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Abstract

In this paper, by combining the dynamic gain and the self-adaptive neural network, an output feedback fault-tolerant
control method was proposed for a class of nonlinear uncertain systems with actuator faults. First, the dynamic gain was
introduced and the coordinate transformation of the state variables of the system was performed to design the corre-
sponding state observers. Then, the observer-based output feedback controller was designed through the back-stepping
method. The output feedback control method based on the dynamic gain can solve the adaptive fault-tolerant control
problem when there are simple nonlinear functions with uncertain parameters in the system. For the more complex
uncertain nonlinear functions in the system, in this paper, a single hidden layer neural network was used for compensation
and the fault-tolerant control was realized by combining the dynamic gain. Finally, the height and posture control system of
the unmanned aerial vehicle with actuator faults was taken as an example to verify the effectiveness of the proposed

method.

Keywords Fault-tolerant control - Dynamic gain - Neural network - Output feedback

1 Introduction

Fault-tolerant control of the nonlinear systems has always
been a concern in the control field. Since nonlinear systems
usually have complex structures and more uncertainties, it
is more difficult to compensate once the fault occurs. At
current stage, there have been many achievements in the
research of the fault-tolerant control of nonlinear systems.
But there are still many problems that need to be solved.
The main problems that need to be solved to achieve the
fault-tolerant control of nonlinear systems are nonlinear
functions in the system, uncertain parameters and unknown
fault signals. The dynamic feedback is a good method to
compensate for the uncertainties in the system [1, 2]. When
the nonlinear functions and the uncertainties satisfied cer-
tain conditions in the system, the dynamic feedback can
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effectively perform adaptive compensation. The time-
varying feedback was introduced for a class of nonlinear
systems with time-varying uncertain parameters in [3]. The
existence of the time-varying feedback was analyzed, and
all state variables of the system were stabilized. However,
the time-varying gain could not form a closed loop with the
original system and it was an unbounded signal. Therefore,
this method had great limitations. The time-varying gain
that does not form a closed loop with the original system is
convenient and intuitive in theoretical analysis, but is
greatly limited in practical applications.

The time-varying dynamic gain that can form a closed
loop with the system has always been a hot topic in
adaptive control research. Applying the dynamic gain, an
output feedback stabilization method for a class of uncer-
tain nonlinear systems with control functions was designed
in [4]. The dynamic equation of the gain was related to the
output of the system and the state of the observer. So it
could form a closed loop with the system. The stability of
the whole closed-loop system was also demonstrated. On
this basis, the stabilization based on the dynamic gain for
systems with stronger nonlinearity and uncertainty was
studied, respectively, in [5, 6]. And the papers [5, 6] have
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given different dynamic gain design methods and proof
methods for the stability of the closed-loop system. The
paper [7] realized the error tracking of nonlinear systems
by using the dynamic gain, so that all variables of the
closed-loop system were uniformly bounded and the output
signal could track the reference signal with a set accuracy
parameter.

When the fault occurs in the system, no matter it is the
effectiveness loss fault of the actuator or the unknown
stuck fault, both of them can be regarded as the uncer-
tainties of the system and adaptively compensated by the
dynamic gain. In [8], the fault-tolerant control of actua-
tors with dead zone in the nonlinear system was consid-
ered and the dead-zone faults were compensated by
introducing the dynamic gain. The paper [9] introduced a
switching mechanism to the dynamic gain fault-tolerant
control method which has accelerated the fault compen-
sation. When applying the dynamic gain to solve the
nonlinear control problem, it is usually necessary to
assume that the nonlinear function should satisfy certain
conditions, such as Lipschitz properties and Lipschitz-like
properties. The dynamic gain cannot be used when the
nonlinear function is complex that cannot satisfy certain
conditions.

Neural networks are widely used in the adaptive control
of various nonlinear systems [10]. Compensation to the
nonlinear functions is achieved through adaptive weight
which further solves the control problem [11]. In [12],
comprehensive faults in nonlinear systems were considered
and the fault-tolerant control method by using the radial
basis function (RBF) neural network was studied. The
designed observer was only used for faults information
extraction and not for output feedback where the controller
was the state feedback.

The paper [13] compensated the nonlinear functions
for a class of nonlinear interconnected systems by the
RBF neural network, and the state feedback fault-toler-
ant controller was designed by using the back-stepping
method and combining the interconnected characteristics
of the system. Since state feedback requires all variables
of the system to be measurable, this proposed method
cannot be well applied in practice. The paper [14] used
the RBF neural network to design an output feedback
fault-tolerant controller for a class of nonlinear systems
while the effectiveness loss fault of the actuator and the
unknown stuck fault were both considered. However, in
[14], when designing the state observer, the effectiveness
loss fault was not considered and the effectiveness of the
proposed method was demonstrated by the simulation
results without theoretical basis. In [15], an output
feedback controller was designed when the system was
normal without any fault and the compensation effect of
the controller to the faults was demonstrated in the
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simulation results. On the other hand, the fault was
considered in designing the output feedback controller
[16]. However, to prove the stability of the system the-
oretically required harsh assumptions. Therefore, this
method cannot be further promoted. When there is a
fault in the system, especially an effectiveness loss fault,
the output feedback based on the neural network will
introduce new difficult-to-handle nonlinear items in the
design process due to the actuator effectiveness loss.
Therefore, more studies first design the controller when
there is no fault, and then demonstrate the compensation
effect to faults through simulation results which lacks
the theoretical basis.

Most of the neural networks used in the literature were
non-hidden or hidden where the weights of the hidden
layers were artificially set rather than self-adaptively
updated. Networks with hidden layers were rarely used in
the control of the nonlinear systems. A single hidden layer
neural network was combined with a filter to design an
output feedback stabilization method for a class of non-
linear systems in [17]. This method was difficult to pro-
mote since it placed harsh requirements on the system. The
paper [18] adopted the single hidden layer neural network
to compensate the nonlinear functions in a quad-rotor UAV
system and designed the output feedback trajectory track-
ing controller which was useful for the tracking control of
the UAV. Although the single hidden layer network was
adopted in [18], the weights of the hidden layers were
artificially set constant rather than self-adaptively updated.
When the network with hidden layers is applied in the
system, and if the weights are adaptively updated, the
system will become more complex and more parameters
which are difficult to handle will emerge, and the stability
will be affected too.

At the current stage, for the fault-tolerant control of the
nonlinear system, various methods emerged and each
method had its own advantages and disadvantages. Com-
bining various fault-tolerant control methods to solve the
fault compensation problem of the systems with stronger
nonlinearity and uncertainty is still a problem that needs to
be studied and solved.

In this paper, the dynamic gain was combined with the
adaptive neural network. The simple nonlinearity, uncer-
tainty and faults were adaptively compensated through the
dynamic gain. For the more complex nonlinear functions,
the dynamic single hidden layer neural network was used
for approximation and the compensation was completed
by combining the dynamic gain. The way of combining
the dynamic gain with the neural network can make the
adaptive single hidden layer network be successfully
applied in the fault-tolerant control of the nonlinear
system.
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2 Problem formulation

Consider a class of nonlinear systems described by
& =A0)E+M(E)

: (1)
Cvor = An1 () Sy + Ay (&ry - Evar)
Ev = BOu" (1) +f(&1,. . &) + An Sy, &)

where & € R", i=1,...,N are the system state vector;
uf'(t) € R" is the input vector under the fault of actuators
A;(t) e R, i=1,...,N—1 are the unknown time-
varying matrices; B(t) € R"" is the known time-varying
matrix which is continuously differentiable for t;
Ai(&y,..., &) ERY, i=1,...,N are uncertain nonlinear
functions; f(&q,...,¢y) € R" is more complex uncertain
nonlinear function, which is not necessarily satisfying the
Lipschitz properties and may have complex and unknown
structures; only &, is measurable of all the state variables.

The faults considered in this article are:
(1) = ple)u(e) + (1), where p(1) =
diag{p,(t),...,p,(t)} are the effectiveness factors of the

actuators which represent the effectiveness loss of actua-
tors, such as the rotor damage of the UAV; y/(¢) € R" is the
unknown stuck fault, such as the unknown intense distur-
bance of the UAV system. Before starting to study the
fault-tolerant control method of system (1), the following
assumptions are necessary.

Assumption 1 There exist known positive constants A A,
B and B, such that

Assumption 2 There exists known matrix A(z), such that

AL (1) An_1(1)B(1) p(1)A(r)
+ (A1(0-Av-1 (DB1p(DAW) " > ol
where Ag is a known constant.
Assumption 3 There exist unknown positive constants 0;

and 0,,, such that

A <02 ||g]| + 0, i=1,...,N
j=1

Assumption 4 There exist unknown positive constants
and E, such that

VIl <y

Assumption 5 There exists known positive constant 0>
such that

£§|pl(t)|§l7 i=1,..,n

Remark 1 The system state variables &; € R" studied in
this paper are multidimensional. And the system contains
more complex nonlinear functions f(&,...,&y). This is
true of the dynamic models of various rigid bodies in
reality, such as the rotor unmanned aerial vehicle (UAV).
The fault compensation for such systems cannot be realized
by using dynamic gain simply. The assumptions in this
paper are all about the Lipschitz-like nature of simple
nonlinear functions and the bounded nature of uncertain
parameters and faults. So the assumptions are general.

3 Dynamic gain-based fault-tolerant control
design

3.1 Observer design

At first, we define A;(t) = A;(1)..Ay_1(1)B(1)p(1)A(1),

i=1,...,N, and
~ —1 .

(Ai(0).. An_1 (DB(0)p(NA()) (& —&,) . i=1,...,N,

where &, i = 1,...,N are the reference signals, which are

known and bounded.
System (1) can be converted into,

introduce the transformation #; =

;;Ii = HNiy1 +A;(617"'76[76[;*76.[}'1/)17'"7pn)7 i= 177N71
’jN :Ail(t)u(t) +A;\]<vl7" ~:£N7£Nr7éNr7pl7~ ..7pn) ’
+A7](t)fl(él>" ‘75N7pl7 < ‘7pn) + l//(l)

where

A;(fl, oo & i, éirvplv - 'apn>
1

= (A0).-Av-1 (DB(1)p(0) A&y, &)
— (Ai0)-Av1 ()B)p(DA () &,
£ (a0 Av OBEPOAD) (&~ &)
i=1,...N
PG nprs s p) = (A1 (1) Ayt (DB(D)p (1)
f(&r, - En),

A -1
V(1) = (A1 (0)-Ax1 (0BOp(AWD) v ().
According to Assumptions 1, 2, and 3, we can obtain
that [|A7]| <07, + 05 35 [, ¥/ <[/ (1) <y, where

0, 0, i =1.N, ﬂ' and W are unknown constants. Then,
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we introduce the dynamic gain L(z) and the following
transformation,

__ —
x,-—m, l—l,...,N

u 3)
v(r) = L”Jx)(t)

where b is a parameter to be designed.
By (2) and (3), it can be obtained that

!

&= L(t)xi+1 +Lb+; = (b+i— 1)Lx,,
i=1,.. . N—1
' . Ao A ; (4)
iv = LA (1)v(r) + TN +Lb+1]vv71
Y1)
(b+N—1)Z X+ T

Then, we design the following observer for system (2)

{ i =f — Laif, i=1,..,N—1
f}N :A_I(Z)M(t) +A_l(t)f/(él7 SRS éNaﬁlv .. .7[)}1) - LNaNﬁl
(5)
By the similar transformation,
W o
Xi—m7 l—l,...,N, (6)
observer (5) can be converted into
X =L(t)%i41 — Laixy — (b+i— l)zx[, i=1,..N—1
A 4 — 1 - 18 P ~ ~
Iy = L(t)A l(f)v(f)JFWA N (Ers ooy G Prs s ) -
. L.
fLale — (b+N — l)sz
(7)

We define e, =x;,—%;, i=1,..
dynamic system of error

.,,N, the following

!

(b+171) 76 i=1,...

e,:L()e,+1+Lax1+Lh+, N-—1

: f=f A L Yo’

en = ()W+Lb+N1+L“Nx‘_(b+N_l)LeN+Lb+N1
(8)

and (8) can be expressed as

¢ =LA ®IL)e+L(1)(a® L)x + A +Lb+lN —— Iy (1)

—%(D@I,l)eJrWIA*1 N -1,
9)
where I=(0,...,0,,1,)", e=(el,....eh)",
A= (GAT, =AY, and a = (ay,...ay)"; @ is

the Kronecker product.
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According to the paper [19], there is the following
Lemma 1, by which the appropriate observer parameters a;,
i=1,...,N can be selected.

Lemma 1 [17] There exist a;, i =1,...,N, which can
make A be a Hurwitz matrix, that there exist positive
constants i, |, [, and positive-definite matrix P € RVN*N
such that

PA+ATP< — uly
:u'IIN SPD—FDPSH,ZIN,

where D = diag{ b b+N—-1}.

After selecting the parameters of the observer, we first
construct the following Lyapunov function:

U=e"(P®1,)e. (10)
By taking the derivatives of U with respect to time, we get
U=Le"(PA+A"P) ® Le + 2L(t)e" (Pa @ I,)x,

+2e"(P@ LA+ ———e" (P& L)Y (1)

[hiN-1€
L
—7e (PD + DP) ® Le

+ e"(P®1,)IA™

(¢ 1)

(Pa ®1,)x, + 2" (P ® I,)A

Jb+N— l
< — uL(1)|[el* +2L(1)e"

~ L
T ' T
+W€ (PR L)Y (1) fie (PD + DP) ® Le
2
+Lb+N 1 (P®I" IA (f f’)

(11)

In (11), the following inequality can be obtained,

2L (Pa )1 <L el + |Pae LIl
(12)

Then, by

X = n

0

= WA OB G- a) ()
= A0 -4,

we can deduce that

2L(1)e" (Pa ® I,)x, gL(r)%HeHZ
s lPas LA e - (14)
So, we get
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0= =SLel? +— IPae LI [ 1 -

+2"(P@ LA+ ———e"(P® L)Y (1)

[b+N— 1

L
— ¢ (PD+DP) @ Ly + e (PO 1) VA~

Ol D
(15)

N-1¢

3.2 Design of output feedback fault-tolerant
control

The design of output feedback fault-tolerant control is
realized by back-stepping in this paper. At first, we define

& =S, Z1(f)”11

1 = i = i = Zl (t)x1 (]6)

By taking the derivatives of z; with respect to time, we get

.1 & L

21 :ﬁ(Al(f)fz +Ar) — le b7, (17)
-1

where Al(t)éz :A](l‘)(fz — 62}*) +A(t)62r :Al(t)Az

(O, + A1(1)&s,, and A} = Ay (1)..Ay—1 (1)B(1)p(t). So, (17)
can be written as

1 1 1 &, L
= L”A 1(DA, (D), +§A1(I)fzr+— I _F_bZZ"
(18)
further, (18) can be written as
: A o 1 1 élr
21 =L(1)A, (1) (%2 + e2) + EAI ()& + EAI b
L
— b=z, 19
Lzl ( )

Then, the following Lyapunov function can be con-
structed for zj,

1

Vo==ziz (20)
2
Taking the derivatives of V,, with respect to time, we get
. _ — 1
Vo = L2 A1 (0% + L)z A1 (1)ex + 7521 Ar
1 . L
+EZTA1 ZTélr —szlTZl
- _ i
<L) (%2 — o) + LNz Ay () = bT 2z

1
+ L(t)o11 ||e2|*+L(2)dY, ||z ||2+§ZTAI o
1
Al

T
+ 21 élra

where &1; is a positive constant to be designed; &}, =
811 (8,,) is a positive constant dependent on ;;, which can
be compensated by the control designed in the next steps;
o 1is the virtual control to be designed.

Next, we define V; = U + V|, and take the derivatives of
V| with respect to time, we can deduce that

=0 (& )l + 21w
Vi==L0) (5 = o )P+ NPa e LiF| A |l
L(Z’)ZTZI([)OCI

L L _
- bzlezl - ZeT(PD +DP)® e+ 2" (P @ 1,)A

+ L3 |21 PHLO AL (1) (2 = en) +

+W6T(P®I ' (1) + + e (PR L)AT (1) (f —f)
A162, zlAl leflr.
(22)
Then, we select d;; < £, and design the virtual control
oy = —q121, where ¢ > 2 “ . By defining ¢; =5 — d;; and
dy = iqlﬂho — 5“, it can be deduced that

. L L
Vi= *L(f)ﬂ llell~L(t)d |z IIZ**M IIe\\szZ Jza1®

O Bl +R) + e (P 1A (0~ 1)
+ L(1)z] A1 (1) (%2 — ),

(23)
where dj; is an known positive constant; 0,; and 0, are
unknown positive constants.

By the above steps and assuming that step k, k > 1 has
been completed, that the virtual control o; = —g;z;, j =
.,k have been designed which make (24) established

de/HZ/H
O

*deijl\Zj\lz+L(r>zZZkoek+1 w) + oL
j=1

Vi< = L(t)exlel|*~ chHeH

12b

(P IL)IA

O =1),

(24)

+ Do (JlelP+I2I1”) +

Lh+N 1

where ¢y, cpi, dij, duj, j=1,...,k and G;_; are known
positive constants; gy = 1; 0 and 0y, are unknown posi-
tive constants.

Next, for the step k + 1, we define z;,1 = X311 — o and
construct the Lyapunov function as Vii; = oxVi+
1244 12k+1, Where oy a positive constant to be designed. By
taking the derivatives of z;,; with respect to time, we can
obtain that
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Zry1 = Xgg1 — Ok

k+1 i ko .k

=> (=" Lg%+ (=1)" I qiz
= =j =1
K+l

_ . L.
:Z(—] J+1qu( ]+1—Lajx1 (b-‘rj-l)z)@)
Jj=2

k _ 1 }
0 (1, ) + (0

1 élr L
ZA Sl
T 7 LZ1>’

(25)
so, according to (25), we get
Vi1 = —Logee|e| Lakde,”z,} —o‘kch—HeH
Jj=1
d L(1)TA 91l
**Ukz Lk/”Z/H + L(t) 7 A (a1 — o) + —55 12
2040,
+ak0kz(|\e\| Hzl) + Rt P LI )
T . —jr1 K A A . L.
+taag > (=D lI:qu1<ij+17Lajx17(b+jfl)ixj>
= B

+(=1)f ]1:71 @ (lA, (%2 + e2) +$A1 (& + 75 Al - @ - b% ,)
By direct derivation, the following three inequalities are
established in (26):

+Lé o — Laga Xy — (b+1)—=x

=

(26)

k Lk
L(t)zgy, Y (17! IQJ.W@H — L(1)axr1z441%1

=2
k —_
FLOCD 1 ael A (1)@ + o)

k
2
L(t) Z Siragllzl”+ L(8)Se1allel*HL(1) Gy 1zl
=

(27)

. . .
_. . L. L
DG AR GRS D%+ b+ 1)qkzz2+1zk
j=2

I &
k T
= (b 1T gz g2
L, 2 L, >
< At |z | +—ZA2+1JHZJH :
L L4
(28)
and
L(O)oizi Azt < L(O)Sks 3]zl *+L(1)) 4y 5|z |1,
(29)
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where Ox11,1j, j =1,...,k, diq12 are positive constants to
be designed; 0y, = 0,1 (Oks1.1), Oks12) is a positive
constant dependent on g4 1.1, Ok412,7 = 1,...,k; Aky1isa
positive constant to be designed; 2\ ; = 4y i(Aks1),j =

.,k are positive constants dependent on /i ; 0xy13 is a
positive constant to be designed; ;| 3 = 0y, 3(0k+13, %)

a positive constant dependent on 643 and oy.
Therefore, According to (27), (28), and (29), the fol-
lowing can be obtained

k
. 2 L
Vi1 < — Logerle||*—Lay E dijZjH *UkCLszeHz

ZdeJHZJH

TP LI —f)

Lb+N i€

k

+L (5k+1 1J+5k+13)HZJH + Loyt12]|e H
P

+L( +11+5;<+1.3)|\Zk+1||2

LN, I ,

+szk+u }Z,H +7 lk+1||zk+1|| —*(b+ Dz ||

j=1

0k9k1

T o
+ Lz, (%rq2 — oq1) + LZkHO‘kH +—

+ a0iz (Jlel*+1211)

kK 1 T ¢
+(=1) 11:]1 qlﬁzk-',-l(Al(t)éZr“f‘Al - glr)'

Because

ko1 : 00 41,1
(—1) 11:71 CllLbZk+1 (AI( Vo + AL — flr) < L;’

+ doscr1a lel+1201?),

where ¢ ;11,1 and dg x4 1 » are unknown positive constants, we

1,...,k}.

Then, we select Oxy1,1,j + Ok13 <0xdyj and dyy10 <opcr,
and define A1 =b+ 1 —drjriptr1, diirrj = ordiig—
Xy (Oks11y + Oks13),  Chrt = OxCx
—0+12. Finally, the virtual control can be designed as
Ok4+1 = —qr41%k+1, Where gp i = 5;{“,1 + 52%3 + g1 ey 1-
After the above design, we have

can select ;.1 <b + 1, and o > max{ ;*" Jj=

diy1j = ordyy —

k+1

. =
Vo< —Levalle™ 13 dbanlllf -7 a5l
Jj=1 Jj=1
20 . N
+ UH—(IT\;(IKT(P ® I")IAil(t) (f/ _f/> + LZEH (B2 — 1)

9
+ 2 D (lellP+1alP),
(31)
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where cii1, it divijs diksrjy j=1,.. .,k +1 and G =
0x—10} are known positive constants, and UH” and Ukm
are unknown positive constants.

Thus, we design the real control as

‘y

v(t) = —qnA(t)zy — T (32)
such that
: . » LY 2
VNS —LCN||€|| _LZdNJHZjH _ZZdLNJ||Zj‘|
j=1 j=1
26y
+ T (PO LA O (F - f)
0
+ 2o+ Oz (llel+12IP).
(33)

Then, we select the initial value of L(z) as L(0) = 1, and
design the following dynamic update rate:

N 2
: AT ~ T S
L(t) = max{ E XX+ ziz —ﬁ,O}

where € > 0 1is a parameter to be designed which indicates
the accuracy.

(34)

Remark 2 1t can be seen from (34) that the update rate of
dynamic gain L(¢) depends on the measurable variables z;
and x;, i=1,...,N, and the dynamic gain can form a
closed loop with the system. Its role is to change with the
measurable state variables to compensate the uncertain
parameter nonlinear function and the fault in the system
adaptively. Besides, the dynamic gain also enables the
output to track the reference signal with certain accuracy.
Qualitatively, (34) means that L(z) will continue to adjust
until variables z; and X;, i = 1,...,N satisfy the tracking
conditions. Because the dynamic gain forms a closed loop
with the system, we can prove that it is uniformly bounded
with all other variables.

4 Compensation of nonlinear function
by dynamic neural network

It can be from

e (P@ 1A
nonlinear function, and dynamic gain cannot be processed
effectively. The following method is combined with the
dynamic neural network to compensate the nonlinear
function and realize the fault-tolerant control of the system.
The main idea of this method is to use the Lipschitz
property of the nonlinear function after compensated by the

seen (33) that

1) (f’ - f’) includes more complex

neural network, and the dynamic gain can effectively
compensate the nonlinear function with Lipschitz property.
At first, we assume the nonlinear function

(&, ¢ny oy, p,) as follows
F(Grseeslnepre ) =110 = Wop(Wi0) + o
(35)
where
(= ( v-~~751T\l»PI»~~~ap;z)T
= (A @)+ A @)+ )

We € R™! is the expected weight of input layer of the
neural network; W] € R#*Nm+) ig the expected weight of
hidden layer; /, is the number of hidden layer nodes; ¢(-) is
the activation function; w € R" is the error which satisfied
o] <@.

Select the compensation of f' as

ﬁ(él7£2"£N7ﬁl7"'7PAn> :Wg(P(W}TCA)7 (36)
~ R R N N T N
where = (&1,03 4+ &y + Ener Pro- - Pn) 3 WG €

R and W] € R (Nn+n) are the adaptive weight of input
layer and hidden layer. And we can have the following
proposition.

Proposition 1 There exist constants C,, Ow, 0,, and 0,

such that
% T(P& LA™ (1) (f —f)
< |2+9w) (Il+1eli+ 2511+ 550,
+ %0 + %ZT(P ®1,)IA"! (z)Wg¢<W;5)
IO (P L)IA (W' (W) WEE
IO (P L)TA (W' (Wi Wi,
(37)
where Wo = Wo — Wo; Wy =Wy, — Wi p=p— psep’ is

the derivative of ¢.

Remark 3 Equation (37) in Proposition 1 indicates the
upper bound of the nonlinear function after compensating
by the neural network. The dynamic gain can compensate
the first two terms on the right side of the inequality (37)
adaptively, and the latter three items can be compensated
by the dynamic update rate of the unknown parameters.

By Proposition 1, we can select the following the
dynamic update rate of the weight of the neural networks
and the adaptive update rate of the effectiveness factors.
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WF{F%g%%“Wﬂf“®W“I@‘“%>HWW“%
0 [[Wol| > 2
(38)

i { I, (%&T(P @ LA ()Wo' (WIE) - FhW/,> [W]|* <2
0 Wl > 2

(39)

205 TA 7 1 (virTe\ v TT ~ ~
h= {V(L e )i W (WIE) W= Fig) <2
0 IpI* = 2,
(40)
To describe the stability of the system, we construct the

following Lyapunov function.

T=Vy+V, (41)

where V = %tr{WgF(jlWo} +%tr{W;F;1Wh} +%y71ﬁT,5;
tr{ -} means the trace of a matrix.
By taking the derivatives of T with respect to time and

according to (39)—(42) and Proposition 1, we can obtain
that

7< — (L)€ = 0) (el +II)
= D[l + {1 *+1121%) +

ﬁ 607 (42)

where C and D are known positive constants; 0 and éo are

unknown positive constants.

5 Stability analysis

We have the following Propositions 2 and 3 for the stability
of the system. These two propositions show that the closed-
loop system is globally uniformly bounded and that the
output signal can track the reference signal with €.

Proposition 2 For the closed-loop system consisting of
(7), (8), (32), (34), (36), (38), (39), and (40), the dynamic
gain L(t), state vectors X and e are globally bounded on

0.7)).

Proposition 3 For the system with the actuator faults (1)
which satisfies Assumptions 1-4, if the output feedback
fault-tolerant control is given by (32), then for any given
initial condition, all variables in the closed-loop system of
(1), (5), (32), (34), (36), (38), (39), and (40) are bounded
on [0,400).

@ Springer

Proof By Proposition 2, we can obtain that all variables in
the closed-loop system consisting of (1), (5), (33), (39),
(40), and (41) are bounded. Then, we can deduce that

lim,_,o L(#) = 0. Therefore, There exists a finite time #¢ for

any initial condition such that “5‘2%” — iﬁ < L(t) < %,

Vt > tc. Thus, we can obtain that [|; — &, || < €. O

6 Simulation results

To verify the effectiveness of the proposed method, the
following height and attitude control systems of the UAV
with actuator faults are considered [18].

Height control system of the UAV:

&y =&y

£ :cosélznfosfwﬂf _%621 . (43)
Posture control system control system of the UAV:

& =&

& = 5 J_x % 23604 + J—lxﬂ§ + kil

Ey=¢n

&y = % J_) & Enlos + %ﬁg + ko’ (44)

by =En

oy = e —dy Exnbos + 5’14F

J. J.

where £ is the height of the UAV (m); &, is the vertical
speed of the UAV (m/s); &5, &3, £14 are the posture angles
of the UAV (rad); the angular rates are &5y, &y3, &oy rad/s;
m = 1.2kg is the quality of the UAV; g = 9.8 m/S? is the
gravity acceleration; / = 0.2m is the distance from the
rotor to the center of gravity of the UAV; J, = 0.3kgm?,
J, =0.4kg m?, and J, = 0.6kgm? are the moments of
inertia in three directions of the UAV relative to its own
coordinate system; ¢ = 0.79 is the ratio of the anti-torque
coefficient of the rotor motor to the lift coefficient corre-
sponding to the motor speed; k( is an unknown parameter
which indicates the air resistance; k; and k, are unknown
parameters which indicate the disturbance caused by the
motor; we select kg = 0.03, k; = 0.1 and k, = —0.1 in the
simulation.

In the above height and attitude control systems (43) and
44, af,i=1,...,4 are
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i 11 11
i 0 0 -1
|l |1 0o -1 o0
i -1 1 -1
p(0) 0 0 0 y
0 py(t) 0 0 ™
0 0 pi() O s
0 0 0 pa(t)) \us
(W + i+ s+,
N (Vy — )
(1 —¥s3)
(Y =Y+ Y5 — )
where u;,i = 1,...,4 are the rotor motor drives the lift of

the propellers; p;(¢), i=1,..4 the effectiveness factors of
the actuators; y;, i= 1,..4 are the unknown stuck faults.
Then, (43) and (44) can be expressed as

=6
& = B(t)p(Hu(t) + BOW(t) + Ao (Ea1, Em, En3) »
+f (¢, &3, E0a)

(45)
where
B(1)
cos o83 cosEppcosyy cosCppcosyy cosppcos s
m m m m
l [
0 — 0 -
_ ‘,X ‘]X
o l l
— 0 - 0
Jy Jy
C c c C
J. J. J. J.
& T
A= (**0521 k& kaly 0)
m
Jy—J, J,—J Jo—J, T
_ 0 y 2y gz z x P x Y g
f < A €23¢24 J, Enlos T. 20623 | -

According to the method described above, we introduce
A -1

n = (B(I)P([)A(t)) ST

(B(r) p(t)A(t))ilfz, and design the following observer:

{

then, make the further transformation X; = 7}, X = 727, we get

the  transformation

Il
s =

p—Laipy
Ou) 41 (G2 G Eare i pa) = Paait’
(46)

=>.

1
2

=>.

. L
% =L — Lark —bri

. . 1 c oz 2
X2 :LAfl(t)v+Wf'(522752375247ﬁ1»-~~>/34) : (47)

N L.
*Lde] - (b + I)ZXZ

Thus, we can design the control v(r) = —gA(f)z,
_ﬁA(I)f'(ézzaéBaé%ﬁ]w~~7,54)’ where the adaptive

dynamic of L is given by (34), and A(r) = B (1), | = 9.3,
g =15.1, €= 0.2.
We select the faults as follows:

1 0<tr<8
Pr= {0.7 103 M08 p>g
1 0<r<8
P2 = {0.8 102808 >

p3=ps=1,
W, (t) = 0.5sin 10¢ cos 121,
Y, (1) = 0.7 sin® 12¢ cos 5t,

Yo =1y, =0.

Then, we design the compensation for nonlinear functions
by neural networks: ﬁ (522, 523, 524, Pls- o ,64) =
WOT(p(W,ff), Wy € R, WT € R"*16. The number of
hidden layer nodes is 16. We select the activation function
as the sigmoid function. The adaptive dynamic of WO, Wh
and p is given by (38)—(40). We select Qy = Q, = Q, =
30 and Fy = F), = F, = 1. So, (45), (47) and the dynamic
of L, WO, Wh, p can form a closed-loop system.

In the simulation, the initial value of each variable

i8:£11(0) = £12(0) = €13(0) = £14(0) = 0,
%1(0) = %(0) =0, Wp(0) = W,(0) =0, and p(0) = 1.
And the reference signals are: &py, = 3.5m, &pp, = 10°,
&1z = 15°, &4, = 20°. The simulation results are shown in
Figs. 1, 2 and 3.

As shown in Fig. la, b, when there is no fault in the
system, the control method proposed in this paper can
make the system track the reference signals effectively.
Figure 1c is the variation process of dynamic gain. By the
adjustment of the dynamic gain, the uncertainties in the
system can be compensated adaptively. Finally, the system
can track the reference signals stably and the dynamic gain
is bounded.

It can be seen from Fig. 2a, b that if there is no fault-
tolerant control (select L = 4.9 by Fig. 1c), the system can
respond well without faults (r<8s). However, when the
faults occur in the system (¢ > 8s), neither the height nor
the posture angles of UAV can track the reference signal
properly without fault-tolerant control.

In Fig. 3, we can see that the proposed fault-tolerant
control method in this paper can compensate faults effec-
tively. It can be seen from Fig. 3a—c that when the faults
occur, the dynamic gain changes from the original
stable state and the faults can be compensated by the
adaptive adjustment of the dynamic gain. From Fig. 3d, e,
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(a)
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m
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3 n
2 -
) 5 10 15 20 25 30
Time(s)

Fig. 1 a The height of UAV without faults, b the posture angles of
UAV without faults, ¢ the dynamic gain without faults

we can see that the weights of the neural network tend to
converge at first (1<8s). Then, as the faults occur, the
weights have large oscillation in the process of the fault
compensation. After the faults have been compensated, the
dynamic gain and the network weights are stable, and the
height and posture angles of UAV can track the reference
signals effectively.
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Fig. 2 a Height of UAV with faults and b posture angle of UAV with
faults

7 Conclusions

In this paper, by combining the dynamic gain and the
neural network, the output feedback fault-tolerant control
problem of a class of nonlinear uncertain systems was
solved. The compensation to the faults can be achieved
through the adaptive adjustment of the dynamic gain.
Meanwhile, the dynamic gain can also compensate for the
simple nonlinear uncertain functions of the system. For the
more complex nonlinear functions, the single hidden layer
neural network was adopted for approximation and com-
bined with the dynamic gain to achieve the compensation.
Taking the height and posture angle control system of the
quad-rotor UAV as an example, the effectiveness of the
proposed method was verified. Based on the work of this
paper, there are still further questions to be studied. First,
the fault-tolerant method needs to be solved when the
lower limitation of the effectiveness factors is unknown
and the full loss of actuator effectiveness is allowed. The
second question is that the condition of the assumption 2
may be a bit harsh and whether it can be further relaxed.
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Fig. 3 a Height of UAV with faults, b the posture angles of UAV
with faults, ¢ the dynamic gain without fault, d the input layer weight
HWOH of neural network, and e the hidden layer HW,IH of neural

network
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Appendix

Proof of Proposition 1 By

7= = Wi (wWie) - wio(Wid)
T
0

; . (48)
+ W()T(p(W,TC) —W (p(WhTC) +o
and
Wio(WrE) - Wio(WiE)
= Wi (WiE) = Wio(WiE) + wie (W)
— Wy (Wr), (49)
we can obtain that
Lzzilzvvill "(PRL)AT (1) (f — 1)
= P e LA W (o(W0) - o(W]T))
+ %J(P @ IIA (W (o (W)
)
2T P e L)IA ()W (W)
* ;Z%fﬂ (P& LA™ (o
(50)
In (50), we get
%eT(P@)In)iA_](t)wg %4—0&,2”6”2. (51)

And for the first item on the right of the unequal sign in
(50), we have
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20, . . 5 20N _ ~ N A2\ o P
o€ PRI WS (o(W0) ~ o(Wi7)) I P e L)IA (o (W)W (¢~ )
2081 f 1 Fi-1 T reey 2 T 2G o . AN
< e (S RIOW (0@~ (FOII(E-0) < 20 ixip g )iao i (Wi)Wiip (50
e

TP LA ()W (p’( i

¢
(P e L)IA (Wi (WiE)Wi (0~ ¢

+(e—2)" (P®I,l)1A 1(z)WT (
(52)

Further,

26N
I[N

|
<aulell(lell + 121 + 55171
9 (el + 1+ 35151
5 1
+ sl Woll (el + 1l -+ 5 151

- 1 .
Will{ llell + izl + 75 1]

(P @ )IA W (W)W (0 2).
(53)

(P 1A (W (o(WHO)

- o(17)

+cs|le]l]|W

+er(llell + [lzl)[ W

20N-1

+ Lb+N-1

For the second item on the right of the unequal sign in
(50), the following inequality holds

26N_1 ATs
[hN—1 —9 (W" C))

(P& LA ()W! ((p(WhT «f)
<l (1l + 5 191+ 250w )

+cz||e|||ywouuwh|\(|z|+ ol sz)

L”|

Wl el + g5 161+ 7500 )

zT(P®In)fA"(t)W§¢’(W2§) Vit

+c3(lle

26N-1
[hHN—1

(54)

For the third item on the right of the unequal sign in
(50), we get
i)

(|z| + 2580+ 1500 )
26N-1

+WZT(P ®In)i ’l(t)WOT<p<WhTC>

2EN 1

< (Il + llell) || Wo

(55)

In (53), it can be obtained that
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(llzll =+ Tel)-

Therefore, Proposition 1 is proved by substituting (51),
(53), (54), (55), (56) into (50). O

Proof of Proposition 2 At first, let us prove the bounded-
ness of L(z) by counter-evidence. We assume that L(¢) is
unbounded on [0,7y), that lim, .7, L(f) = co. Then, we
discuss in the following two situations.

1. Tf<OO

By the assumption that L(¢) is unbounded, there exists a
limited time #; <7y, such that T< —DT+ 00 for t > t1;
so, there is TSe‘D("“)T(tl) + 3, Vt > 1. Thus, there is
oo =L(Ty) — L(0) = [/ L(t)dr< [ SN &T%; + 2Tz
dr < + oo, which contradicts the assumption. Therefore,
L(r) is bounded when T} <oo.

2. Tf:OO

Since we have assumed that L(¢) is unbounded, there

exists a limited time 7,, such that T < —DT+é0 for
t > t,, then we can deduce that T is bounded. Because
T = Vy +V, Vy and V are bounded, and by (33) and (37),

it can be obtained that Vy< — (L(t)éz—ém)

(||e|\2 n ||z\|2) 4 Ona, V> 12, where G, Oyy, Oys are
Thus, such that
Vy < — L(t)&Vy + Oys, t > t3, where 3 is a positive
constant. So, for any 7 > 0, there exists #;;, such that
L(1)é; > 2"% for t>t,.
Vi (t) <e Sty (1) + . Vt>t;. Therefore, there
exists t > t;1, such that Vy(¢)<t, Vt > 5. According
to the above analysis, we can obtain that lim,_, Vy =0,
and by (34), we have lim,_,, L(¢) = 0.

Then, we define I'(#) = L(t)Vy(¢), and take the deriva-
tives of I'(z) with respect to time, we get

I'(t) <L(r) (— (63 - 5) I+ @N2> . V>t

positive constants. there exists 13,

Then, we can obtain that

(57)

According to lim,_,, L(f) = 0 and lim,_.., L() = 0, we
can deduce that I'(¢) is bounded, that I'(t) <I'y. So, there

is
r
2b M
)L = L1- —2b "

N
(Z x40z

i=1

(58)
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By (58), there exists a limited time #4, such that

(Z?’:l X+ 71z )Lz’7 < e? for t>ty. Then,

L(t) = 0,Vt > t4, which contradicts the assumption.
According to the above analysis, L(¢) is bounded.
Next, let us prove the boundedness of X. The dynamic

equation of X can be written as

X =L(1)(A® L)% — quL(t) A~ (t)zy — % (D®1I,)%,
(59)

and the Lyapunov function can be constructed as
V, = £I(P ® I,)x. Taking the derivatives of V, with respect
to time, we get

V. <28T(P @ L,){L(1)(A ® I,)%

,qNL(l)INA71 (I)ZN — % (D X In))f}

IN

— uL||%]>=2gnLiT (P ® L,)IA™ (£)zn (60)

A

L. .
— S 1P+ Lz
< — Vi + oL+ fis.

Then, we have

d , - .
7 (€V2) < e L+ e, (61)
further, it can be obtained that
t t
MV (1) <V (0) + / M i, L(s)ds + iy / efsds
0 _ 0 (62)

]
i

By (62), we can deduce that V, is bounded, and then x is
bounded.

Finally, let us prove the boundedness of e. We can select
the L* which is large enough and introduce the following
transformation,

S Vil0) + oLy (e = 1) +

p bti-1
_mi—n L e i=1 N
T il T b1 P T et

&i (63)
then we have

i=L(A®L)e+ L (Maol,)e + A +L<A1a ®Z(1>zl
1

22y .
+ e AT O 1),
(64)
N
where Aldiag{1_£ 1_L_} and
Lh Lb+NLl* LN
Ay :diag{_ 7}
L*b L*thNfl

We  construct the  Lyapunov  function  as
V. =¢"(P®1,)s, and take the derivatives of V,(t) with
respect to time, it can be obtained that

v, — ZSTP{L*(A ® 1) + L (A1a ® L)e; + A”

+L(A1a ®Kfl)zl +ﬁf/i’l(t)(f’ f’)}-
(65)
In (65), there is
2L8TP(/11a ®Z[')zl +26TPA* + ﬁﬂﬁk‘ O —£)
< (Jlel*+2I) + 0= :
2LETP(Aa @ )6 < %L*uusnzw% IP(41a® 1) Pl
(66)

Where 0., and 0 are positive constants which are not
related to L*.
Therefore, we have

. L* i}
VoS = S el PHL Caller P+ Coa (el + 217 + 0
(67)

where C,1, Cy,, and 0, are positive constants which are not
related to L*.

Since L* is large enough and || ||* < c(L+ €?), we can
deduce that

Vs S - éeVs + éle + ém (68)
where CS, C’gl, and 68 are positive constants.

Then, there is
d/ - - A _—
T () < CaerL+ e, (69)
by (69), we have

_C.t ol ée

V. < Vé(o)e 4+ Caly + F . (70)

Therefore, from the above analysis, we can deduce that
V. is bounded, and according to (63), e is bounded. ]
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