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Abstract
In this paper, by combining the dynamic gain and the self-adaptive neural network, an output feedback fault-tolerant

control method was proposed for a class of nonlinear uncertain systems with actuator faults. First, the dynamic gain was

introduced and the coordinate transformation of the state variables of the system was performed to design the corre-

sponding state observers. Then, the observer-based output feedback controller was designed through the back-stepping

method. The output feedback control method based on the dynamic gain can solve the adaptive fault-tolerant control

problem when there are simple nonlinear functions with uncertain parameters in the system. For the more complex

uncertain nonlinear functions in the system, in this paper, a single hidden layer neural network was used for compensation

and the fault-tolerant control was realized by combining the dynamic gain. Finally, the height and posture control system of

the unmanned aerial vehicle with actuator faults was taken as an example to verify the effectiveness of the proposed

method.
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1 Introduction

Fault-tolerant control of the nonlinear systems has always

been a concern in the control field. Since nonlinear systems

usually have complex structures and more uncertainties, it

is more difficult to compensate once the fault occurs. At

current stage, there have been many achievements in the

research of the fault-tolerant control of nonlinear systems.

But there are still many problems that need to be solved.

The main problems that need to be solved to achieve the

fault-tolerant control of nonlinear systems are nonlinear

functions in the system, uncertain parameters and unknown

fault signals. The dynamic feedback is a good method to

compensate for the uncertainties in the system [1, 2]. When

the nonlinear functions and the uncertainties satisfied cer-

tain conditions in the system, the dynamic feedback can

effectively perform adaptive compensation. The time-

varying feedback was introduced for a class of nonlinear

systems with time-varying uncertain parameters in [3]. The

existence of the time-varying feedback was analyzed, and

all state variables of the system were stabilized. However,

the time-varying gain could not form a closed loop with the

original system and it was an unbounded signal. Therefore,

this method had great limitations. The time-varying gain

that does not form a closed loop with the original system is

convenient and intuitive in theoretical analysis, but is

greatly limited in practical applications.

The time-varying dynamic gain that can form a closed

loop with the system has always been a hot topic in

adaptive control research. Applying the dynamic gain, an

output feedback stabilization method for a class of uncer-

tain nonlinear systems with control functions was designed

in [4]. The dynamic equation of the gain was related to the

output of the system and the state of the observer. So it

could form a closed loop with the system. The stability of

the whole closed-loop system was also demonstrated. On

this basis, the stabilization based on the dynamic gain for

systems with stronger nonlinearity and uncertainty was

studied, respectively, in [5, 6]. And the papers [5, 6] have
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given different dynamic gain design methods and proof

methods for the stability of the closed-loop system. The

paper [7] realized the error tracking of nonlinear systems

by using the dynamic gain, so that all variables of the

closed-loop system were uniformly bounded and the output

signal could track the reference signal with a set accuracy

parameter.

When the fault occurs in the system, no matter it is the

effectiveness loss fault of the actuator or the unknown

stuck fault, both of them can be regarded as the uncer-

tainties of the system and adaptively compensated by the

dynamic gain. In [8], the fault-tolerant control of actua-

tors with dead zone in the nonlinear system was consid-

ered and the dead-zone faults were compensated by

introducing the dynamic gain. The paper [9] introduced a

switching mechanism to the dynamic gain fault-tolerant

control method which has accelerated the fault compen-

sation. When applying the dynamic gain to solve the

nonlinear control problem, it is usually necessary to

assume that the nonlinear function should satisfy certain

conditions, such as Lipschitz properties and Lipschitz-like

properties. The dynamic gain cannot be used when the

nonlinear function is complex that cannot satisfy certain

conditions.

Neural networks are widely used in the adaptive control

of various nonlinear systems [10]. Compensation to the

nonlinear functions is achieved through adaptive weight

which further solves the control problem [11]. In [12],

comprehensive faults in nonlinear systems were considered

and the fault-tolerant control method by using the radial

basis function (RBF) neural network was studied. The

designed observer was only used for faults information

extraction and not for output feedback where the controller

was the state feedback.

The paper [13] compensated the nonlinear functions

for a class of nonlinear interconnected systems by the

RBF neural network, and the state feedback fault-toler-

ant controller was designed by using the back-stepping

method and combining the interconnected characteristics

of the system. Since state feedback requires all variables

of the system to be measurable, this proposed method

cannot be well applied in practice. The paper [14] used

the RBF neural network to design an output feedback

fault-tolerant controller for a class of nonlinear systems

while the effectiveness loss fault of the actuator and the

unknown stuck fault were both considered. However, in

[14], when designing the state observer, the effectiveness

loss fault was not considered and the effectiveness of the

proposed method was demonstrated by the simulation

results without theoretical basis. In [15], an output

feedback controller was designed when the system was

normal without any fault and the compensation effect of

the controller to the faults was demonstrated in the

simulation results. On the other hand, the fault was

considered in designing the output feedback controller

[16]. However, to prove the stability of the system the-

oretically required harsh assumptions. Therefore, this

method cannot be further promoted. When there is a

fault in the system, especially an effectiveness loss fault,

the output feedback based on the neural network will

introduce new difficult-to-handle nonlinear items in the

design process due to the actuator effectiveness loss.

Therefore, more studies first design the controller when

there is no fault, and then demonstrate the compensation

effect to faults through simulation results which lacks

the theoretical basis.

Most of the neural networks used in the literature were

non-hidden or hidden where the weights of the hidden

layers were artificially set rather than self-adaptively

updated. Networks with hidden layers were rarely used in

the control of the nonlinear systems. A single hidden layer

neural network was combined with a filter to design an

output feedback stabilization method for a class of non-

linear systems in [17]. This method was difficult to pro-

mote since it placed harsh requirements on the system. The

paper [18] adopted the single hidden layer neural network

to compensate the nonlinear functions in a quad-rotor UAV

system and designed the output feedback trajectory track-

ing controller which was useful for the tracking control of

the UAV. Although the single hidden layer network was

adopted in [18], the weights of the hidden layers were

artificially set constant rather than self-adaptively updated.

When the network with hidden layers is applied in the

system, and if the weights are adaptively updated, the

system will become more complex and more parameters

which are difficult to handle will emerge, and the stability

will be affected too.

At the current stage, for the fault-tolerant control of the

nonlinear system, various methods emerged and each

method had its own advantages and disadvantages. Com-

bining various fault-tolerant control methods to solve the

fault compensation problem of the systems with stronger

nonlinearity and uncertainty is still a problem that needs to

be studied and solved.

In this paper, the dynamic gain was combined with the

adaptive neural network. The simple nonlinearity, uncer-

tainty and faults were adaptively compensated through the

dynamic gain. For the more complex nonlinear functions,

the dynamic single hidden layer neural network was used

for approximation and the compensation was completed

by combining the dynamic gain. The way of combining

the dynamic gain with the neural network can make the

adaptive single hidden layer network be successfully

applied in the fault-tolerant control of the nonlinear

system.
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2 Problem formulation

Consider a class of nonlinear systems described by

_n1 ¼ A1ðtÞn2 þ D1 n1ð Þ
..
.

_nN�1 ¼ AN�1ðtÞnN þ DN�1 n1; . . .; nN�1ð Þ
_nN ¼ BðtÞuFðtÞ þ f n1; . . .; nNð Þ þ DN n1; . . .; nNð Þ

8
>>><

>>>:

ð1Þ

where ni 2 Rn, i ¼ 1; . . .;N are the system state vector;

uFðtÞ 2 Rn is the input vector under the fault of actuators

AiðtÞ 2 Rn�n, i ¼ 1; . . .;N � 1 are the unknown time-

varying matrices; BðtÞ 2 Rn�n is the known time-varying

matrix which is continuously differentiable for t;

Di n1; . . .; nið Þ 2 Rn, i ¼ 1; . . .;N are uncertain nonlinear

functions; f n1; . . .; nNð Þ 2 Rn is more complex uncertain

nonlinear function, which is not necessarily satisfying the

Lipschitz properties and may have complex and unknown

structures; only n1 is measurable of all the state variables.

The faults considered in this article are:

uFðtÞ ¼ qðtÞuðtÞ þ wðtÞ, where qðtÞ ¼
diag q1ðtÞ; . . .; qnðtÞf g are the effectiveness factors of the

actuators which represent the effectiveness loss of actua-

tors, such as the rotor damage of the UAV; wðtÞ 2 Rn is the

unknown stuck fault, such as the unknown intense distur-

bance of the UAV system. Before starting to study the

fault-tolerant control method of system (1), the following

assumptions are necessary.

Assumption 1 There exist known positive constants A, A,

B and B, such that

B� BðtÞk k�B; A� AiðtÞk k�A; i ¼ 1; . . .;N � 1

Assumption 2 There exists known matrix ÂðtÞ, such that

A1ðtÞ::AN�1ðtÞBðtÞqðtÞÂðtÞ
þ A1ðtÞ::AN�1ðtÞBðtÞqðtÞÂðtÞ
� �T � k0I;

where k0 is a known constant.

Assumption 3 There exist unknown positive constants hi1
and hi2, such that

jjDijj � hi1
Xi

j¼1

nj
�
�
�
�þ hi2; i ¼ 1; . . .;N

Assumption 4 There exist unknown positive constants w

and w, such that

w� jjwjj �w

Assumption 5 There exists known positive constant q,

such that

q� jqiðtÞj � 1; i ¼ 1; . . .; n

Remark 1 The system state variables ni 2 Rn studied in

this paper are multidimensional. And the system contains

more complex nonlinear functions f n1; . . .; nNð Þ. This is

true of the dynamic models of various rigid bodies in

reality, such as the rotor unmanned aerial vehicle (UAV).

The fault compensation for such systems cannot be realized

by using dynamic gain simply. The assumptions in this

paper are all about the Lipschitz-like nature of simple

nonlinear functions and the bounded nature of uncertain

parameters and faults. So the assumptions are general.

3 Dynamic gain-based fault-tolerant control
design

3.1 Observer design

At first, we define AiðtÞ ¼ AiðtÞ::AN�1ðtÞBðtÞqðtÞÂðtÞ,
i ¼ 1; . . .;N, and introduce the transformation gi ¼
AiðtÞ::AN�1ðtÞBðtÞqðtÞÂðtÞ
� ��1

ni � nirð Þ , i ¼ 1; . . .;N,

where nir i ¼ 1; . . .;N are the reference signals, which are

known and bounded.

System (1) can be converted into,

_gi ¼ giþ1 þ D0
i n1; . . .; ni; nir; _nir;q1; . . .; qn
� �

; i ¼ 1; . . .;N � 1

_gN ¼ Â�1ðtÞuðtÞ þ D0
N n1; . . .; nN ; nNr; _nNr; q1; . . .;qn
� �

þÂ�1ðtÞf 0ðn1; . . .; nN ; q1; . . .;qnÞ þ w0ðtÞ

8
>><

>>:

;

ð2Þ

where

D0
i n1; . . .; ni; nir; _nir;q1; . . .; qn
� �

¼ AiðtÞ::AN�1ðtÞBðtÞqðtÞð Þ�1Di n1; . . .; nið Þ

� AiðtÞ::AN�1ðtÞBðtÞqðtÞÂðtÞ
� ��1 _nir

þ d

dt
AiðtÞ::AN�1ðtÞBðtÞqðtÞÂðtÞ
� ��1

ni � nirð Þ;

i ¼ 1; . . .;N

f 0ðn1; . . .; nN ; q1; . . .; qnÞ ¼ A1ðtÞ::AN�1ðtÞBðtÞqðtÞð Þ�1

f n1; . . .; nNð Þ;

w0ðtÞ ¼ A1ðtÞ::AN�1ðtÞBðtÞqðtÞÂðtÞ
� ��1

wðtÞ:

According to Assumptions 1, 2, and 3, we can obtain

that D0
i

�
�
�
�� h0i1 þ h0i2

Pi
j¼1 gj
�
�
�
�, w0 � w0ðtÞk k�w0, where

h0i1, h
0
i2, i ¼ 1::N, w0 and w0 are unknown constants. Then,
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we introduce the dynamic gain LðtÞ and the following

transformation,

xi ¼
gi

Lbþi�1ðtÞ ; i ¼ 1; . . .;N

vðtÞ ¼ uðtÞ
LbþNðtÞ

8
><

>:
ð3Þ

where b is a parameter to be designed.

By (2) and (3), it can be obtained that

_xi ¼ LðtÞxiþ1 þ
D0
i

Lbþi�1
� ðbþ i� 1Þ

_L

L
xi;

i ¼ 1; . . .;N � 1

_xN ¼ LðtÞÂ�1ðtÞvðtÞ þ Â�1ðtÞf 0
LbþN�1

þ D0
N

LbþN�1

�ðbþ N � 1Þ
_L

L
xN þ w0ðtÞ

LbþN�1

8
>>>>>>>>><

>>>>>>>>>:

; ð4Þ

Then, we design the following observer for system (2)

_̂gi ¼ ĝiþ1 � Liaiĝ1 i ¼ 1; . . .;N � 1

_̂gN ¼ Â�1ðtÞuðtÞ þ Â�1ðtÞf̂ 0ðn̂1; . . .; n̂N ; q̂1; . . .; q̂nÞ � LNaN ĝ1

(

:

ð5Þ

By the similar transformation,

x̂i ¼
ĝi

Lbþi�1ðtÞ ; i ¼ 1; . . .;N; ð6Þ

observer (5) can be converted into

_̂xi ¼ LðtÞx̂iþ1 � Laix̂1 � ðbþ i� 1Þ
_L

L
x̂i; i ¼ 1; . . .N � 1

_̂xN ¼ LðtÞÂ�1ðtÞvðtÞ þ 1

LbþN�1
Â�1ðtÞf̂ 0ðn̂1; . . .; n̂N ; q̂1; . . .; q̂nÞ

�LaNx̂1 � ðbþ N � 1Þ
_L

L
x̂N

8
>>>>>><

>>>>>>:

:

ð7Þ

We define ei ¼ xi � x̂i, i ¼ 1; . . .;N, the following

dynamic system of error

_ei ¼ LðtÞeiþ1 þ Laix̂1 þ
D0
i

Lbþi�1
� ðbþ i� 1Þ

_L

L
ei; i ¼ 1; . . .N � 1

_eN ¼ Â�1ðtÞ f
0 � f̂ 0

LbþN�1
þ D0

N

LbþN�1
þ LaNx̂1 � ðbþ N � 1Þ

_L

L
eN þ w0ðtÞ

LbþN�1

8
>><

>>:

;

ð8Þ

and (8) can be expressed as

_e ¼ LðtÞ A� Inð Þeþ LðtÞ a� Inð Þx1 þ ~Dþ 1

LbþN�1
~Iw0ðtÞ

�
_L

L
D� Inð Þeþ 1

LbþN�1
~IÂ�1ðtÞ f 0 � f̂ 0

� �
;

ð9Þ

where ~I ¼ 0n; . . .; 0n; Inð ÞT, e ¼ ðeT1 ; . . .; eTNÞ
T
,

~D ¼ 1
Lb
D0T
1 ; . . .;

1
LbþN�1 D

0T
N

� �T
, and a ¼ ða1; . . .; aNÞT; � is

the Kronecker product.

According to the paper [19], there is the following

Lemma 1, by which the appropriate observer parameters ai,

i ¼ 1; . . .;N can be selected.

Lemma 1 [17] There exist ai, i ¼ 1; . . .;N, which can

make A be a Hurwitz matrix, that there exist positive

constants l, l1, l2, and positive-definite matrix P 2 RN�N

such that

PAþ ATP� � lIN
l1IN �PDþ DP� l2IN ;

where D ¼ diag b . . . bþ N � 1f g.

After selecting the parameters of the observer, we first

construct the following Lyapunov function:

U ¼ eT P� Inð Þe: ð10Þ

By taking the derivatives of U with respect to time, we get

_U ¼ LeT PAþ ATP
� �

� Ineþ 2LðtÞeT Pa� Inð Þx1

þ 2eT P� Inð Þ ~Dþ 2

LbþN�1
eT P� Inð Þ~Iw0ðtÞ

�
_L

L
eT PDþ DPð Þ � Ine

þ 2

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞ f 0 � f̂ 0

� �

� � lLðtÞjjejj2 þ 2LðtÞeT Pa� Inð Þx1 þ 2eT P� Inð Þ ~D

þ 2

LbþN�1
eT P� Inð Þ~Iw0ðtÞ �

_L

L
eT PDþ DPð Þ � Ine

þ 2

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞ f 0 � f̂ 0

� �

ð11Þ

In (11), the following inequality can be obtained,

2LðtÞeT Pa� Inð Þx1 � LðtÞ l
2
jjejj2 þ 2

l
Pa� Ink k2 x1k k2:

ð12Þ

Then, by

x1 ¼
g1

LbðtÞ

¼ 1

Lb
A1ðtÞ::AN�1ðtÞBðtÞqðtÞð Þ�1 n1 � n1rð Þ

¼ 1

Lb
A
�1

1 ðtÞ n1 � n1rð Þ;

ð13Þ

we can deduce that

2LðtÞeT Pa� Inð Þx1 � LðtÞ l
2
jjejj2

þ 2

lL2b
Pa� Ink k2 A

�1

1

�
�
�

�
�
�
2

n1 � n1rk k2 ð14Þ

So, we get
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_U� � l
2
LðtÞjjejj2 þ 2

lL2b
Pa� Ink k2 A

�1

1

�
�
�

�
�
�
2

n1 � n1rk k2

þ 2eT P� Inð Þ ~Dþ 2

LbþN�1
eT P� Inð Þ~Iw0ðtÞ

�
_L

L
eT PDþ DPð Þ � Ineþ

2

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞ f 0 � f̂ 0

� �

ð15Þ

3.2 Design of output feedback fault-tolerant
control

The design of output feedback fault-tolerant control is

realized by back-stepping in this paper. At first, we define

z1 ¼
n1 � n1r

Lb
¼ A1ðtÞg1

Lb
¼ A1ðtÞx1: ð16Þ

By taking the derivatives of z1 with respect to time, we get

_z1 ¼
1

Lb
A1ðtÞn2 þ D1ð Þ �

_n1r
Lb

� b
_L

L
z1; ð17Þ

where A1ðtÞn2 ¼ A1ðtÞ n2 � n2rð Þ þ AðtÞn2r ¼ A1ðtÞA
�1

2

ðtÞg2 þ A1ðtÞn2r, and A1 ¼ A1ðtÞ::AN�1ðtÞBðtÞqðtÞ. So, (17)
can be written as

_z1 ¼
1

Lb
A1ðtÞA2ðtÞg2 þ

1

Lb
A1ðtÞn2r þ

1

Lb
D1 �

_n1r
Lb

� b
_L

L
z1;

ð18Þ

further, (18) can be written as

_z1 ¼ LðtÞA1ðtÞ x̂2 þ e2ð Þ þ 1

Lb
A1ðtÞn2r þ

1

Lb
D1 �

_n1r
Lb

� b
_L

L
z1: ð19Þ

Then, the following Lyapunov function can be con-

structed for z1,

V0 ¼
1

2
zT1 z1 ð20Þ

Taking the derivatives of V0 with respect to time, we get

_V �
0 ¼ LðtÞzT1A1ðtÞx̂2 þ LðtÞzT1A1ðtÞe2 þ

1

Lb
zT1A1n2r

þ 1

Lb
zT1D1 �

1

Lb
zT1

_n1r � b
_L

L
zT1 z1

� LðtÞzT1A1ðtÞ x̂2 � a1ð Þ þ LðtÞzT1A1ðtÞa1 � b
_L

L
zT1 z1

þ LðtÞd11 e2k k2þLðtÞd011 z1k k2þ 1

Lb
zT1A1n2r

þ 1

Lb
zT1D1 �

1

Lb
zT1

_n1r;

ð21Þ

where d11 is a positive constant to be designed; d011 ¼
d011 d11
� �

is a positive constant dependent on d11, which can

be compensated by the control designed in the next steps;

a1 is the virtual control to be designed.

Next, we define V1 ¼ U þ V0 and take the derivatives of

V1 with respect to time, we can deduce that

_V1 ¼ �LðtÞ l
2
� d11

� �
ek k2þ 2

l
Pa� Ink k2 A

�1

1

�
�
�

�
�
�
2

z1k k2

þ LðtÞd011 z1k k2þLðtÞzT1A1ðtÞ x̂2 � a1ð Þ þ LðtÞzT1A1ðtÞa1

� b
_L

L
zT1 z1 �

_L

L
eT PDþ DPð Þ � Ineþ 2eT P� Inð Þ ~D

þ 2

LbþN�1
eT P� Inð Þ~Iw0ðtÞ þ 2

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞ f 0 � f̂ 0

� �

þ 1

Lb
zT1A1n2r þ

1

Lb
zT1D1 �

1

Lb
zT1

_n1r:

ð22Þ

Then, we select d11\ l
2
, and design the virtual control

a1 ¼ �q1z1, where q1 [
2d011
k0
. By defining c1 ¼ l

2
� d11 and

d11 ¼ 1
2
q1k0 � d011, it can be deduced that

_V1 ¼ �LðtÞc1 ek k2�LðtÞd11 z1k k2�
_L

L
l1 ek k2�b

_L

L
z1k k2

þ h11
L2b

þ h12 ek k2þ zk k2
� �

þ 2

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞ f 0 � f̂ 0

� �

þ LðtÞzT1A1ðtÞ x̂2 � a1ð Þ;

ð23Þ

where d11 is an known positive constant; h11 and h12 are

unknown positive constants.

By the above steps and assuming that step k, k� 1 has

been completed, that the virtual control aj ¼ �qjzj, j ¼
1; . . .; k have been designed which make (24) established

_Vk � � LðtÞck ek k2�LðtÞ
Xk

j¼1

dkj zj
�
�
�
�2 �

_L

L
cLk ek k2

�
_L

L

Xk

j¼1

dLkj zj
�
�
�
�2 þ LðtÞzTk Ak x̂kþ1 � akð Þ þ hk1

L2b

þ hk2 ek k2þ zk k2
� �

þ 2rk�1

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞ f 0 � f̂ 0

� �
;

ð24Þ

where ck, cLk, dkj, dLkj, j ¼ 1; . . .; k and rk�1 are known

positive constants; r0 ¼ 1; hk1 and hk2 are unknown posi-

tive constants.

Next, for the step k þ 1, we define zkþ1 ¼ x̂kþ1 � ak and
construct the Lyapunov function as Vkþ1 ¼ rkVk þ
1
2
zTkþ1zkþ1, where rk a positive constant to be designed. By

taking the derivatives of zkþ1 with respect to time, we can

obtain that
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_zkþ1 ¼ _̂xkþ1 � _ak

¼
Xkþ1

j¼2

ð�1Þk�jþ1 P
k

l¼j
ql _̂xj þ ð�1Þk P

k

l¼1
ql _z1

¼
Xkþ1

j¼2

ð�1Þk�jþ1 P
k

l¼j
ql Lx̂jþ1 � Lajx̂1 � ðbþ j� 1Þ

_L

L
x̂j

� �

þ ð�1Þk P
k

l¼1
ql LA1 x̂2 þ e2ð Þ þ 1

Lb
A1ðtÞn2r

�

þ 1

Lb
D1 �

_n1r
Lb

� b
_L

L
z1

!

;

ð25Þ

so, according to (25), we get

_Vkþ1 ¼ �Lrkck ek k2�Lrk
Xk

j¼1

dkj zj
�
�
�
�2 � rkcLk

_L

L
ek k2

�
_L

L
rk
Xk

j¼1

dLkj zj
�
�
�
�2 þ LðtÞzTk Ak x̂kþ1 � akð Þ þ rkhk1

L2b

þ rkhk2 ek k2þ zk k2
� �

þ 2rkrk�1

LbþN�1
eT P� Inð Þ~I f 0 � f̂ 0

� �

þ zTkþ1

Xk

j¼2

ð�1Þk�jþ1 P
k

l¼j
ql Lx̂jþ1 � Lajx̂1 � ðbþ j� 1Þ

_L

L
x̂j

� �(

þ ð�1Þk P
k

l¼1
ql LA1 x̂2 þ e2ð Þ þ 1

Lb
A1ðtÞn2r þ

1

Lb
D1 �

_n1r
Lb

� b
_L

L
z1

 !

þLx̂kþ2 � Lakþ1x̂1 � ðbþ 1Þ
_L

L
x̂kþ1

	

ð26Þ

By direct derivation, the following three inequalities are

established in (26):

LðtÞzTkþ1

Xk

j¼2

ð�1Þk�jþ1 P
k

l¼j
qlx̂jþ1 � LðtÞakþ1z

T
kþ1x̂1

þ LðtÞð�1Þk P
k

l¼1
qlz

T
kþ1A1ðtÞðx̂2 þ e2Þ

� LðtÞ
Xk

j¼1

dkþ1;1;j zj
�
�
�
�2 þ LðtÞdkþ1;2 ek k2þLðtÞd0kþ1;1 zkþ1k k2;

ð27Þ

� zTkþ1

Xk

j¼2

ð�1Þk�jþ1
bþ j� 1ð Þ

_L

L
x̂j þ ðbþ 1Þqk

_L

L
zTkþ1zk

� ð�1Þkb
_L

L
P
k

l¼1
qlz

T
kþ1z1

�
_L

L
kkþ1 zkþ1k k2þ

_L

L

Xk

j¼1

k0kþ1;j zj
�
�
�
�2;

ð28Þ

and

LðtÞrkzTk Akzkþ1 � LðtÞdkþ1;3 zkk k2þLðtÞd0kþ1;3 zkþ1k k2;
ð29Þ

where dkþ1;1;j; j ¼ 1; . . .; k; dkþ1;2 are positive constants to

be designed; d0kþ1;1 ¼ d0kþ1;1 dkþ1;1;j; dkþ1;2

� �
is a positive

constant dependent on dkþ1;1;j; dkþ1;2; j ¼ 1; . . .; k; kkþ1 is a

positive constant to be designed; k0kþ1;j ¼ k0kþ1;j kkþ1ð Þ; j ¼
1; . . .; k are positive constants dependent on kkþ1; dkþ1;3 is a

positive constant to be designed; d0kþ1;3 ¼ d0kþ1;3 dkþ1;3; rk
� �

a positive constant dependent on dkþ1;3 and rk.
Therefore, According to (27), (28), and (29), the fol-

lowing can be obtained

_Vkþ1 � � Lrkck ek k2�Lrk
Xk

j¼1

dkj zj
�
�
�
�2 � rkcLk

_L

L
ek k2

� rk
_L

L

Xk

j¼1

dLkj zj
�
�
�
�2 þ 2rk

LbþN�1
eT P� Inð Þ~I f 0 � f̂ 0

� �

þ L
Xk

j¼1

dkþ1;1;j þ dkþ1;3

� �
zj
�
�
�
�2 þ Ldkþ1;2 ek k2

þ L d0kþ1;1 þ d0kþ1;3

� �
zkþ1k k2

þ
_L

L

Xk

j¼1

k0kþ1;j zj
�
�
�
�2 þ

_L

L
kkþ1 zkþ1k k2�

_L

L
ðbþ 1Þ zkþ1k k2

þ LzTkþ1 x̂kþ2 � akþ1ð Þ þ LzTkþ1akþ1 þ
rkhk1
L2b

þ rkhk2 ek k2þ zk k2
� �

þ �1ð ÞkP
k

l¼1
ql

1

Lb
zTkþ1 A1ðtÞn2r þ D1 � _n1r

� �
:

ð30Þ

Because

�1ð ÞkP
k

l¼1
ql

1

Lb
zTkþ1 A1ðtÞn2r þ D1 � _n1r

� �
� dh;kþ1;1

L2b

þ dh;kþ1;2 ek k2þ zk k2
� �

;

where dh;kþ1;1 and dh;kþ1;2 are unknown positive constants,we

can select kkþ1\bþ 1, and rk [max
k0kþ1;j

dLkj
; j ¼ 1; . . .; k

n o
.

Then, we select dkþ1;1;j þ dkþ1;3\rkdkj and dkþ1;2\rkck,
and define kkþ1 ¼ bþ 1� dL;kþ1;kþ1, dLkþ1j ¼ rkdLkj�
k0kþ1;j, dkþ1j ¼ rkdkj � dkþ1;1;j þ dkþ1;3

� �
, ckþ1 ¼ rkck

�dkþ1;2. Finally, the virtual control can be designed as

akþ1 ¼ �qkþ1zkþ1, where qkþ1 ¼ d0kþ1;1 þ d0kþ1;3 þ dkþ1;kþ1.

After the above design, we have

_Vkþ1 � � Lckþ1 ek k2�L
Xkþ1

j¼1

dkþ1;j zj
�
�
�
�2 �

_L

L

Xkþ1

j¼1

dLkþ1;j zj
�
�
�
�2

þ 2rk
LbþN�1

eT P� Inð Þ~IÂ�1ðtÞ f 0 � f̂ 0
� �

þ LzTkþ1 x̂kþ2 � akþ1ð Þ

þ hkþ1;1

L2b
þ hkþ1;2 ek k2þ zk k2

� �
;

ð31Þ
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where ckþ1, cLk?1, dkþ1j, dLkþ1j, j ¼ 1; . . .; k þ 1 and rk ¼
rk�1rk are known positive constants, and hkþ11 and hkþ12

are unknown positive constants.

Thus, we design the real control as

vðtÞ ¼ �qNÂðtÞzN � f̂ 0

LbþN�1
; ð32Þ

such that

_VN � � LcN ek k2�L
XN

j¼1

dN;j zj
�
�
�
�2 �

_L

L

XN

j¼1

dLN;j zj
�
�
�
�2

þ 2rN�1

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞ f 0 � f̂ 0

� �

þ hN;1
L2b

þ hN;2 ek k2þ zk k2
� �

:

ð33Þ

Then, we select the initial value of LðtÞ as Lð0Þ ¼ 1, and

design the following dynamic update rate:

_LðtÞ ¼ max
XN

i¼1

x̂Ti x̂i þ zT1 z1 �
22

L2b
; 0

( )

ð34Þ

where 2 [ 0 is a parameter to be designed which indicates

the accuracy.

Remark 2 It can be seen from (34) that the update rate of

dynamic gain LðtÞ depends on the measurable variables z1
and x̂i, i ¼ 1; . . .;N, and the dynamic gain can form a

closed loop with the system. Its role is to change with the

measurable state variables to compensate the uncertain

parameter nonlinear function and the fault in the system

adaptively. Besides, the dynamic gain also enables the

output to track the reference signal with certain accuracy.

Qualitatively, (34) means that LðtÞ will continue to adjust

until variables z1 and x̂i, i ¼ 1; . . .;N satisfy the tracking

conditions. Because the dynamic gain forms a closed loop

with the system, we can prove that it is uniformly bounded

with all other variables.

4 Compensation of nonlinear function
by dynamic neural network

It can be seen from (33) that
2rN�1

LbþN�1 e
T P� Inð Þ~IÂ�1ðtÞ f 0 � f̂ 0

� �
includes more complex

nonlinear function, and dynamic gain cannot be processed

effectively. The following method is combined with the

dynamic neural network to compensate the nonlinear

function and realize the fault-tolerant control of the system.

The main idea of this method is to use the Lipschitz

property of the nonlinear function after compensated by the

neural network, and the dynamic gain can effectively

compensate the nonlinear function with Lipschitz property.

At first, we assume the nonlinear function

f 0 n1; . . .; nN ; q1; . . .; qnð Þ as follows
f 0 n1; . . .; nN ; q1; . . .; qnð Þ ¼ f 0 fð Þ ¼ WT

0 u WT
h f

� �
þ x;

ð35Þ

where

f ¼ nT1 ; . . .; n
T
N ; q1; . . .; qn

� �T

¼ nT1 ; g
T
2A

�T

2 ðtÞ þ nT2r; . . .; g
T
NA

�T

N ðtÞ þ nTNr; q1; . . .; qn
� �T

;

WT
0 2 Rn�lh is the expected weight of input layer of the

neural network; WT
h 2 Rlh� Nnþnð Þ is the expected weight of

hidden layer; lh is the number of hidden layer nodes; u �ð Þ is
the activation function; x 2 Rn is the error which satisfied

xk k�x.
Select the compensation of f 0 as

f̂ 0 n1; n̂2::n̂N ; q̂1; . . .; q̂n
� �

¼ ŴT
0 u ŴT

h f̂
� �

; ð36Þ

where f̂ ¼ nT1 ; ĝ
T
2 þ nT2r. . .; ĝ

T
N þ nTNr; q̂1; . . .; q̂n

� �T
; ŴT

0 2
Rn�lh and ŴT

h 2 Rlh� Nnþnð Þ are the adaptive weight of input

layer and hidden layer. And we can have the following

proposition.

Proposition 1 There exist constants Ca, hW , hq, and hx,
such that

2rN�1

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞ f 0 � f̂ 0

� �

�Ca Ŵ0

�
�

�
�2þ Ŵh

�
�

�
�2þhW

� �
zk k2þ ek k2þ 1

L2b
~qk k2þ 1

L2b
hq

� �

þ 1

L2b
hx þ 2rN�1

LbþN�1
zT P� Inð Þ~IÂ�1ðtÞ ~WT

0 u ŴT
h f̂

� �

þ 2rN�1

LbþN�1
zT P� Inð Þ~IÂ�1ðtÞŴT

0 u
0 ŴT

h f̂
� �

~WT
h f̂

þ 2rN�1

LbþN�1
zT P� Inð Þ~IÂ�1ðtÞŴT

0 u
0 ŴT

h f̂
� �

ŴT
h
~I ~q;

ð37Þ

where ~W0 ¼ W0 � Ŵ0; ~Wh ¼ Wh � Ŵh; ~q ¼ q� q̂;u0 is

the derivative of u.

Remark 3 Equation (37) in Proposition 1 indicates the

upper bound of the nonlinear function after compensating

by the neural network. The dynamic gain can compensate

the first two terms on the right side of the inequality (37)

adaptively, and the latter three items can be compensated

by the dynamic update rate of the unknown parameters.

By Proposition 1, we can select the following the

dynamic update rate of the weight of the neural networks

and the adaptive update rate of the effectiveness factors.
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_̂
W0 ¼

C0

2rN�1

LbþN�1
u ŴT

h f̂
� �

zT P� Inð Þ~IÂ�1ðtÞ � F0Ŵ0

� �

Ŵ0

�
�

�
�\X0

0 Ŵ0

�
�

�
��X0

8
><

>:

ð38Þ

_̂
Wh ¼

Ch

2rN�1

LbþN�1
f̂zT P� Inð Þ~IÂ�1ðtÞŴT

0 u
0 ŴT

h f̂
� �

� FhŴh

� �

Ŵh

�
�

�
�2\Xh

0 Ŵh

�
�

�
�2 �Xh

8
><

>:

ð39Þ

_̂q ¼
c

2rN�1

LbþN�1
zT P� Inð Þ~IÂ�1ðtÞŴT

a u
0 ŴT

b f̂
� �

ŴT
b
~I � Fqq̂

� �

q̂k k2\Xq

0 q̂k k2 �Xq

8
><

>:

ð40Þ

To describe the stability of the system, we construct the

following Lyapunov function.

T ¼ VN þ ~V ; ð41Þ

where ~V ¼ 1
2
tr ~WT

0 C
�1
0

~W0


 �
þ 1

2
tr ~WT

h C
�1
h

~Wh


 �
þ 1

2
c�1 ~qT ~q;

trf � g means the trace of a matrix.

By taking the derivatives of T with respect to time and

according to (39)–(42) and Proposition 1, we can obtain

that

_T � � LðtÞ ~C � ~h
� �

ek k2þ zk k2
� �

� D ~W0

�
�

�
�2þ ~Wh

�
�

�
�2þ ~qk k2

� �
þ 1

L2b
~h0; ð42Þ

where ~C and D are known positive constants; ~h and ~h0 are

unknown positive constants.

5 Stability analysis

We have the following Propositions 2 and 3 for the stability

of the system. These two propositions show that the closed-

loop system is globally uniformly bounded and that the

output signal can track the reference signal with 2.

Proposition 2 For the closed-loop system consisting of

(7), (8), (32), (34), (36), (38), (39), and (40), the dynamic

gain LðtÞ, state vectors x̂ and e are globally bounded on

0; Tf
� �

.

Proposition 3 For the system with the actuator faults (1)

which satisfies Assumptions 1–4, if the output feedback

fault-tolerant control is given by (32), then for any given

initial condition, all variables in the closed-loop system of

(1), (5), (32), (34), (36), (38), (39), and (40) are bounded

on 0;þ1½ Þ.

Proof By Proposition 2, we can obtain that all variables in

the closed-loop system consisting of (1), (5), (33), (39),

(40), and (41) are bounded. Then, we can deduce that

limt!1 _LðtÞ ¼ 0. Therefore, There exists a finite time t2 for

any initial condition such that
n1�n1rk k2

L2b
� 22

2L2b
� _LðtÞ� 22

2L2b
,

8t[ t2. Thus, we can obtain that n1 � n1rk k� 2. h

6 Simulation results

To verify the effectiveness of the proposed method, the

following height and attitude control systems of the UAV

with actuator faults are considered [18].

Height control system of the UAV:

_n11 ¼ n21
_n21 ¼

cos n12 cos n13
m

~uF1 � k0

m
n21 � g

8
<

:
ð43Þ

Posture control system control system of the UAV:

_n12 ¼ n22

_n22 ¼
Jy � Jz

Jx
n23n24 þ

l

Jx
~uF2 þ k1n23

_n13 ¼ n23

_n23 ¼
Jz � Jx

Jy
n22n24 þ

l

Jy
~uF3 þ k2n22

_n14 ¼ n24

_n24 ¼
Jx � Jy

Jz
n22n23 þ

c

Jz
~uF4

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

; ð44Þ

where n11 is the height of the UAV (m); n21 is the vertical

speed of the UAV (m/s); n12, n13, n14 are the posture angles
of the UAV (rad); the angular rates are n22, n23, n24 rad/s;

m ¼ 1:2 kg is the quality of the UAV; g ¼ 9:8m/S2 is the

gravity acceleration; l ¼ 0:2m is the distance from the

rotor to the center of gravity of the UAV; Jx ¼ 0:3 kgm2,

Jy ¼ 0:4 kgm2, and Jz ¼ 0:6 kgm2 are the moments of

inertia in three directions of the UAV relative to its own

coordinate system; c ¼ 0:79 is the ratio of the anti-torque

coefficient of the rotor motor to the lift coefficient corre-

sponding to the motor speed; k0 is an unknown parameter

which indicates the air resistance; k1 and k2 are unknown

parameters which indicate the disturbance caused by the

motor; we select k0 ¼ 0:03, k1 ¼ 0:1 and k2 ¼ �0:1 in the

simulation.

In the above height and attitude control systems (43) and

(44), ~uFi , i ¼ 1; . . .; 4 are
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~uF1
~uF2
~uF3
~uF4

0

B
B
B
@

1

C
C
C
A

¼

1 1 1 1

0 1 0 �1

1 0 �1 0

1 �1 1 �1

0

B
B
B
@

1

C
C
C
A

q1ðtÞ 0 0 0

0 q2ðtÞ 0 0

0 0 q3ðtÞ 0

0 0 0 q4ðtÞ

0

B
B
B
@

1

C
C
C
A

u1

u2

u3

u4

0

B
B
B
@

1

C
C
C
A

þ

w1 þ w2 þ w3 þ w4ð Þ
w2 � w4ð Þ
w1 � w3ð Þ

w1 � w2 þ w3 � w4ð Þ

0

B
B
B
@

1

C
C
C
A

where ui; i ¼ 1; . . .; 4 are the rotor motor drives the lift of

the propellers; qiðtÞ, i¼ 1;::4 the effectiveness factors of

the actuators; wi, i¼ 1;::4 are the unknown stuck faults.

Then, (43) and (44) can be expressed as

_n1 ¼ n2
_n2 ¼ BðtÞqðtÞuðtÞ þ BðtÞwðtÞ þ D2ðn21; n22; n23Þ

þf n22; n23; n24ð Þ

8
><

>:
;

ð45Þ

where

BðtÞ

¼

cos n12 cos n13
m

cos n12 cos n13
m

cos n12 cos n13
m

cos n12 cos n13
m

0
l

Jx
0 � l

Jx
l

Jy
0 � l

Jy
0

c

Jz
� c

Jz

c

Jz
� c

Jz

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

;

D2 ¼ � k0

m
n21 k1n23 k2n22 0

� �T

f ¼ 0
Jy � Jz

Jx
n23n24

Jz � Jx

Jy
n22n24

Jx � Jy

Jz
n22n23

� �T

:

According to the method described above, we introduce

the transformation g1 ¼ BðtÞqðtÞÂðtÞ
� ��1

n1, g2 ¼
BðtÞqðtÞÂðtÞ
� ��1

n2, and design the following observer:

_̂g1 ¼ ĝ2 � La1ĝ1
_̂g2 ¼ Â�1ðtÞuðtÞ þ f̂ 0 n̂22; n̂23; n̂24; q̂1; . . .; q̂4

� �
� L2a2ĝ1

(

;

ð46Þ

then,make the further transformation x̂1 ¼ ĝ1
Lb
, x̂2 ¼ ĝ2

Lbþ1, we get

_̂x1 ¼ Lx̂2 � La1x̂1 � b
_L

L
x̂1

_̂x2 ¼ LÂ�1ðtÞvþ 1

Lbþ1
f̂ 0 n̂22; n̂23; n̂24; q̂1; . . .; q̂4
� �

�La2x̂1 � bþ 1ð Þ
_L

L
x̂2

8
>>>>><

>>>>>:

: ð47Þ

Thus, we can design the control vðtÞ ¼ �q2ÂðtÞz2
� 1

Lb
ÂðtÞf̂ 0 n̂22; n̂23; n̂24; q̂1; . . .; q̂4

� �
, where the adaptive

dynamic of L is given by (34), and ÂðtÞ ¼ BTðtÞ, q1 ¼ 9:3,

q2 ¼ 15:1, 2¼ 0:2.

We select the faults as follows:

q1 ¼
1 0\t\8

0:7þ 0:3e�8�ðt�8Þ t� 8




;

q2 ¼
1 0\t\8

0:8þ 0:2e�8�ðt�8Þ t� 8




;

q3 ¼ q4 ¼ 1;

w1ðtÞ ¼ 0:5 sin 10t cos 12t;

w2ðtÞ ¼ 0:7 sin2 12t cos 5t;

w2 ¼ w4 ¼ 0:

Then, we design the compensation for nonlinear functions

by neural networks: f̂ 0 n̂22; n̂23; n̂24; q̂1; . . .; q̂4
� �

¼

ŴT
0 u ŴT

h f̂
� �

, ŴT
0 2 R4�lh , ŴT

h 2 Rlh�16. The number of

hidden layer nodes is 16. We select the activation function

as the sigmoid function. The adaptive dynamic of Ŵ0, Ŵh

and q̂ is given by (38)–(40). We select X0 ¼ Xh ¼ Xq ¼
30 and F0 ¼ Fh ¼ Fq ¼ 1. So, (45), (47) and the dynamic

of L, Ŵ0, Ŵh, q̂ can form a closed-loop system.

In the simulation, the initial value of each variable

is:n11ð0Þ ¼ n12ð0Þ ¼ n13ð0Þ ¼ n14ð0Þ ¼ 0,

x̂1ð0Þ ¼ x̂2ð0Þ ¼ 0, Ŵ0ð0Þ ¼ Ŵhð0Þ ¼ 0, and q̂ð0Þ ¼ 1.

And the reference signals are: n11r ¼ 3:5m, n12r ¼ 10	,
n13r ¼ 15	, n14r ¼ 20	. The simulation results are shown in

Figs. 1, 2 and 3.

As shown in Fig. 1a, b, when there is no fault in the

system, the control method proposed in this paper can

make the system track the reference signals effectively.

Figure 1c is the variation process of dynamic gain. By the

adjustment of the dynamic gain, the uncertainties in the

system can be compensated adaptively. Finally, the system

can track the reference signals stably and the dynamic gain

is bounded.

It can be seen from Fig. 2a, b that if there is no fault-

tolerant control (select L ¼ 4:9 by Fig. 1c), the system can

respond well without faults (t\8s). However, when the

faults occur in the system (t� 8s), neither the height nor

the posture angles of UAV can track the reference signal

properly without fault-tolerant control.

In Fig. 3, we can see that the proposed fault-tolerant

control method in this paper can compensate faults effec-

tively. It can be seen from Fig. 3a–c that when the faults

occur, the dynamic gain changes from the original

stable state and the faults can be compensated by the

adaptive adjustment of the dynamic gain. From Fig. 3d, e,
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we can see that the weights of the neural network tend to

converge at first (t\8 s). Then, as the faults occur, the

weights have large oscillation in the process of the fault

compensation. After the faults have been compensated, the

dynamic gain and the network weights are stable, and the

height and posture angles of UAV can track the reference

signals effectively.

7 Conclusions

In this paper, by combining the dynamic gain and the

neural network, the output feedback fault-tolerant control

problem of a class of nonlinear uncertain systems was

solved. The compensation to the faults can be achieved

through the adaptive adjustment of the dynamic gain.

Meanwhile, the dynamic gain can also compensate for the

simple nonlinear uncertain functions of the system. For the

more complex nonlinear functions, the single hidden layer

neural network was adopted for approximation and com-

bined with the dynamic gain to achieve the compensation.

Taking the height and posture angle control system of the

quad-rotor UAV as an example, the effectiveness of the

proposed method was verified. Based on the work of this

paper, there are still further questions to be studied. First,

the fault-tolerant method needs to be solved when the

lower limitation of the effectiveness factors is unknown

and the full loss of actuator effectiveness is allowed. The

second question is that the condition of the assumption 2

may be a bit harsh and whether it can be further relaxed.

Fig. 1 a The height of UAV without faults, b the posture angles of

UAV without faults, c the dynamic gain without faults

Fig. 2 a Height of UAV with faults and b posture angle of UAV with

faults
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Appendix

Proof of Proposition 1 By

f 0 � f̂ 0 ¼ WT
0 u WT

h f
� �

�WT
0 u WT

h f̂
� �

þWT
0 u WT

h f̂
� �

� ŴT
0 u ŴT

h f̂
� �

þ x
ð48Þ

and

WT
0 u WT

h f̂
� �

� ŴT
0 u ŴT

h f̂
� �

¼ WT
0 u WT

h f̂
� �

�WT
0 u ŴT

h f̂
� �

þWT
0 u ŴT

h f̂
� �

� ŴT
0 u ŴT

h f̂
� �

; ð49Þ

we can obtain that

2rN�1

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞ f 0 � f̂ 0

� �

¼ 2rN�1

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞWT

0 u WT
h f

� �
� u WT

h f̂
� �� �

þ 2rN�1

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞWT

0 u WT
h f̂

� ��

�u ŴT
h f̂

� ��

þ 2rN�1

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞ ~WT

0 u ŴT
h f̂

� �

þ 2rN�1

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞx

ð50Þ

In (50), we get

2rN�1

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞx� hx1

L2b
þ hx2 ek k2: ð51Þ

And for the first item on the right of the unequal sign in

(50), we haveFig. 3 a Height of UAV with faults, b the posture angles of UAV

with faults, c the dynamic gain without fault, d the input layer weight

Ŵ0

�
�

�
� of neural network, and e the hidden layer Ŵh

�
�

�
� of neural

network
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2rN�1

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞWT

0 u WT
h f

� �
� u WT

h f̂
� �� �

� 2rN�1

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞWT

0 u0ðf�Þ � u0 ŴT
h f̂

� �� �
WT

h f� f̂
� �n

þ eT P� Inð Þ~IÂ�1ðtÞŴT
0 u

0 ŴT
h f̂

� �
~WT
h f� f̂
� �

þ eT P� Inð Þ~IÂ�1ðtÞ ~WT
0 u

0 ŴT
h f̂

� �
WT

h f� f̂
� �

þ ðe� zÞT P� Inð Þ~IÂ�1ðtÞŴT
0 u

0 ŴT
h f̂

� �
ŴT

h f� f̂
� �

þzT P� Inð Þ~IÂ�1ðtÞŴT
0 u

0 ŴT
h f̂

� �
ŴT

h f� f̂
� �o

:

ð52Þ

Further,

2rN�1

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞWT

0 u WT
h f

� �
� u WT

h f̂
� �� �

� c4 ek k ek k þ zk k þ 1

Lb
~qk k

� �

þ c5 ek k Ŵ0

�
�

�
� ~Wh

�
�

�
� ek k þ zk k þ 1

Lb
~qk k

� �

þ c6 ek k ~W0

�
�

�
� ek k þ zk k þ 1

Lb
~qk k

� �

þ c7 ek k þ zk kð Þ Ŵ0

�
�

�
� Ŵh

�
�

�
� ek k þ zk k þ 1

Lb
~qk k

� �

þ 2rN�1

LbþN�1
zT P� Inð Þ~IÂ�1ðtÞŴT

0 u
0 ŴT

h f̂
� �

ŴT
h f� f̂
� �

:

ð53Þ

For the second item on the right of the unequal sign in

(50), the following inequality holds

2rN�1

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞWT

0 u WT
h f̂

� �
� u ŴT

h f̂
� �� �

� c1 ek k ~Wh

�
�

�
� zk k þ 1

Lb
q̂k k þ 1

Lb
hW1

� �

þ c2 ek k ~W0

�
�

�
� ~Wh

�
�

�
� zk k þ 1

Lb
q̂k k þ 1

Lb
hW2

� �

þ c3 ek k þ zk kð Þ Ŵ0

�
�

�
� ~Wh

�
�

�
� zk k þ 1

Lb
q̂k k þ 1

Lb
hW3

� �

þ 2rN�1

LbþN�1
zT P� Inð Þ~IÂ�1ðtÞŴT

0 u
0 ŴT

h f̂
� �

~WT
h f̂

ð54Þ

For the third item on the right of the unequal sign in

(50), we get

2rN�1

LbþN�1
eT P� Inð Þ~IÂ�1ðtÞ ~WT

0 u ŴT
h f̂

� �

� c02 zk k þ ek kð Þ ~W0

�
�

�
� Ŵh

�
�

�
� zk k þ 1

Lb
q̂k k þ 1

Lb
h0W1

� �

þ 2rN�1

LbþN�1
zT P� Inð Þ~IÂ�1ðtÞ ~WT

0 u ŴT
h f̂

� �
:

ð55Þ

In (53), it can be obtained that

2rN�1

LbþN�1
zT P� Inð Þ~IÂ�1ðtÞŴT

0 u
0 ŴT

h f̂
� �

ŴT
h f� f̂
� �

� 2rN�1

LbþN�1
zT P� Inð Þ~IÂ�1ðtÞŴT

0 u
0 ŴT

h f̂
� �

ŴT
h
~I ~q

þ c01 zk k Ŵ0

�
�

�
� Ŵh

�
�

�
� zk k þ ek kð Þ:

ð56Þ

Therefore, Proposition 1 is proved by substituting (51),

(53), (54), (55), (56) into (50). h

Proof of Proposition 2 At first, let us prove the bounded-

ness of LðtÞ by counter-evidence. We assume that LðtÞ is

unbounded on ½0; Tf Þ, that limt!Tf LðtÞ ¼ 1. Then, we

discuss in the following two situations.

1. Tf\1

By the assumption that LðtÞ is unbounded, there exists a
limited time t1\Tf , such that _T � � DT þ ~h0 for t[ t1;

so, there is T � e�Dðt�t1ÞTðt1Þ þ
~h0
D
, 8t[ t1. Thus, there is

þ1 ¼ LðTf Þ � Lð0Þ ¼
R Tf
0

_LðtÞdt�
R Tf
0

PN
i¼1 x̂

T
i x̂i þ zT1 z1

dt\þ1, which contradicts the assumption. Therefore,

LðtÞ is bounded when Tf\1.

2. Tf ¼ 1

Since we have assumed that LðtÞ is unbounded, there

exists a limited time t2, such that _T � � DT þ ~h0 for

t[ t2, then we can deduce that T is bounded. Because

T ¼ VN þ ~V , VN and ~V are bounded, and by (33) and (37),

it can be obtained that _VN � � LðtÞ~c2 � ~hN1
� �

jjejj2 þ jjzjj2
� �

þ ~hN2, 8t[ t2, where ~c2, ~hN1, ~hN2 are

positive constants. Thus, there exists t3, such that

_VN � � LðtÞ~c3VN þ ~hN2, t[ t3, where ~c3 is a positive

constant. So, for any s[ 0, there exists ts1, such that

LðtÞ~c3 [ 2~hN1
s for t[ ts1. Then, we can obtain that

VNðtÞ� e�~c3ðt�ts1ÞVNðts1Þ þ s
2
, 8t[ ts1. Therefore, there

exists ts2 [ ts1, such that VNðtÞ\s, 8t[ ts2. According

to the above analysis, we can obtain that limt!1 VN ¼ 0,

and by (34), we have limt!1 _LðtÞ ¼ 0.

Then, we define CðtÞ ¼ LðtÞVNðtÞ, and take the deriva-

tives of CðtÞ with respect to time, we get

_CðtÞ� LðtÞ � ~c3 �
_L

L2

� �

CðtÞ þ ~hN2

� �

; 8t[ t3: ð57Þ

According to limt!1 _LðtÞ ¼ 0 and limt!1 LðtÞ ¼ 0, we

can deduce that CðtÞ is bounded, that CðtÞ\CM . So, there

is

XN

i¼1

x̂Ti x̂i þ zT1 z1

 !

L2b � CM

L1�2b
: ð58Þ
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By (58), there exists a limited time t4, such that
PN

i¼1 x̂
T
i x̂i þ zT1 z1

� �
L2b\ 22 for t[ t4. Then,

_LðtÞ ¼ 0,8t[ t4, which contradicts the assumption.

According to the above analysis, LðtÞ is bounded.
Next, let us prove the boundedness of x̂. The dynamic

equation of x̂ can be written as

_̂x ¼ LðtÞ A� Inð Þx̂� qNLðtÞ~IÂ�1ðtÞzN �
_L

L
D� Inð Þx̂;

ð59Þ

and the Lyapunov function can be constructed as

Vx ¼ x̂T P� Inð Þx̂. Taking the derivatives of Vx with respect

to time, we get

_Vx � 2x̂T P� Inð Þ LðtÞ A� Inð Þx̂f

�qNLðtÞ~IÂ�1ðtÞzN �
_L

L
D� Inð Þx̂

	

� � lL x̂k k2�2qNLx̂
T P� Inð Þ~IÂ�1ðtÞzN

� � lL
2

x̂k k2þl0L zNk k2

� � ~l1Vx þ ~l2 _Lþ ~l3:

ð60Þ

Then, we have

d

dt
e~l1tVx

� �
� ~l2e

~l1t _Lþ ~l3e
~l1t; ð61Þ

further, it can be obtained that

e~l1tVxðtÞ�Vxð0Þ þ
Z t

0

e~l1s ~l2 _LðsÞdsþ ~l3

Z t

0

e~l1sds

�Vxð0Þ þ ~l2Lf ðe~l1t � 1Þ þ ~l3
~l1

:

ð62Þ

By (62), we can deduce that Vx is bounded, and then x̂ is

bounded.

Finally, let us prove the boundedness of e. We can select

the L� which is large enough and introduce the following

transformation,

ei ¼
gi � ĝi
L�bþi�1

¼ Lbþi�1

L�bþi�1
ei; i ¼ 1; . . .;N; ð63Þ

then we have

_e ¼ L� A� Inð Þeþ L� K1a� Inð Þe1 þ ~D� þ L K1a� A
�1

1

� �
z1

þ 1

L�bþN�1
~IÂ�1ðtÞ f 0 � f̂ 0

� �
;

ð64Þ

where K1 ¼ diag 1� L

L�
� � � 1� LN

L�N


 	

and

K2 ¼ diag
Lb

L�b
� � � LbþN�1

L�bþN�1


 	

.

We construct the Lyapunov function as

Ve ¼ eT P� Inð Þe, and take the derivatives of VeðtÞ with

respect to time, it can be obtained that

_Ve ¼ 2eTP L� A� Inð Þeþ L� K1a� Inð Þe1 þ ~D�
n

þL K1a� A
�1

1

� �
z1 þ

1

L�bþN�1
~IÂ�1ðtÞ f 0 � f̂ 0

� �
	

:

ð65Þ

In (65), there is

2LeTP K1a� A
�1

1

� �
z1 þ 2eTP ~D� þ 2

L�bþN�1
eTP~IÂ�1ðtÞ f 0 � f̂ 0

� �

� he1 ek k2þ zk k2
� �

þ he2

2L�eTP K1a� Inð Þe1 �
1

2
L�l ek k2þL�

2

l
P K1a� Inð Þk k2 e1k k2

8
>>>><

>>>>:

;

ð66Þ

Where he1 and he2 are positive constants which are not

related to L�.
Therefore, we have

_Ve � � L�l
2

ek k2þL�Ce1 e1k k2þCe2 ek k2þ zk k2
� �

þ he;

ð67Þ

where Ce1, Ce2, and he are positive constants which are not

related to L�.

Since L� is large enough and e1k k2 � c _Lþ 22
� �

, we can

deduce that

_Ve � � ~CeVe þ ~Ce1 _Lþ ~he; ð68Þ

where ~Ce, ~Ce1, and ~he are positive constants.

Then, there is

d

dt
e
~CetVe

� �
� ~Ce1e

~Cet _Lþ e
~Cet~he; ð69Þ

by (69), we have

Ve �Veð0Þe�
~Cet þ ~Ce1LM þ

~he
~Ce
: ð70Þ

Therefore, from the above analysis, we can deduce that

Ve is bounded, and according to (63), e is bounded. h
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