; Genetic 
algorithms; Sequential quadratic programming.  
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Nomenclature  

AE Absolute Error 
ANS Adam numerical solver 
DC/AC Direct Current/ Alternating Current 
EGNSE error function of NSE 
EVAF error function of VAF 
FF-ANN forward artificial neural network 
GA Genetic algorithms 
GMAE Global MAE 
GNSE Global NSE 
GVAF Global VAF 
IVP initial value problem 
MAE Mean Absolute Error 
MIN minimum 
NNDEM neural network based differential equations models 
NSE Nash Sutcliffe efficiency 
ODE Ordinary Differential equations 
RL Resistor inductor 
SQP sequential quadratic programming 
SS stochastic solvers 
STD standard deviation 
VAF Variance account for 
   current 

 flux-linkage of the inductor 
α a constant 
  Unknown vector 
w  Unknown vector 
  Unknown vector 
ε objective function 
 

1. Introduction 

The universal function approximation strength of artificial neural networks (ANNs) has been 
utilized immensely by the researchers in diverse domain of engineering and technology [1-5]. 
For example, estimation of STATCOM voltages and reactive powers [6], optimization of heat 
conduction model of human head [7], optimization of an irreversible thermal engine [8], 
estimation of underwater inherent optical characteristics [9], prediction of attendance demand in 
games [10], nonlinear system based on elliptic partial differential equations [11] and 
optimization of credit classification analysis problems [12]. Recently, the use of stochastic 
solvers (SS) for effective solution of nonlinear systems based on differential equation has been 
reported broadly [13-16]. Few potential applications of SS for solution of differential equations 
include nonlinear optics studies [17], applications of random matrix theory [18],  nonlinear stiff 
oscillatory systems based on Van der Pol oscillator [19], fuzzy nonlinear systems [20], 
magnetohydrodynamic problems [21], inverse kinematics problem [22], nonlinear Jeffery-Hamel 



flow model [23], parameter estimation [24], fuel ignition systems [25], fuzzy Fredholm–Volterra 
integrodifferential equations [26], nonlinear drainage problem based on Johnson-Segalman fluid 
[27], electrical conducting solids [28], nonlinear problems arising in nanotechnology [29], 
astrophysics [30], plasma physics [31], atomic physics [32], model of heartbeat dynamics [33], 
models of HIV infection of CD4+ T-cell model [34], fractional order systems [35], economic 
[36] and finance [37]. Additionally, analysis of nonlinear systems based on Thomas-Fermi [38], 
Lane-Emden [29], Emden-Fowler [40], Bratu [41], Troesch [42], Riccati [43], Flierl–
Petviashivili [44], Beglay-Torviq [45], Pantograph [46], Van der Pol [47] and Painlevé type 
equations [48] are other illustrative application of stochastics solvers. The competency of these 
methodologies to nonlinear problem arising in circuit theory can play a fundamental role due to 
unavailability of exact solution and strong nonlinearity in the governing mathematical models. 
Aim of the present study is to explore and exploit the field of an intelligent computing to design 
an accurate, reliable and robust stochastic solver to study the dynamics of Resistance-Inductance 
(RL) circuit with nonlinear inductance parameter. 
In this study, integrated biologically inspired computational technique is designed for finding 
solution of nonlinear problems arising in electronic circuits using feed forward ANNs optimized 
initially with Genetic Algorithms (GAs) and refined by Sequential Quadratic Programming 
(SQP) technique. The basic schematic of RL circuits involving nonlinear inductor with DC/AC 
excitation is presented in Fig. 1 [49]  
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(a): Circuitry with DC excitation (b): Circuitry  with AC excitation 

Fig. 1: Schematic of RL circuits with nonlinear inductor 
The mathematical formulation for the system model is described below: 

 
2 , (0) 0.R U       (1) 

In RL circuits the branch relation of nonlinear inductor is written as: 

 
2( )i   , (2) 

here  is the current,   represent the flux-linkage of the inductor, and α stands for a constant. 
Now by applying Kirchhoff laws to RL circuit, one have 

 
( ) ( ).Ri u t    (3) 

For DC excitation, i.e., u(t) = U, the equation (3) gives 



 
2 , (0) 0.R U       (4) 

By considering AC excitation, i.e., u (t) =Umsinωt 

 
2 sin , (0) 0.mR U t        (5) 

The system represented in equations (4) and (5) has no exact solution, therefore comparative 
analysis of the proposed results has been executed with numerical experimentation results of 
Adams method. The salient features of the designed scheme include significant reduced effort is 
required to determine accurate results, easily extendable procedure to analogous system, 
simplicity of the concept, implementation ease, continuous solution within the input training 
span, less sensitivity to computational round off errors, and good alternative to solve stiff 
engineering problems which are remained challenging to traditional schemes. 
The remaining paper is presented as, section 2 explains the proposed design methodology, 
section 3 describes the results of numerical experimentations and comparative study based on 
performance operators, while the paper is concluded in section 4. 

2. Designed Methodology 
The desired methodology comprises of two steps: the first part based on neural networks based 
differential equation modelling for the nonlinear system and then the merit function is 
constructed by approximation of an error function in the mean square sense, in the second phase, 
learning procedure is provided along with the definitions of performance indices for the 
evaluation of the results. Graphical illustration of the design scheme is shown in Fig. 2. 

2.1 Neural Network based Differential Equations Models 

The solution ( )t , its first   and nth order derivative ( )n in the form of neural network based 
differential equations models (NNDEM) for nth order ODE are approximated by the through 
continuous mapping in neural network methodology as: 
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where , w  and   are the unknown vectors of W as: 

 1 2 1 2 1 2[ , , ] [ , ,..., , , ,..., , , ,..., ]m m mw w w      W w   (7) 

In NNDEM given in (6) generally developed using log-sigmoid, ( ) 1 (1 )zf z e   as an 
activation function and its derivatives, therefore, the updated NNDEMs for the nonlinear RL 
circuits solutions is as follows: 
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The generic architecture of the NNDEMs for nonlinear RL circuit for DC and AC excitation can 
be formulated using set of equations (8). 
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Fig 2. Generic workflow of hybrid computational method based on NNDEM optimized with GA 
and SQP 

2.2 Objective Functions 
The objective function ε is the sum of the mean squared errors for training the optimized 
parameters for NNDEMs as: 

 1 2    , (9) 

where 1  is an error function for DC excitation, while 2  is the error function formulated by 
considering the initial conditions. The elaborative form of equation (9) for RL based circuit 
models is given as: 
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while for AC excitation 
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for  ˆ ˆ , , 1 ,m m mt t mh M h     

Arbitrary unknown weights of NNDEM for which the value of error function   approaches ‘0’ 
in case   approaches ‘0’ for both DC and AC excitations and subsequently, the proposed 
approximate solution ˆ ( )t  of the nonlinear circuit system is converges to exact solution ( )t . 
The standard form of DENNM based architecture for DC and AC excitations are shown in Figs. 
3(a) and 3(b), respectively, while mathematically presented in respective equations (10) and (11). 
The DENNM are formulated based on single input layer, signal hidden layer with log-sigmoid, 

( ) 1 (1 )zf z e   as an activation function and signal output layer. Each operation for DENNM 
as presented in Figs. 3(a) and 3(b) are presented with different colours for better understanding. 

2.3 Learning of Weights for NNDEMs 
Learning methodology based on Genetic Algorithms (GAs) and Sequential Quadratic 
Programming (SQP) scheme is employed to minimize the objective function (9) by training of 
unknown parameters W of NNDEMs. 
Global search competency of GAs is well-established in the class of initial population based 
optimization solvers of evolutionary computing domains. Mathematical foundations of GAs are 
built by inspiration of genetic mechanism and its the first application introduced by Holland in 
early 70’s of nineteenth century [50]. Genetic algorithms operate on a randomly initialized 
population to produce improved approximations. Individuals are selected at each generation, 
from a pool of new population based on fitness level. At next step variation operators are 
applied. The algorithm is expertly used for convex/non-convex and constrained/unconstrained 
optimization problems having application in engineering and technology [51-54]. Few recently 
reported significance application includes are joint angle-amplitude estimation in direction of 
arrival of the plane waves [55], effective solution of traveling salesman problem [56], layer 
thickness optimization in multilayer piezoelectric transducer based systems [57], prediction of 
Thai stock price index trend [58] and nonlinear fuzzy systems [59] etc.  
Hybridization with efficient local search methodologies is normally incorporated with GAs for 
speedy optimization of problem specific parameters. The effective constrained optimization 
solvers based on SQP algorithm is utilized for rapid local convergence of the variables. The 
necessary terms, theory, underlying concept, mathematical background, significance, 
implementation and applications of SQP, see [60-63]. Consequently, hybrid computing 
framework based on GAs and SQP is developed to get the optimization parameter of NNDEMs 
to solve nonlinear RL circuits with both AC/DC excitations.  
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Fig. 3 NNDEM design for nonlinear RL circuit for both DC and AC excitations. 

The procedural steps of the GA-SQP algorithm is presented graphically in Fig 2, while 
elaborative explanation of GA in workflow diagram is represented in Fig. 4. In the Fig. 4, 
detailed description/operation of reproduction operators of GAs, i.e., selection, crossover and 
mutation, with graphical illustrations is provided. Additionally, the parameter settings 
incorporated for GA and SQP algorithm is provided in Table 1. Furthermore, the pseudocode of 



the proposed methodology GA-SQP to optimized the weights of NNDEM is given in Algorithm 
1 for the ease in reproduction of the results. The performance of the algorithm is dependent of 
these settings, a slight change in these parameters may results in premature convergence. 
Therefore, a lot of care, experience and experimentation is required for selecting optimal 
parameters of meta-heuristics GA-SQP. 
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Algorithm 1: Pseudocode of GA-SQP for solving circuit of nonlinear RL circuit model 
Part 1: Genetic algorithms (GAs) 

 Software:  

  Routines ‘ga’ and ‘gaoptimset’ available in optimization  

  toolbox of Matlab software  

 Inputs: 

  The chromosome C representing parameters W of approximate  

  solutions  as   

   1 2 1 2 1 2[ , , ] [ , ,..., , , ,..., , , ,..., ]m m mw w w      C w   

  A Set of K number of C form population P  as: 

 

1,1 2,1 ,1 1,1 2,1 ,1 1,1 2,1 ,11

1,2 2,2 ,2 1,2 2,2 ,2 1,2 2,2 ,22

1, 2, , 1, 2, , 1, 2, ,

, ,..., , , ,..., , , ,...,
, ,..., , , ,..., , , ,...,

, ,..., , , ,..., , , ,...,

m m m

m m m

K K K m K K K m K K K m K

w w w
w w w

w w w

     

     

     

 
 
  
 
 
  

C
C

P

C








,  

 Output: 



  The chromosome C with minimum error based fitness   as defined 
  in (10) and (11) for DC and AC excitation, respectively 

 Initialization: 

  Random generation C and accordingly P with real entries and set 

  the parameters values as tabulated in Table 1. 

 Stopping Criteria: 

  Algorithm terminates for the following: 

   Fitness, i.e.,   → 10-15.  
   Tolerance i.e., TolFun → 10-20.  

   Constrained Tolerance, i.e.,TolCon → 10-20. 

   and others mentioned in Table 1. 

 While {any of stopping criteria met} do % 

  Fitness evaluation: 

   Evaluate fitness   for each C in P. 
  Termination:  

   If stopping criteria attain, then exit while loop else 

   continues. 

  Ranking: 

   Rank each C of P on minimum   for both DC and AC  
   excitation models 

  Reproduction: 

   Use selection, crossover, and mutation operators to  

   change P for each generation as tabulated in Table 1  

   using the respective routines as: 

   selection:‘@selectionuniform’, ‘@crossoverheuristic’ and

   ‘@mutationadaptfeasible’  

 End while loop 

 Storage:  

  Save parameters of Pb, with fitness and time, cycle and  

  function count parameters of complexity for both DC and AC  

  model of circuits  

End Part 1 

Part 2: SQP 

 Software: 

  Operate SQP algorithm through ‘fmincon’ and ‘optimset’ routines 

  of Matlab optimization toolbox 

 Initialization: 

 Initialize the setting of SQP algorithm as tabulated in Table 1  

 Termination: 

 Set stopping criteria as given in Table 1 for example 

 MaxIter → 1000,  

 TolFun → 10-20,  

 TolCon → 10-20, and 

  TolX → 10-15, 

  The settings of termination are given in ‘optimset’ routine. 

 While {fulfillment of any of stopping criteria} do 

  Fitness:  

   Calculate fitness   as given in equations (10) and (11) 
   for DC and AC excitation based circuit models, 

    respectively 

  Refinements: 

   Refine decision variables at each step increment in SQP 

   procedure 

 End loop 

 Storage:   

  Store the final optimization/decision variables along with  

  fitness  , time, cycles and functions evaluated with the  



  GA-SQP.  

End part 2 

Part 3: Statistical observations 

 Recurrences: 

  Repeat the procedures given in Parts 1 and 2 for both circuit 

  models by GA-SQP for 100 independent runs to generate a dataset 

  for effective/viable/supportive analysis. 

End part 3 

Table 1: Parameter Settings of GA and SQP methods 

Method Parameters Setting Parameters Setting 

GA Population Creation Constrained dependent Population Size 200 
 Scaling function Rank Variables 30 
 Selection function Stochastic Uniform Generation 400 
 Initial Population [-1, 1] Function Tolerance 10-15 
 Crossover  function Scattered Stall Generation limit 100 
 Mutation function Adaptive feasible Bounds (lower, upper) (-30, 30) 
 Elite count 4 Nonlinear Constraint Tolerance 10-15 
 Fitness Limit 10-15 Other defaults 
SQP Start Point Best weights of GAs Hessian BFGS 
 Derivative Solver Approximate Minimum Perturbation 10-08 
 Iterations 1000 X-Tolerance 10-20 
 Max. Function 

evaluations 100000 Nonlinear constraint Tolerance 10-25 

 Bounds (lower, upper) (-30, 30) Function Tolerance 10-25 
 Finite Difference types Central Differences Other Defaults 

2.4 Performance Indices 
In this research study, performance of the designed scheme for solving nonlinear circuits models 
is examined by incorporating three different performance indices defined in terms of mean 
absolute error (MAE), Nash Sutcliffe efficiency (NSE), and variance account for (VAF). The 
advantages of using these three metrics is provision of in-depth analysis of the accuracy, 
convergence and stability on different optimal values for the perfect modeling. 
The MAE metric provides the mean level of the model precision based of calculation of error 
from reference results along with the absolute operators that does not show the deviation 
direction of the error. Mathematically MAE and Global MAE (GMAE) for solution of nonlinear 
circuit model (1) are written as: 

 
 

1 1

1 1 1ˆ ˆ, ,
M R M

m m m m
m r m r

MAE GMAE
M R M

   
 

     
             

    (12) 

Besides MAE, the NSE metric, introduced by Nash and Sutcliffe, in 1970 [64] is a normalized 
statistic that shows a comparison between the relative magnitude of the residual variance and the 
measured data variance. NSE values ranges [- , 1] to determines the model efficiency and its 



value should be closer to 1 for perfect model. Mathematical relation for NSE and global NSE 
GNSE are described as: 
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 (13) 

and its error function ENSE and EGNSE are as follows: 
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The VAF based performance metric is also used to verify the correctness of the model through 
comparison of actual output from approximate one. If they differ than VAF is lower. 
Mathematical relations for VAF and GVAF are defined as: 
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The error function linked with VAF (EVAF) is defined bellow: 

      
1

1, 100 , 100
K

VAF VAF k
k

E EG VAF VAF
k 

  
    

  
  (16) 

Magnitudes of MAE, EVAF, and ENSE for perfect model are generally zero. 

3. Numerical experimentation with discussion 
Results of detailed numerical experimentations are given here for the solution two nonlinear RL 
circuit problems based on DC (1) and AC (2) excitations.  

3.1 Problem 1: Nonlinear RL circuit with DC excitation 
The dynamics of the problem is analyzed number of cases for three scenarios by varying the 
resistance R, voltage U and inductance α parameters. 
Scenario 1: Nonlinear RL circuit problem by varying the resistance parameter: In this study, a 
nonlinear RL based circuit model having constant values for U = 250 and α = 0.5 parameters by 
varying the R magnitudes are considered for the three cases, i.e., R = 125, 100 and 155. 
Scenario 2: Nonlinear RL circuit problem by varying the voltage parameter: In this study, a 
nonlinear RL based circuit model having constant values for R = 125 and α = 0.5 parameters by 
varying the U magnitudes are considered for the four cases, i.e., U = 150, 200, 250 and 300. 



Scenario 3: Nonlinear RL circuit problem by varying the inductance parameters: In this study, a 
nonlinear RL based circuit model having constant value for U = 150 and R = 125 parameters by 
varying the α magnitudes are considered for the four cases, i.e., α =0.75, 1.0, 1.5 and 2.0. 

3.2 Problem 2: Nonlinear RL circuit with AC excitation 
The dynamics of the problem is analyzed number of cases for four scenarios by varying the 
resistance R, voltage U, inductance α, angular frequency ω parameters. 
Scenario 1: Nonlinear RL circuit problem by varying the voltage parameter: In this study, a 
nonlinear RL based circuit model having constant values for R = 125, α = 0.5 and ω = 0.9 
parameters by varying the U magnitudes are considered for the three cases, i.e., U = 150, 100 and 
50. 
Scenario 2: Nonlinear RL circuit problem by varying the resistance parameter: In this study, a 
nonlinear RL based circuit model having constant values for U = 100, α = 0.5 and ω = 0.9 
parameters by varying the R magnitudes are considered for the three cases, i.e., R = 125, 75 and 
175. 
Scenario 3: Nonlinear RL circuit problem by varying the inductance parameters: In this study, a 
nonlinear RL based circuit model having constant values for U = 150, R = 125 and ω = 0.9 
parameters by varying the α magnitudes are considered for the three cases, i.e., α =0.5, 1.0 and 
1.5. 
Scenario 4: Nonlinear RL circuit problem by varying angular frequency: In this study, a 
nonlinear RL based circuit model having constant U = 150, R = 125 and α = 0.5. parameters by 
varying the ω magnitudes are considered for the three cases, i.e., ω =0.3, 0.6 and 0.9. 
Proposed scheme is executed for finding the solution of nonlinear RL circuit problems 1 and 2 
for each case i.e., c-1 to c-4 for cases 1 to 4, of all scenarios, i.e., s-1 to s-3 for scenarios 1 to 4, 
as described in the last section. The objective functions as given in equations (10-11) for M =10 
inputs grid points for case 1 of these scenarios for problem 1 based on DC excitation are 
expressed as: 
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Similarly, the objective functions for case 1 of four scenarios of problem 2 based on AC 
excitation are expressed as: 

 
   

10
2 2

1, 1 0
1

ˆ ˆ ˆ0.1 62.5 150sin(0.9) ,s c m m m
m

t    



 
    

 


,
 (20) 



 
 

10
2

2, 1 0
1

ˆ ˆ ˆ0.1 ( 62.5 100sin(0.9) ) ,s c m m m
m

t    



 
    

 


,
 (21) 

 
 

10
2

3, 1 0
1

ˆ ˆ ˆ0.1 ( 62.5 150sin(0.9) ) ,s c m m m
m

t    



 
    

 


. 
 (22) 

 
 

10
22

4, 1 0
1

ˆ ˆ ˆ0.1 ( 62.5 150sin(0.3) )s c m m m
m

t    



 
    

 


 
(23) 

The approximate solutions ˆ ( )t  are obtained by using the optimized weights attained by GAs-
SQP algorithm for input interval [0, 1] with step size h = 0.05 for both nonlinear RL problems. 
Reference solutions are also determined with the Adam numerical method for the same input 
grids. The magnitudes of performance operators MAE, ENSE and EVAF are determined for 
each independent trails. The best trail of the algorithm is identified on the basis of minimum 
magnitude of the indices as listed in Table 2 for each scenario of both nonlinear RL circuit 
problems.  
The learning curves of GA and SQP, that is, iterative update of the fitness, are presented in the in 
Fig. 5 for the three cases. These learning curves show that the vary small improvement of the 
fitness by GAs with step increment in the generation, i.e., in steady state. The hybridization with 
local search algorithm by SQP enhance the steady state performance of GAs which is evident 
from subfigure 5(b), 5(d) and 5(f). The optimized parameter of NNDEMs for the runs of GA-
SQP with MIN fitness for all three cases 1, 2 and 3 of scenario 1 and all four cases of scenarios 2 
and 3 plotted in Fig. 6 in case of problem 1 based on DC excitation and accordingly for all cases 
of problem 2 based on AC excitation in Fig. A1 of appendix section. 
 

  
(a) LC of GAs for Scenario:1 Case:1 (b) LC of GA-SQP Scenario:1 Case:1 



  
(c) LC of GA for Scenario:2  Case:1 (d) LC of GA-SQP for Scenario:2 Case:1 

  
(e) LC of GA for Scenario:3 Case:1 (f) LC of GA-SQP for Scenario:3 Case:1 

Fig. 5: Learning curves of optimization algorithms for training the weights of neural networks 

 

 
(a)Scenario-1, Case-1 

 
(b) Scenario-1, Case-2  

(c) Scenario-1, Case-3  
(d) Scenario-2, Case-1 

 
(e) Scenario-2, Case-2  

(f) Scenario-2, Case-3  
(g) Scenario-2, Case-4 

 
 

(h) 
Scenario-3, Case-1 



(h) 
Scenario-3, Case-2 

 
 

(i) Scenario-3, Case-3 

 
 

(j) Scenario-3, Case-4 

 

Fig 6: Set of optimal weights of NNDEMs by GAs-SQP algorithm for dc excitation 

The weights presented in Fig. 6 and Fig A1 of appendix are utilized to derive the proposed 
solutions for each scenario and are written below for case 1, for nonlinear RL circuit model for 
DC excitation as: 

 1, 1 -(4.8409 -0.1527) -(-29.7219 -1.2781) -(26.1769 -1.6330)
9.3195 25.0820 -9.3540ˆ ( ) ...
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2, 1 -(0.1436 11.0013) -(-28.5483 -2.9034) -(9.6196 9.6170)
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(26) 

Similarly, the derived approximate solution for AC excitation for first case of each scenario is 
given as” 
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Table 2: The iteration of hybrid optimization GA-SQP with minimum (MIN) values of error 
based performance metrics for all three cases of each scenario. 

Problem Scenario Index Case-1 Case-2 Case-3 
MIN At Iteration MIN At Iteration MIN At Iteration 



1 

1. MAE 1.0310-3 56 of 100 1.1710-3 51 of 100 4.8810-4 64 of 100 
 ENSE 7.8210-6 19 of 100 7.7910-6 11 of 100 3.3610-6 64 of 100 
 EVAF 6.6110-5 19 of 100 7.3010-5 79 of 100 2.6310-5 64 of 100 

2. MAE 9.0610-4 55 of 100 7.5910-4 81 of 100 1.0310-3 56 of 100 
 ENSE 1.6010-5 55 of 100 7.0010-6 75 of 100 7.8210-6 19 of 100 
 EVAF 9.5810-5 55 of 100 5.2210-5 75 of 100 6.6110-5 19 of 100 

3. MAE 6.5310-4 46 of 100 3.6710-4 83 of 100 3.1210-4 94 of 100 
 ENSE 6.6210-6 70 of 100 5.0410-6 83 of 100 1.1410-6 94 of 100 
 EVAF 4.3510-5 70 of 100 2.4510-5 83 of 100 1.9110-5 94 of 100 

2. 

1. MAE 2.8410-3 35 of 100 3.7410-3 62 of 100 4.9210-3 87 of 100 
 ENSE 3.2210-4 35 of 100 9.9710-4 62 of 100 4.7810-3 87 of 100 
 EVAF 1.2410-3 35 of 100 1.5910-3 62 of 100 2.3610-3 87 of 100 

2. MAE 1.5310-3 55 of 100 1.7110-3 51 of 100 4.5610-4 64 of 100 
 ENSE 6.3210-6 17 of 100 6.4910-6 11 of 100 9.2010-6 64 of 100 
 EVAF 6.3410-5 17 of 100 7.1210-5 79 of 100 3.4610-5 64 of 100 

3. MAE 4.9210-3 87 of 100 1.3110-3 68 of 100 5.1010-4 64 of 100 
 ENSE 4.7810-3 87 of 100 1.2210-4 95 of 100 1.8410-5 64 of 100 
 EVAF 2.3610-3 87 of 100 6.1810-4 95 of 100 1.5510-4 64 of 100 

4. MAE 2.0410-3 57 of 100 1.4610-3 49 of 100 8.8410-4 64 of 100 
 ENSE 8.8510-6 18 of 100 5.5410-6 10 of 100 7.6510-6 64 of 100 
 EVAF 4.6210-5 18 of 100 5.3910-5 77 of 100 3.6210-5 64 of 100 

 
Proposed approximate results of  ˆ t  are obtained using weights provided in Fig. 6 and Fig. A1 
of appendix while the calculated solutions are plotted in Figs. 7 and 8 for nonlinear RL problems 
1 and 2, respectively, for each case. The results of Adam numerical solver (ANS) for the same 
grid points are also platted in Figs. 7 and 8 for problems 1 and 2, respectively. In order to access 
the level of matching between the approximate solutions and reference results, the values of 
absolute error (AE) are calculated and also plotted graphically in subfigures of both Figs. 7 and 
8. In order to elaborate the minute difference in the results, the numerical values of AE are 
illustrated in Table 3 for DC excitation for nonlinear RL problems 1 for inputs between 0 and 1 
with step size 0.05, while these results for problem 2 are given in Table A1 of appendix. The 
presented results in show that the approximate solutions are regularly overlapping reference ANS 
for each case both problems and generally, the 2 to 7 decimal of accuracy is achieved for each 
variation of all three scenario of problem 1, while 3 to 8 decimal of accuracy attained for the 
variants of problem 2.  
 

 
Table 3: Comparative study on the basis of absolute error for the three cases of each scenario of 

problem 1 based on DC excitation 



Scenario t Absolute error t Absolute error 
C: 1 C: 2 C: 3 C: 1 C: 2 C: 3 

1 

0.05 9.2210-6 1.5310-2 1.9110-4 0.55 3.2810-5 1.3310-5 2.8110-5 
0.10 1.9410-2 2.0210-2 9.3310-3 0.60 2.1610-5 5.4110-7 2.4010-5 
0.15 1.7510-3 1.6310-3 4.5010-4 0.65 4.7910-6 1.0210-5 1.4610-5 
0.20 2.0410-4 1.7410-4 3.6910-5 0.70 2.5410-5 1.9310-5 2.0110-6 
0.25 3.0310-5 1.4610-4 5.0610-6 0.75 2.9310-5 2.7110-5 1.1310-5 
0.30 1.2410-5 2.0610-4 3.1310-6 0.80 1.6510-5 3.3810-5 2.3010-5 
0.35 4.1510-5 1.5810-4 3.0110-5 0.85 5.1310-6 3.9510-5 3.0210-5 
0.40 2.8210-5 8.8210-5 1.4610-5 0.90 2.4610-5 4.4610-5 3.0110-5 
0.45 2.9310-5 5.1310-5 9.610-6 0.95 3.0410-5 4.9010-5 1.9310-5 
0.50 1.1310-5 2.9410-5 2.4410-5 1.00 1.2310-5 5.2910-5 6.1510-6 

2 

0.05 5.7710-4 1.3610-4 9.2510-6 0.55 1.2510-5 6.4210-6 3.2810-5 
0.10 1.5210-3 1.3610-2 1.9310-2 0.60 9.2510-5 1.5610-5 2.1610-5 
0.15 1.4110-3 1.1210-3 1.7410-3 0.65 3.8910-5 2.4510-5 4.7910-6 
0.20 2.3610-4 1.5510-4 2.0010-4 0.70 1.8010-5 2.7110-5 2.5410-5 
0.25 5.4210-5 6.9910-5 3.0110-5 0.75 6.3110-5 2.7110-5 2.9310-5 
0.30 2.3310-4 1.9410-4 1.2210-5 0.80 8.8610-5 2.6310-5 1.6510-5 
0.35 1.0210-4 4.7610-5 4.0710-5 0.85 9.0910-5 2.5510-5 5.1310-6 
0.40 1.5310-4 1.4610-4 2.8010-5 0.90 6.9110-5 2.4810-5 2.4610-5 
0.45 2.5710-5 1.1010-4 2.9210-5 0.95 2.3110-5 2.4310-5 3.0410-5 
0.50 8.3910-5 4.9210-5 1.1310-5 1.00 4.6710-5 2.4010-5 1.2310-5 

3 

0.05 7.1710-4 8.9410-5 4.7510-4 0.55 3.6810-6 1.2710-5 1.6110-5 
0.15 1.1610-3 3.8310-4 3.7210-4 0.65 1.1210-5 1.0410-5 3.4410-5 
0.20 1.7610-4 3.2410-5 3.8910-5 0.70 6.9710-6 4.2010-6 3.0410-5 
0.25 1.9010-5 7.1510-6 6.4610-5 0.75 2.7410-6 2.3110-6 2.3310-5 
0.30 6.0710-5 2.5810-5 1.2910-4 0.80 2.4810-7 7.5910-6 1.5010-5 
0.35 7.3110-5 9.3510-6 7.5610-6 0.85 1.9610-6 1.0610-5 6.4410-6 
0.40 3.3510-6 2.0010-5 8.2610-5 0.90 2.7410-6 1.0410-5 2.1210-6 
0.45 3.5410-5 9.8210-6 6.2510-5 0.95 2.9710-6 6.4610-6 1.0610-5 
0.50 1.7210-5 4.1810-6 1.7210-5 1.00 2.9110-6 1.8010-6 1.9010-5 
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Fig. 7: Comparison of proposed solutions for various nonlinear RL Circuits models for DC 
excitation 
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Fig. 8: Proposed solutions for various nonlinear RL Circuits models for AC excitation 



5 Comparative Studies through Statistical Analyses 
Multiple runs of the proposed NNDEM optimized with GA-SQP are performed to access the 
effective performance of the scheme for solving nonlinear RL circuit model. The statistical 
analysis for 100 trails of the design scheme is conducted both DC and AC excitation of nonlinear 
RL circuit system and necessary description is provided in this section. 
Performance of the heuristic technique, NNDEM optimized with GA-SQP, is examined by mean 
of MAE, VAF and NSE operators for 100 multiple runs. Results in terms of MAE magnitudes 
for multiple independent runs are plotted in unsorted semi-log graphs in Figs. 9 and 10 for DC 
and AC excitation based RL circuit model, respectively. Similarly, respective results of NSE and 
VAF both for problem 1 and problem 2 are shown in Figs. A2 to A5 of the appendix section. It is 
observed that very low magnitudes of these performance indicators MAE, ENSE, and EVAF are 
attained consistently, which demonstrate the invariable accuracy of the scheme. 
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Fig. 9: Comparison on MAE operator for multiple runs of the algorithm for each variant of nonlinear 
RL circuit considering DC excitation 
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Fig. 10: Comparison on MAE operator for multiple runs of the algorithm for each variant of 
nonlinear RL circuit considering AC excitation 

 
The accuracy and convergence of the proposed hybrid strategy is investigated further in terms of 
statistical indices of mean, standard deviation (STD) and minimum (MIN) gauges of the AE. The 
results of statistics on the basis of 100 independent trials are tabulated in Table 4 and Table A2  
of appendix section for inputs  with step size of 0.2 for all cases of nonlinear RL circuit 
in case of DC and AC excitation, respectively. It is seen that the values lie in the range of 10-02 to 
10-07 and 10-03 to 10-08 for problem-1 and problem 2, respectively. Generally, it is stated that 
results are accurate, having smaller values of the statistical indices, that prove consistency in 
precision and convergence of the proposed algorithm. 
 
 



 
Further evaluation of efficacy of the proposed algorithm is performed through percentage 
convergent runs by attaining the various accuracy stages for fitness and MAE, i.e., ε ≤ (10-04, 10-

05, 10-07 and 10-09), and MAE ≤ (10-03, 10-04, 10-05 and 10-06). Results in terms of percentage trials 
fulfilling these accuracy measures are given in Table 5 which show that around 90+% of the 
independent trials proposed methodology based on NNDEM optimized with GA-SQP remains 
convergent on base criterion of both performance measures while few independent trial attain the 
level of relatively tough criteria.  
Comparative analysis on the performance of the scheme is continues by means of global 
indicators of GMAE, EGNSE, and EGVAF on the basis of 100 independent trials. Magnitudes of 
these global indices for each case of nonlinear RL circuit problem 1 with DC, as well as, 
problem 2 with AC excitation are listed in Table 6. The presented results with very small 
magnitudes of global metrics established the invariable consistency, stability and robustness of 
the design methodology to solve each case of the scenarios of nonlinear RL circuit model given 
in problem 1 and 2.  

6. Conclusions 
Neurocomputing paradigm is designed effectively for solving RL circuit models having 
nonlinear inductance excited with both DC and AC source voltage by exploiting the potential of 
accurate artificial neural network modeling optimized globally with genetic algorithms hybrid 
with sequential quadratic programming for viable local search. The designed solver is applied to 
various scenarios of nonlinear RL circuit problems with DC as well as AC excitation based on 
different magnitudes of resistance, inductance, and voltage parameters. Results reveal that 
approximate solutions consistently matched with the Adams numerical method within a range of 
3 to 8 decimal places of accuracy for each variant of RL circuit models. Comparison through 
statistical analysis based on 100 independent trials in terms of mean and standard deviation 
verify the consistency and convergence of the designed scheme for each nonlinear circuit 
problem. Comparative study of the proposed scheme is further validated through performance 
metrics i.e., mean of absolute error, variance account for and Nash-Sutcliffe efficiency and their 
global versions for 100 independent trials of the algorithms. Smaller values of these operators 
demonstrate the accuracy and efficacy of the designed scheme. Beside high prescient and 
reliability the implementation ease, simple conceptual procedures, broader applicability and 
extendibility are other hallmarks of the designed methodology.  
In future, it looks promising to exploit the proposed methodology solving the problems arising in 
nonlinear circuit analysis based on continuous values of the voltages. Additionally, the proposed 
scheme is a good alternative to be exploited for stiff optimization problems based on 
flexoelectric materials [65-66]. 
 

 



 
 

Table 4: Results based on statistical operators for different variants of nonlinear RL circuits for 
dc excitation 

Scenario Case Model 
Absolute Error for input ‘t’ 

0.1 0.3 0.5 0.7 0.9 

1 

1 
MIN 9.2510-6 1.6510-6 1.4510-6 3.2510-7 1.9410-6 
Mean 1.3510-2 3.3710-4 1.2010-4 7.7910-5 1.3310-4 
STD 4.15E-02 3.2910-4 1.3710-4 7.5410-5 1.6210-4 

2 
MIN 2.8810-5 4.9610-6 5.0910-7 5.0410-7 9.4710-7 
Mean 2.2110-2 4.6610-4 1.4810-4 9.7110-5 1.7110-4 
STD 6.5010-2 6.3610-4 2.0210-4 1.5210-4 2.3610-4 

3 
MIN 1.9110-5 3.0610-6 1.8010-6 2.2010-8 9.0510-7 
Mean 2.7910-2 3.9910-4 1.3310-4 1.0710-4 1.9510-4 
STD 7.5610-2 4.8010-4 1.9810-4 1.5610-4 3.5010-4 

2 

1 
MIN 9.4510-7 2.0010-5 9.8210-7 7.0910-8 1.0910-6 
Mean 1.2210-2 3.5510-4 1.2810-4 9.5610-5 1.3710-4 
STD 3.3210-2 4.2410-4 1.6810-4 1.2510-4 1.4710-4 

2 
MIN 1.6710-5 1.0410-5 3.7410-6 7.9710-7 2.0210-6 
Mean 2.6110-2 4.4110-4 1.4110-4 8.1710-5 1.5310-4 
STD 6.2510-2 6.1710-4 1.9010-4 1.1110-4 2.6610-4 

3 
MIN 9.2510-6 1.6510-6 1.4510-6 3.2510-7 1.9410-6 
Mean 1.3510-2 3.3710-4 1.2010-4 7.7910-5 1.3310-4 
STD 4.15E-02 3.2910-4 1.3710-4 7.5410-5 1.6210-4 

4 
MIN 4.5210-5 5.1410-6 3.0610-6 3.8610-7 1.5010-6 
Mean 1.7210-2 4.8510-4 1.8410-4 1.2210-4 1.9910-4 
STD 4.4610-2 5.2410-4 2.0710-4 1.3110-4 2.2510-4 

3 

1 
MIN 9.6610-5 3.3110-6 1.1410-6 1.1210-7 1.1810-6 
Mean 3.1810-1 3.2010-4 1.1210-4 1.0110-4 1.5810-4 
STD 3.9110-1 3.1510-4 1.4110-4 1.4910-4 1.9910-4 

2 
MIN 6.4310-6 4.6010-6 3.6810-6 2.4810-7 1.6610-7 
Mean 4.4810-2 4.3710-4 1.7010-4 1.3310-4 2.0010-4 
STD 1.2410-1 4.3810-4 2.1610-4 1.7110-4 1.8410-4 

3 
MIN 2.1610-6 5.5410-6 9.0510-7 5.3110-7 1.3010-6 
Mean 4.8110-2 4.1410-4 1.3310-4 1.1710-4 1.8510-4 
STD 9.3610-2 4.3010-4 1.5310-4 1.3410-4 2.1410-4 

4 
MIN 1.9010-1 3.7210-4 1.5910-4 1.2410-4 2.4610-4 
Mean 3.2910-1 3.7110-4 1.8510-4 1.5310-4 3.1110-4 
STD 1.2310-1 2.6710-4 1.5710-4 1.2510-4 1.8710-4 

 
 
 
 

Table 5: Percentage convergence for various nonlinear RL circuit Models 



Problem Scenario Case 
Performance Measures 

% runs with fitness % runs with MAE 
10-04 10-05 10-07 10-09 10-03 10-04 10-05 10-06 

1 

1 
1 94 34 2 0 100 100 95 0 
2 91 37 5 1 100 100 88 0 
3 89 26 5 0 100 100 90 1 

2 
1 96 37 8 0 100 100 95 0 
2 94 34 2 0 100 100 95 0 
3 95 34 4 1 100 100 90 0 
4 95 34 4 1 100 100 95 0 

3 
1 52 11 1 1 100 100 51 10 
2 90 19 4 0 100 100 90 0 
3 85 21 8 0 100 100 83 2 
4 68 13 1 0 100 94 64 9 

2 

1 
1 100 94 80 58 100 100 56 0 
2 100 98 61 38 100 100 31 0 
3 100 93 66 15 100 100 3 0 

2 
1 100 84 47 17 100 100 44 0 
2 100 98 61 38 100 100 31 0 
3 100 87 38 10 100 100 45 0 

3 
1 100 94 80 58 100 100 56 0 
2 100 89 51 16 100 100 46 0 
3 100 95 64 34 100 100 51 0 

4 
1 100 85 62 19 100 100 57 0 
2 100 79 40 12 100 100 94 35 
3 100 94 80 58 100 100 56 0 

 
Table 6: Comparative studies on the basis of global performance indices for nonlinear RL circuit 

model 

Pr. Operator S:1 S:2 S:3 
C:1 C:2 C:3 C:1 C:2 C:3 C:1 C:2 C:3 

1 

GMAE Values 4.7510-3 7.0610-3 9.7610-3 3.4510-3 2.5910-3 2.7510-3 5.6810-4 8.9010-4 1.2310-3 
STD 9.8910-4 4.2210-3 4.1410-3 9.7510-4 1.0910-3 9.7910-4 2.3010-4 4.2310-4 5.6710-4 

EGNSE Values 2.6610-5 1.9810-4 1.9910-4 9.6810-6 6.4410-6 4.5010-6 2.3010-7 3.0010-6 1.1510-5 
STD 4.7810-4 1.6410-3 3.2010-3 1.5710-4 6.6910-5 5.4010-5 1.2410-6 1.3310-5 4.8210-5 

EGVAF Values 1.7310-4 1.7310-3 2.0610-3 6.2510-5 4.0610-5 2.7510-5 6.7510-7 9.4010-6 3.1510-5 
STD 7.3510-5 1.8810-4 3.6710-5 2.4410-5 1.0610-5 8.8310-6 4.2310-7 4.2510-6 1.7610-5 

2 

GMAE Values 1.1610-2 1.1610-2 1.2010-2 5.1010-3 2.8510-3 2.9810-3 2.8410-3 3.7910-3 1.8310-3 
STD 1.2510-2 1.1310-2 1.1010-2 4.0810-3 2.4010-3 2.4010-3 2.3310-3 3.6810-3 1.6210-3 

EGNSE Values 1.1610-2 1.1610-2 1.2010-2 5.1010-3 2.8510-3 2.9810-3 2.8410-3 3.7910-3 1.8310-3 
STD 1.2510-2 1.1310-2 1.1010-2 4.0810-3 2.4010-3 2.4010-3 2.3310-3 3.6810-3 1.6210-3 

EGVAF Values 3.4210-3 5.2610-3 1.4210-2 6.0610-4 1.7510-4 2.3110-4 2.9110-4 4.4410-4 8.0210-5 
STD 4.5010-3 6.0510-3 1.4510-2 5.0510-4 1.6010-4 1.9610-4 2.5110-4 4.5710-4 7.6610-5 
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Appendix 
The numerical illustrations of results in case of AC excitation are given in Tables A1 and A2, 
while the graphics presented in Figs. A1 to A5. Appendix section is provided in Microsoft word 
document “Appendix.docx” which is submitted as a supplementary material. 
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