
ORIGINAL ARTICLE

Hierarchical stochastic graphlet embedding for graph-based pattern
recognition

Anjan Dutta1 • Pau Riba2 • Josep Lladós2 • Alicia Fornés2

Received: 1 August 2019 / Accepted: 22 November 2019 / Published online: 6 December 2019
� The Author(s) 2019

Abstract
Despite being very successful within the pattern recognition and machine learning community, graph-based methods are

often unusable because of the lack of mathematical operations defined in graph domain. Graph embedding, which maps

graphs to a vectorial space, has been proposed as a way to tackle these difficulties enabling the use of standard machine

learning techniques. However, it is well known that graph embedding functions usually suffer from the loss of structural

information. In this paper, we consider the hierarchical structure of a graph as a way to mitigate this loss of information.

The hierarchical structure is constructed by topologically clustering the graph nodes and considering each cluster as a node

in the upper hierarchical level. Once this hierarchical structure is constructed, we consider several configurations to define

the mapping into a vector space given a classical graph embedding, in particular, we propose to make use of the stochastic

graphlet embedding (SGE). Broadly speaking, SGE produces a distribution of uniformly sampled low-to-high-order

graphlets as a way to embed graphs into the vector space. In what follows, the coarse-to-fine structure of a graph hierarchy

and the statistics fetched by the SGE complements each other and includes important structural information with varied

contexts. Altogether, these two techniques substantially cope with the usual information loss involved in graph embedding

techniques, obtaining a more robust graph representation. This fact has been corroborated through a detailed experimental

evaluation on various benchmark graph datasets, where we outperform the state-of-the-art methods.

Keywords Graph embedding � Hierarchical graph � Stochastic graphlets � Graph hashing � Graph classification

1 Introduction

Graph-based methods have been very successful for pattern

recognition, computer vision and machine learning tasks

[16, 25, 77]. However, due to their symbolic and relational

nature, graphs have some limitations if we compare them

with the traditional statistical (vector-based) representa-

tions. Some trivial mathematical operations do not have an

equivalence in the graph domain. For example, computing

pairwise sums or products (which are elementary opera-

tions in many classification and clustering algorithms) is

not defined in a standard way in the graph domain. In the

literature, a possible way this problem has been addressed

is by means of embedding functions. Given a graph space

G, an explicit embedding function is defined as u : G!
Rn which maps a given graph to a vector representation

[12, 29, 47, 65, 68] whereas an implicit embedding function

is defined as u : G! H which maps a given graph to a

high-dimensional Hilbert space H where a dot product

defines the similarity between two graphs

Anjan Dutta and Pau Riba have contributed equally to this

work.

& Anjan Dutta

A.Dutta@exeter.ac.uk

Pau Riba

priba@cvc.uab.es

Josep Lladós

josep@cvc.uab.es

Alicia Fornés

afornes@cvc.uab.es

1 Department of Computer Science, University of Exeter,

Innovation Centre, Streatham Campus, Exeter EX4 4RN, UK

2 Computer Vision Center, Computer Science Department,

Autonomous University of Barcelona, Edifici O, Campus

UAB, Bellaterra, 08193 Barcelona, Spain

123

Neural Computing and Applications (2020) 32:11579–11596
https://doi.org/10.1007/s00521-019-04642-7(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-1667-2245
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04642-7&domain=pdf
https://doi.org/10.1007/s00521-019-04642-7

KðG;G0Þ ¼ huðGÞ;uðG0Þi, G;G0 2 G [18, 27, 32, 35]. In

the graph domain, the process of implicitly embedding

graph is termed as graph kernel which basically defines a

way to compute the similarity between two graphs. How-

ever, defining such embedding functions is extremely

challenging, when the constraints on time efficiency and

preserving the underlying structural information is con-

cerned. The problem becomes even more difficult with the

growing size of graphs, as the structural complexity

increases the possibility of noise and distortion in structure,

and raises risk of loosing information. Hierarchical repre-

sentation is often used as a way to deal with noise and

distortion [50, 76], which provides a stable delineation for

an underlying object. Hierarchical representations allow to

incrementally contract the graph, in a space-scale repre-

sentation, so the salient features (relevant subgraphs)

remain in the hierarchy. Thus, top levels become a compact

and stable summarization.

Processing information using a multiscale representation

is successfully employed in computer vision and image

processing algorithms, which is mostly inspired by its

resemblance with human visual perception [1]. It is

observed that a naturalistic visual interpretation always

demands a data structure able to represent scattered local

information as well as summarized global facts [33].

Hierarchical representation is often used as a paradigm to

efficiently extract the global information from the local

features. Apart from that, hierarchical models are also

believed to provide time- and space-efficient solutions [76].

Motivated by the above-mentioned intuition and the

existing works in the related fields, many authors have

come up with different hierarchical graph structures for

solving various problems [22, 23, 48, 76]. In this sense, it is

worth to mention the work of Mousavi et al. [50], who

presented a hierarchical framework for graph embedding,

although they did not explore the complex encoding of the

hierarchy.

In this paper, motivated by the successes of the hierar-

chical models and the efficiency of graph embedding the-

ory, we propose a general hierarchical graph embedding

formulation that first creates a hierarchical structure from a

given graph and then utilizes the multiscale structure to

explicitly embed a graph in a real vector space by means of

local graphlets. First, we make use of the graph clustering

algorithm proposed in [31] to obtain a hierarchical graph

representation of a given input graph. Here, each cluster of

nodes in a level i is depicted as a single node in the upper

hierarchical level iþ 1, whereas the edges in a level are

connected depending on the original topology of the base

graph, and the hierarchical edges are created by joining a

node representing a cluster to all the nodes in the lower

level. Thus, we propose a richer encoding than Mousavi

[50], because our hierarchy not only contains different

graph abstractions but also encodes useful hierarchical

contractions through the hierarchical edges.

Once the hierarchical structure of a graph is created, we

propose a novel use of the Stochastic Graphlet Embedding

(SGE) [21] to exploit this hierarchical information. On the

one hand, we can exploit the local configuration in form of

graphlets thanks to the SGE design, because graphlets

provide information at different neighborhood sizes. On the

other hand, the hierarchical connections allow to encode

more abstract information and hence to deal with noise

present in the data. As a result, the Hierarchical Stochastic

Graphlet Embedding (HSGE) encodes a global and com-

pact representation of the graph that is embedded in a

vector space. The consideration of the entire graph hier-

archy for the embedding instead of only the base graph

empowers the representation ability and handles the loss of

information that usually occurs in graph embedding

methods. Moreover, the statistics obtained from the uni-

formly sampled graphlets of increasing size model the

complex interactions among different object parts repre-

sented as graph nodes. Here, the hierarchical graph struc-

ture and the statistics of increasing sized graphlets fetch

important structural information of varied contexts.

As a result, our approach produces robust representa-

tions that can benefit from the advantages of the two above-

mentioned strategies: we first take advantage of the

embedding ability for mapping symbolic relational repre-

sentations to n-dimensional spaces, so machine learning

approaches can be used; and second, the ability of hierar-

chical structures to reduce noise and distortion inherently

involved in graph representations of real data, keeping the

more stable and relevant substructures in a compact way.

In conclusion, the main contribution of our work is the

exploitation of the hierarchical structure of a given graph,

rather than only studying the base graph for graph

embedding purposes. Assessing the hierarchical informa-

tion of a graph pyramid allows to extend the representation

power of the embedded graph and tolerate the instability

caused due to noise and distortion. Our proposal is robust

because, on the one hand, it organizes the structural

information in the hierarchical abstraction, and on the other

hand, it considers the relation between object parts and

their complex interactions with the help of uniformly

sampled graphlets of unbounded size. Additionally, the

proposed method is generic and can adapt any other graph

embedding algorithm in the framework. In this sense, we

extensively validated our proposed algorithm on many

different benchmark graph datasets coming from different

application domains.

The rest of this paper is organized as follows: Sect. 2

describes the related works in the literature. In Sect. 3, we

introduce some definitions and notations related to the

work. Our generic hierarchical graph representation is

11580 Neural Computing and Applications (2020) 32:11579–11596

123

presented in Sect. 4. Section 5 introduces the Stochastic

Graphlet Embedding as the base embedding we will use.

Afterward, Sect. 7 reports our experimental validation and

compares the proposed method with available state-of-the-

art algorithms. Finally, in Sect. 8 we draw the conclusions

and describe the future direction of the present work.

2 Related work

In what follows, we review the related works, respectively,

on explicit and implicit graph embedding techniques, dif-

ferent hierarchical models and graph summarization

methods, which we believed to be relevant to the main

focus of the present paper.

2.1 Graph embedding

Graph embedding methods are mainly divided into two

different categories: (1) explicit graph embedding, (2)

implicit graph embedding or graph kernel.

2.1.1 Explicit graph embedding

Explicit graph embedding refers to those techniques that

aim to explicitly map graphs to vector spaces. The methods

belonging to this category can be further divided into four

different classes. The first one, known as graph probing

[47], needs measuring the frequency of specific substruc-

tures (that capture content and topology) into graphs. Based

on different graph substructures (e.g., node, edge, subgraph

etc.) considered, different embedding techniques have been

proposed. For example, Shervashidze et al. [68] studied the

non-isomorphic graphlets, albeit, node label and edge

relation statistics are considered by Gibert et al. [29].

Saund in [65], introduced a bottom up graph lattice in order

to efficiently extract the subgraph features in preprocessed

administrative documents, while Dutta and Sahbi [21]

proposed a distribution of stochastic graphlets for embed-

ding graphs into a vector space. The second class of graph

embedding techniques is based on spectral graph theory

[13, 34, 37, 39, 64, 82], which aims to analyze the struc-

tural properties of graphs in terms of the eigenvectors/

eigenvalues of the adjacency or Laplacian matrices of a

graph [82]. Recently, Verma and Zhang [78] proposed a

family of graph spectral distances for robust graph feature

representation. Despite their relative successes, spectral

methods are quite prone to structural noise and distortions.

The third class of methods is inspired by dissimilarity

measurements proposed in [56]; in this context, Bunke and

Riesen have presented several works on the vectorial

description of a given graph by its distances to a number of

pre-selected prototype graphs [9, 12, 62, 63]. Motivated by

the recent advancements of deep learning and neural net-

works, many researchers have proposed to utilize neural

network for obtaining a vectorial representation of graphs

[4, 17, 30, 36, 55], which results in the fourth category of

methods, called geometric deep learning.

2.1.2 Implicit graph embedding

Implicit graph embedding or graph kernel methods is pri-

marily another way to embed graphs into a vector space.

They are also popular for the ability to efficiently extend

the existing machine learning algorithms to nonlinear data,

such as, graphs, strings etc. Graph kernel methods can be

roughly divided into three different categories. The first

one, known as diffusion kernel, is based on the similarity

measures among the subparts of two graphs, and propa-

gating them on the entire structure to obtain global simi-

larity measure for two graphs [43, 72]. The second class of

methods, called as convolution kernel, aims to measure the

similarity of composite objects (modeled with graph) from

the similarity of their parts (i.e., nodes) [80]. This type of

graph kernel derives the similarity between two graphs G,

G0 from the sum, over all decompositions, of the similarity

products of the subparts of G and G0 [52]. Recently,

Kondor and Pan [38] proposed multiscale Laplacian graph

kernel having the property of lifting a base kernel defined

on the vertices of two graphs to a kernel between graphs.

The third class of methods is based on the analysis of the

common substructures that belong to both graphs and is

termed as substructure kernel. This family includes the

graph kernel methods that consider random walks [27, 79],

backtrackless walks [5], shortest paths [8], subtrees [68],

graphlets [70] as the substructure. Different from the above

three categories, Shervashidze et al. [69] proposed a family

of efficient graph kernels on the Weisfeiler-Lehman test of

graph isomorphism, which maps the original graph to a

sequence of graphs. More recently, inspired by the suc-

cesses of deep learning, Yanardag and Viswanathan [83]

presented a unified framework to learn latent representa-

tions of substructures for graphs. They claimed that given a

pre-computed kernel of graphs, their proposed technique

produces an improved representation that leverages hidden

representations of substructures.

2.2 Hierarchical graph representation

In general, hierarchical models have been successfully

employed in many different domains within the computer

vision and image processing field, such as, image segmen-

tation [22, 48], scene categorization [23], action recognition

[54], shape classification [18], graphic recognition [10], 3D

object recognition [76] etc. These approaches usually exploit

some kind of pyramidal structure containing information at

Neural Computing and Applications (2020) 32:11579–11596 11581

123

various resolutions. Usually, at the finest level of the pyra-

mid, the captured information is related to local features,

whereas, at coarser levels, global aspects of the underlying

data are represented. This way of representation helps to

interpret knowledge in a naturalistic way [33].

Inspired by the above intuition, hierarchical structures are

often employed to extract coarse-to-fine information from a

graph representation. Pelillo et al. [57] proposed to match

two hierarchical structures as a clique detection problem on

their association graph, which was solved with a dynamic

programming approach. In [71], Shokoufandeh et al. pre-

sented a spectral characterization based framework for

indexing hierarchical structures that embed the topological

information of a directed acyclic graph. Hierarchical repre-

sentation of objects and an elastic matching procedure are

also proposed from deformable shape matching in [24]. In

[46], Liu et al. utilized hierarchical graph representation and

a stochastic sampling strategy for layered shape matching

and registration problem. A graph kernel based on hierar-

chical bag-of-paths where each path is associated to a hier-

archy encoding successive simplifications is presented in

[18]. Ahuja and Todorovic [2] used a hierarchical graph of

segmented regions for object recognition. Motivated by

them, Broelemann et al. [10, 11] proposed two closely

related approaches based on hierarchical graph for error-

tolerant matching of graphical symbols. Mousavi et al. [50]

proposed a graph embedding strategy based on hierarchical

graph representation, which considers different levels of a

graph pyramid. They claimed that the proposed framework is

generic enough to incorporate any kind of graph embedding

technique. However, the authors did not take advantage of

the complex and rich encoding of hierarchy.

From the literature review, we can conclude that

although there are some works in the graph domain

exploiting the hierarchical graph structure, most of them

are focused on some kind of error tolerance or elastic

matching. Utilization of this type of multiscale represen-

tation of graph for vector space embedding is quite rare and

has not been properly explored yet. This fact has worked as

our motivation to work on a graph hierarchical structure for

explicit graph embedding task.

3 Definitions and notations

In this section, we introduce some definitions and nota-

tions, which are relevant to the proposed work.

Definition 1 (Attributed Graph) An attributed graph is a

4� tuple G ¼ ðV ;E; LV ; LEÞ comprising a set V of vertices

together with a set E � V � V of edges and two mappings

LV : V ! Rm and LE : E! Rn which, respectively, assign

attributes to the nodes and edges.

Attributed graphs have been widely used for all sort of

real-world problems. The most common methodologies are

error-tolerant graph matching [51, 67], graph kernels and

embedding techniques [41].

Definition 2 (Subgraph) Given an attributed graph

G ¼ ðV;E; LV ; LEÞ, another attributed graph G0 ¼
ðV 0;E0; L0V ; L0EÞ is said to be a subgraph of G and is denoted

by G0 � G iff,

– V 0 � V

– E0 ¼ E \ V 0 � V 0

– L0VðuÞ ¼ LVðuÞ, 8u 2 V 0

– L0EðeÞ ¼ LEðeÞ, 8e 2 E0

A graphlet g of G is nothing but a subgraph which

inherits the topology and the attributes of G. In the litera-

ture, subgraphs are often used for error-tolerant matching

[7, 19, 66, 73, 75] and frequent pattern discovery problems

[2, 6, 42].

Definition 3 (Hierarchical graph) A hierarchical graph H

is defined as a 6-tuple H ¼ ðV ;EN ;EH ; LV ; LEN
; LEH
Þ

where V is the set of nodes; EN � V � V are the neigh-

borhood edges; EH � V � V are the hierarchical edges; LV,

LEN
and LEH

are three labeling functions defined as

LV : V ! RV � Ak
V , LEN

: EN ! REN
� Al

EN
and

LEH
: EH ! REH

� Am
EH

, where RV , REN
and REH

are three

sets of symbolic labels for vertices and edges, AV , AEN
and

AEH
are three sets of attributes for vertices and edges,

respectively, and k; l;m 2 N.

Prior works used hierarchical structures for allowing a

reasonable tolerance in the representation paradigm

[11, 18, 24] and also for bringing robustness in the feature

representation [46].

4 Hierarchical embedding

In the literature, only few embedding approaches exploit

the idea of multiscale or abstraction information [38]. This

section is devoted to provide a framework able to include

this information given a graph embedding. Some works

that have been proposed to exploit the mentioned multi-

scale information in the literature [20, 50, 59] discard the

hierarchical information provided by the hierarchical edges

and focus on abstractions of the original graph.

4.1 Graph clustering

Graph clustering has been widely used in several fields

such as social and biological networks [31], recommen-

dation systems [28, 44] etc. It can be roughly described as

the task of grouping graph nodes into clusters depending on

11582 Neural Computing and Applications (2020) 32:11579–11596

123

the graph structure. Ideally, the grouping should be per-

formed in such a way that intra-cluster nodes are densely

connected whereas the connections among inter-cluster

nodes are sparse. For example, Girvan and Newman [31]

propose a graph clustering algorithm to detect a community

structures for studying social and biological networks. Li

et al. [28, 40, 44, 45] have proposed several graph clus-

tering techniques for recommendation systems based on

different strategies: context awareness [28], inclusion of

frequency property [44], distributed clustering confidence

[40], etc. Here we do not further review on graph clustering

algorithms since it is not within the main scope of this

paper. However, we would like to remark that one of the

most important aspects of graph clustering is the evaluation

of cluster quality, which is crucial not only to measure the

effectiveness of clustering algorithms, but also to give

insights on the dynamics of relationships in a given graph.

For a detailed overview on effective graph clustering

metrics, the interested readers are referred to [3].

Even though any graph clustering algorithm can be

used, we use the standard divisive-based Girvan–Newman

algorithm [31] for our purpose, because it provides struc-

turally meaningful clusters of a given graph. The Girvan–

Newman algorithm is an intuitive and well-known algo-

rithm used for community detection in complex systems. It

is a global divisive algorithm which removes the appro-

priate edge iteratively until all the edges are deleted. At

each iteration, new clusters can emerge by means of con-

nected components. The idea is that the edges with higher

centrality are the candidates to be connecting two clusters.

Therefore, betweenness centrality measure of the edges

[26] is used to decide which edge is being removed.

Betweenness centrality on an edge e 2 E is defined as the

number of shortest walks between any pair of nodes that

cross e. The output of this algorithm is a dendrogram

codifying a hierarchical clustering of nodes. This algorithm

consists of 4 steps:

1. Calculate the betweenness centrality for all edges in

the network.

2. Remove the edge with highest betweenness and

generate a cluster for each connected component.

3. Recalculate betweennesses for all edges affected by the

removal.

4. Repeat from step 2 until no edges remain.

In this work, Girvan–Newman algorithm is early stopped

given a reduction ratio r 2 R. Therefore, the number of

clusters is forced to be br � jVjc.

4.2 Hierarchical construction

Given a graph G and a clustering C ¼ fC1; . . .;Ckg, each

cluster is summarized into a new node with a representative

label (see line 5). Let us consider that this label can be

defined as the result of an embedding function applied to

the subgraph defined by the clustered nodes and their

edges. Moreover, edges between the new nodes are created

depending on a connection ratio between clusters. That

means that an edge is only created if there are enough

connections between the set of nodes defined by both

clusters (see line 7). Finally, hierarchical edges are created

connecting the new node vCi
with all the nodes belonging

to the summarized cluster Ci (see line 12). The proposed

hierarchical construction is similar to the one proposed by

Mousavi et al. [50] but including explicitly the summa-

rization generated by the clustering algorithm by means of

the hierarchical edges. Thus, the proposed hierarchical

construction obtains a representation which encodes

abstract information by means of the clusters while keeping

the relation with the original graph.

Let us introduce some notations that will be used in the

following sections. Given a graph G and a number of levels

L, HG denotes their corresponding hierarchical graph

computed from G with L levels. Hl
G, where l ¼ f0; . . .; Lg

is a graph without hierarchical edges corresponding to the l

level of summarization, therefore, H0
G ¼ G. Moreover,

H
l1;l2
G where li ¼ f0; . . .; Lg and l1� l2, corresponds to the

hierarchical graph compressed between levels l1 and l2.

Hence, HG ¼ H
0;L
G and Hl

G ¼ H
l;l
G . Finally, Hl1

G [Hl2
G cor-

responds to the union of two graphs without hierarchical

edges.

Figure 1a shows the construction of the hierarchy given

a graph G. Each level shows an abstraction of the input

graph where the nodes have been reduced.

4.3 Hierarchical embedding

This section introduces a novel way to encode hierarchical

information of a graph into an embedding. Moreover, the

proposed technique is generic in the sense that can be used

by any graph embedding function.

Neural Computing and Applications (2020) 32:11579–11596 11583

123

Given a graph G which should be mapped into a vec-

torial space and an embedding function u : G! Rn, we

first proceed to obtain hierarchical representation HG fol-

lowing the proposed methodology in Sect. 4.2. Therefore,

HG has enriched the original graph with abstract informa-

tion considering L levels. Finally, we propose to make use

of the hierarchical information to construct a hierarchical

embedding. The general form of the proposed embedding

takes into account graphs at multiple scales and hierar-

chical relations. Thus, the embedding function does not

only compactly encode the contextual information of nodes

at different abstraction levels, but also it encodes the

hierarchy contraction. The embedding function is defined

as follows:

UðHGÞ ¼ ½uðH0
GÞ; . . .;uðHK

GÞ;

/1
1ðHGÞ; . . .;/k1

1 ðHGÞ;

/1
2ðHGÞ; . . .;/k2

2 ðHGÞ�

; ð1Þ

where

/k
1ðHGÞ ¼½uðH0;k

G Þ; . . .;uðH
K�k;K
G Þ� ð2Þ

/k
2ðHGÞ ¼½uðH0

G [� � � [Hk
GÞ; . . .;uðHK�k

G [� � � [HK
GÞ�
ð3Þ

where K � L are the hierarchical levels taken into account

and k1; k2�K indicate the number of levels taken into

account at the same time. Note that K ¼ L, k1 ¼ K and

k2 ¼ K will take into account the whole hierarchy and

possible combinations. From this general representation of

the proposed embedding, we have evaluated some partic-

ular cases (the reader is referred to Sect. 7 for more details

on the experimental evaluation).

Baseline embedding This embedding is the one used as a

baseline. In this scenario K ¼ 0, k1 ¼ 0 and k2 ¼ 0,

therefore UðHGÞ ¼ uðH0
GÞ. No abstract information is

taken into consideration, hence, UðHGÞ ¼ uðGÞ.

Pyramidal embedding This embedding has been previously

proposed in the literature [20, 50]. It combines information

of the abstract levels of the graph, i.e., Hi
G not taking into

account hierarchical information. Therefore, the hierar-

chical edges are discarded and no relation between levels is

considered, K� 1, k1 ¼ 0 and k2 ¼ 0. We define

UpyrðHGÞ ¼ ½uðH0
GÞ; . . .;uðHK

GÞ�. Note that each element

corresponds to independent levels of the hierarchy without

hierarchical edges.

Generalized pyramidal embedding Following the previous

idea, the information of the abstract levels of the graph,

i.e., Hi
G is combined. Now, hierarchical information is taken

into account by embedding unions of levels, i.e., Hi1
G [Hi2

G

but discarding hierarchical edges (no clustering information

is taken into account). In this scenario K � 1, k1 ¼ 0 and

k2� 1, therefore, we define Ugen pyrðHGÞ ¼ ½uðH0
GÞ; . . .;

uðHK
GÞ;uðH0

G [H1
GÞ; . . .;uðHK�1

G [HK
GÞ; . . .;uðH0

G [� � �
[Hk2

G Þ; . . .;uðH
K�k2

G [� � � [HK
GÞ�.

Hierarchical embedding This embedding is computed

mixing different levels considering them as a single graph

through the hierarchical edges, K � 1, k1� 1 and k2 ¼ 0.

The idea is to create an embedding able to codify both,

graph and clustering information. Depending on the

embedding, hierarchical edges can make use of special

label to treat them differently. The hierarchial embedding

is defined as UhierðHGÞ ¼ ½uðH0
GÞ; . . .;uðHK

GÞ;uðH
0;1
G Þ;

. . .;uðHK�1;K
G Þ; . . .;uðH0;k1

G Þ; . . .;uðH
K�k1;K
G Þ�. Note that

Fig. 1 a Hierarchical graph construction is proposed in Algorithm 1.

The input graph G is processed to generate a hierarchical graph HG

where each level Hi
G encodes a new abstraction of the original graph.

Moreover, hierarchical edges provide the insights of the performed

contraction. In this figure, not all the hierarchical edges have been

drawn to make it easy to understand, and the node clustering is drawn in

color. b Following the hierarchical graph construction in (a), the graphs

taken into consideration in order to construct the hierarchical embed-

ding are shown.uðHi
GÞ takes into account one abstraction level whereas

uðHi;iþ1
G Þ takes into consideration two of these levels and the

hierarchical edges involved. (Best viewed in color) (color figure online)

11584 Neural Computing and Applications (2020) 32:11579–11596

123

each element corresponds to the subhierarchy compressed

between the specified levels.

Exhaustive embedding Finally, in order to take into con-

sideration the whole hierarchy, we can make use of the

whole embedding U as defined in Eq. (1) where K� 1,

k1; k2� 1.

Figure 1b shows the graphs taken into consideration

when the hierarchical embeddings are computed.

5 Stochastic graphlet embedding

The Stochastic Graphlet Embedding (SGE) can be defined

as a function u : G! Rn that explicitly embeds a graph

G 2 G to a high-dimensional vector space Rn [21]. The

entire procedure of SGE can be described in two stages

(see Fig. 2), where in the first step, the method samples

graphlets from G in a stochastic manner and in the second

step, it counts the frequency of each isomorphic graphlet

from the extracted ones in an approximated but near

accurate manner. The entire procedure fetches a precise

distribution of connected graphlets with increasing number

of edges in G with a controlled complexity, which fetches

the relation among information represented as nodes and

their complex interaction.

5.1 Stochastic graphlets sampling

Considering a graph G ¼ ðV ;E;LV ; LEÞ, the goal of the

graphlet extraction procedure is to obtain statistics of

stochastic graphlets with increasing number of edges in G.

The way of extracting graphlets is stochastic and it uni-

formly samples graphlets with boundlessly increasing

number of edges without constraining their topology or

structural properties such as maximum degree, maximum

number of nodes, etc. Our graphlet sampling procedure,

outlined in Algorithm 2, is recurrent and the number of

recurrences is controlled by a parameter M that indicates

the number of distinct graphlets to be sampled (see line 2

of Algorithm 2). Also, each of these M recurrent processes

is regulated by another parameter T that denotes the max-

imum number of iterations a single recurrent process

should have (see line 5). Since each of these iterations adds

an edge to the presently constructing graphlet, T indirectly

specifies the maximum number of distinct edges each

graphlet should contain. Considering Ut and At; respec-

tively, as the aggregated sets of visited nodes and edges till

iteration t, they are initialized at the beginning of each

recurrent step as A0 ¼ ; and U0 ¼ fug with a randomly

selected node u which is uniformly sampled from V (see

line 4). Thereafter, at tth iteration (with t� 1), the sampling

procedure randomly selects an edge ðu; vÞ 2 EnAt�1 that is

connected from any node u 2 Ut�1 (see line 7). Accord-

ingly, the process updates Ut Ut�1 [fvg and At
At�1 [fðu; vÞg (see line 8). All these processes within a

recurrent step are repeated T times to sample a graphlet

with maximum T edges. M is set to relatively large values

in order to make the graphlet generation statistically

meaningful. Theoretically, the values of M are guided by

the theorem of sample complexity [81], which is widely

.

.

.

...

Stochastically sampled T
graphlets in each run

1st run

2nd run

Mth run

Stochastic Graphlet Embedding

...

Hash
Functions

 Sets of
Isomorphic
Graphlets

Fig. 2 Overview of stochastic graphlet embedding (SGE). Given a

graph G, the stochastic parsing algorithm is able to uniformly sample

graphlets of increasing size. Controlled by two parameters M (number

of graphlets to be sampled) and T (maximum size of graphlets in

terms of number of edges), the method extracts in total M � T

graphlets. These graphlets are encoded and partitioned into

isomorphic graphlets using the set of hash functions with a low

probability of collision. A distribution of different graphlets is

obtained by counting the number of graphlets in each of these

partitions. This procedure results in a vector space representation of

the graph G referred to as stochastic graphlet embedding

Neural Computing and Applications (2020) 32:11579–11596 11585

123

studied and used in the Bioinformatics domain [58, 70].

However, the discussion and proof of that is out of scope of

the current paper. Intuitively, the graphlet sampling pro-

cedure explained in this section follows a random walk

process with restart that efficiently parses G and extracts

the desired number of connected graphlets with an

increasing number of edges. This algorithm allows to

sample connected graphlets from a given graph but avoids

expensive way of extracting them in an exact manner. Here

the hypothesis is that if a sufficient number of graphlets are

sampled, then the empirical distribution will be close to the

actual distribution of graphlets in the graph. Furthermore, it

is important to note that from the above process, one can

extract, in total, M � T graphlets each with number of

edges varying from 1 to T.

5.2 Hashed graphlets distribution

For obtaining a distribution of the extracted graphlets from

G, it is needed to identify sets of isomorphic graphlets from

the sampled ones and then count cardinality of each iso-

morphic set. A trivial way of doing that certainly involves

checking the graph isomorphism for all possible pairs of

graphlets for detecting possible partitions that might exist

among them. Nevertheless, graph isomorphism is a GI-

complete problem [49] for general graphs, so the previ-

ously mentioned scheme is extremely costly as the method

samples huge number of graphlets with many edges. An

alternative, efficient and approximate way of partitioning

isomorphic graphlets is graph hashing. A graph hash

function that can be defined as a mapping h : G! Rm that

maps a graph into a hash code (a sequence of real numbers)

based on the local as well as holistic topological charac-

teristic of graphs. An ideal graph hash function should map

two isomorphic graphs to the same hash code as well as

two non-isomorphic graphs to two different hash codes.

While it is easy to design hash functions satisfying the

condition that two isomorphic graphs should have the same

hash code, it is extremely difficult to find hash function that

ensures different hash codes for every pair of non-

isomorphic graphs. An alternative is to design graph hash

functions with low collision probability, i.e., mapping any

two non-isomorphic graphs to the same hash code with a

very low probability. For obtaining a distribution of

graphlets, the main aim of graph hashing is to assign

extracted graphlets from G to corresponding subsets of

isomorphic graphlets (a.k.a. partition index or histogram

bins) in order to count and quantify their distributions. The

proposed mechanism for obtaining the distribution of uni-

formly sampled graphlets, outlined in Algorithm 3, main-

tains a global hash table H, whose single entry corresponds

to a hash code of a graphlet g produced by the graph hash

function. H grows incrementally as the algorithm confronts

new graph hash codes and maintains all the unique hash

codes encountered by the system. It is to be noted that the

position of each unique hash code is kept fixed, because

each position corresponds to a partition index or histogram

bin. Now to allocate a given graphlet g to its corresponding

histogram bin, its hash code h(g) is mapped to the index of

the hash table H, whose corresponding graph hash code

gives a hit with h(g) (see line 8). If h(g) does not exist in H

at some instance, it is considered as a new hash code (and

hence g as a new graphlet) encountered by the system and

appended h(g) at the end of H (see line 6).

Designing hash functions that yield identical hash codes

for two isomorphic graphlets is quite simple, whereas, pro-

totyping those providing two distinct hash codes for two non-

isomorphic graphs is very challenging. The chance of map-

ping two non-isomorphic subgraphs to the same hash code is

termed as probability of collision. Indicating H0 as the set of

all pairs of non-isomorphic graphs, the probability of colli-

sion can be expressed as the following energy function:

Eðf Þ ¼ Pððg; g0Þ 2 H0 j hðgÞ ¼ hðg0ÞÞ ð4Þ

So, in terms of collision probability, the hash functions that

produce comparatively lower E(f) values in Eq. (4) are

considered to be more reliable for checking the graph

isomorphism. It has been studied that sorted degree of

nodes has 0 collision probability for all graphs with number

of edges less or equal to 4 [21]. Moreover, it is also a well-

known fact that two graphs with the same betweenness

11586 Neural Computing and Applications (2020) 32:11579–11596

123

centrality (sorted) would indeed be isomorphic with high

probability [15, 53]. For example, sorted betweenness

centrality has collision probabilities equal to 3:2e�4,

1:9e�4, 1:1e�4; respectively, for graphlets with 7, 8 and 9

edges. Interested readers are requested to see [21] for fur-

ther discussions and analysis on various graph hash func-

tions and corresponding elaboration on probability of

collision. Considering the above facts, in this work, we

consider sorted degree of nodes for graphlets with t� 4 and

the betweenness centrality for graphlets with t� 5.

Hash function ¼
degree of nodes; if t� 4

betweenness centrality; otherwise

�

ð5Þ

It should be observed that the distribution of sampled

graphlets obtained the way mentioned until now, only

considers the topological structure of a graph, and ignores

the node and edge attributes. However, it is worth men-

tioning that the stochastic graphlet embedding permits to

consider a small set of nodes and edge attributes by cre-

ating respective signatures and then appending it to the

hash code encoding the topology of the graphlet. In this

work, if needed, we first discretize the existing continuous

attributes using a combination of clustering algorithm such

as k-means and pooling technique. Later, the sorted dis-

crete node and edge labels are used as the attribute signa-

tures and combined with the hash code.

5.3 Hierarchical stochastic graphlet embedding

In this work, we propose to combine the properties of the

proposed Stochastic Graphlet Embedding with the Hier-

archical Embedding introduced in the previous section.

On the one hand, SGE provides statistical information

about local structures varying the number of edges

involved. Therefore, it provides fine-grained insights of the

graph which cannot deal with too noisy data. The use of

abstractions provided by the graph hierarchy increases the

receptive field of each graphlet moving to coarser infor-

mation that is able to provide insights of the global graph

information. Moreover, the use of hierarchical edges dur-

ing the computation allows to combine information at some

levels, i.e., combining different levels of detail (see

Eq. (1)). For now on, we will denote this embedding as

Hierarchical Stochastic Graphlet Embedding (HSGE).

6 Computational complexity

This section is devoted to study the computational com-

plexity of the proposed approach given a graph G ¼
ðV;E; LV ; LEÞ where jVj ¼ n and jEj ¼ m.

6.1 Hierarchical embedding complexity

Graph clustering algorithms are usually high computational

complexity techniques. As it has been stated in Sect. 4.3,

the Girvan–Newman algorithm has been chosen as a graph

clustering technique. The Girvan–Newman algorithm is

based on the betweenness centrality of the edges which has

a time complexity of Oðn � mÞ for unweighted graphs and

Oðn � mþ n � ðnþ mÞ logðnÞÞ for weighted graphs. Hence,

the Girvan–Newman algorithm, which has to remove all

the edges, can be computed in Oðn � m2Þ for unweighted

graphs and Oðn � m2 þ n � m � ðnþ mÞ logðnÞÞ for weighted

graphs.

Assuming an embedding function u which has a com-

plexity of OðNÞ and assuming that the hierarchical graph

construction has a complexity of C1, then, if we assume L

levels, the proposed configurations would become a com-

plexity OðC1 þ L � NÞ in the case of the pyramid and

OðC1 þ L2 � NÞ for the hierarchy and the exhaustive

embeddings.

6.2 Stochastic graphlet embedding complexity

The computational complexity of Algorithm 2 is OðM � TÞ
where M is the number of graphlets to be sampled and T is

the maximum size of graphlets in terms of the number of

edges. Assuming a hash function with a complexity of

OðC2Þ, Algorithm 3 has a time complexity of OðM � T �
C2Þ for computing the stochastic graphlet embedding. Here

it is worth mentioning that ‘‘degree of nodes’’ and ‘‘be-

tweeness centrality,’’ respectively, have the time com-

plexity of OðnÞ and Oðn � mÞ. From the above explanation,

it is clear that the complexity of these two algorithms do

not depend on the size of the input graph G, but only on the

parameters M, T and the hash functions used.

7 Experimental validation

This section presents the experimental results obtained by

our proposed Hierarchical Stochastic Graphlet Embedding

method. The main aim of this experimental study is to

validate the proposed graph embedding technique for the

graph classification task, which demands robust embedding

technique for mapping a graph into a vector space. For

experimentation, we have considered many different

widely used graph datasets with varied characteristics. All

these graphs come from real data generated in the fields of

Biology, Chemistry, Graphics and Handwriting recogni-

tion. The MATLAB code of our experiment is available at

https://github.com/priba/hierarchicalSGE.

Neural Computing and Applications (2020) 32:11579–11596 11587

123

https://github.com/priba/hierarchicalSGE

7.1 Experiments on molecular graph datasets

The first set of experiments is conducted on various

benchmarks of molecular graphs. Below, we provide a

brief description of them followed by the experimental

setup, results and discussions.

7.1.1 Dataset description

Several bioinformatics datasets have been used: MUTAG,

PTC, PROTEINS, NCI1, NCI109, D&D and MAO. These

datasets have been widely used as benchmark in the liter-

ature. The MUTAG dataset contains graph representations

of 188 chemical compounds which are either mutagenic

aromatic or heteroromatic nitro compounds where nodes

can have 7 discrete labels. The PTC or Predictive Toxi-

cology Challenge dataset consists of 344 chemical com-

pounds known to cause or not cause cancer in rats and

mice. It has 19 discrete node labels. The PROTEINS

dataset contains relations between secondary structure

elements (SSEs) represented by nodes and neighborhood in

the amino-acid sequence or in 3D space by edges. It has 3

discrete labels viz. helix, sheet or turn. The NCI1 and

NCI109 come from the National Cancer Institute (NCI) and

are two balanced subsets of chemical compounds screened

for their ability to suppress or inhibit the growth of a panel

of human tumor cell lines, having 37 and 38 discrete node

labels, respectively. The D&D dataset consists of enzymes

and non-enzymes proteins structures, in which their nodes

are amino acids. The MAO database, taken from GREYC

Chemistry graph dataset collection, is composed of 68

graphs representing molecules that either inhibit or not the

monoamine oxidase, which is an antidepressant drug. Some

more details on the proposed bioinformatics datasets are

provided in Table 1.

7.1.2 Experimental setup

We have performed two different experiments: the first one

does not use the attribute information encoded in the nodes

and edges of the graphs, whereas the second experiment

does use the available node and edge features. For evalu-

ating the performance of the proposed embedding tech-

nique, we have used a C-SVM solver [14] as a classifier.

Since the datasets considered in this set of experiments do

not contain predefined train and test sets, we have used a

10-fold cross-validation scheme to obtain accuracies and

have reported the mean accuracies, respectively, in

Tables 2 and 3 for unlabeled and labeled datasets. We

follow a classical graph classification pipeline, where, in

the first stage, graph embedding is computed by our

proposed scheme, whereas in the second step, embedded

graphs are classified using a previously trained classifier.

7.1.3 Results and discussion

In Table 2, we present the experimental results obtained by

our proposed hierarchical embedding techniques together

with other existing works on the unlabeled datasets. The

previously mentioned three configurations of our hierar-

chical embedding are, respectively, denoted as: pyramidal,

hierarchical and exhaustive. For unlabeled datasets, we

have considered 10 different state-of-the-art methods: (1)

random walk kernel (RW) [27], (2) shortest path kernel

(SP) [8], (3) graphlet kernel (GK) [70], (4) Weisfeiler-

Lehman kernel (WL) [69], (5) deep graph kernel (DGK)

[83], (6) multiscale Laplacian graph kernel (MLK) [38], (7)

diffusion CNNs (DCNN) [4], (8) strong graph spectrums

(SGS) [37], (9) family of graph spectral distances (F_GSD)

[78], and (10) stochastic graphlet embedding (SGE) [21].

From the quantitative results shown in Table 2, it should

be observed that for most datasets, the highest accuracy is

achieved by one of the hierarchical configurations pro-

posed by us, which sets a new state-of-the-art results on all

the datasets considered. Particularly, the best accuracies are

obtained either by the pyramidal or the exhaustive con-

figurations, which indicates the importance of considering

hierarchical information for the graph embedding problem.

As expected, the proposed hierarchical embeddings have

achieved better performance than the SGE which is

regarded as the baseline of our proposal. It should be

observed that with this experimental setting, particularly

the hierarchical configuration has performed quite poorly

compared to the other two configurations. This fact might

suggest that only hierarchical edges together with the

connecting levels do not contain sufficient information for

a robust graph representation. Information captured in the

multiscale graphs thought to play a vital role for graph

embedding, which is proved by the excellent performance

obtained with the pyramidal and exhaustive configurations.

In Table 3, we demonstrate the results acquired by three

different configurations of our proposed hierarchical

embedding on the labeled graph datasets. For comparing

with other state-of-the-art methods, we have considered

two additional techniques: (1) PATCHY-SAN (PSCN) [55]

and (2) graphlet spectrum (GS) [39]. Some of the previ-

ously considered state-of-the-art techniques do not work

with labeled graphs, so they have not been evaluated in this

experimentation.

The results presented in Table 3 show that, except on

the MUTAG dataset, our proposed hierarchical embedding

techniques have achieved the best performances on all the

other datasets. This demonstrates the usefulness of con-

sidering the hierarchical information for embedding graphs

11588 Neural Computing and Applications (2020) 32:11579–11596

123

Table 1 Details of the

molecular graph datasets
Datasets # Graphs # Classes Avg. |V| Avg. |E| Node labels

MUTAG 188 2 (125 vs. 63) 17.9 39.6 7

PTC 344 2 (192 vs. 152) 25.6 51.9 19

PROTEINS 1113 2 (663 vs. 450) 39.1 145.63 3

NCI1 4110 2 (2057 vs. 2053) 29.9 64.6 37

NCI109 4127 2 (2079 vs. 2048) 29.7 64.3 38

D&D 1178 2 (691 vs 487) 284.3 1431.3 82

MAO 68 2 (30 vs. 38) 18.4 19.6 3

Table 2 Classification

accuracies on unlabeled

molecular graph datasets

Methods MUTAG PTC PROTEINS NCI1 NCI109 D&D MAO

RW [27] 83.50 55.52 68.46 44.84 59.80 - 83.52

SP [8] 87.23 58.72 72.14 68.15 68.30 - 90.35

GK [70] 84.04 60.17 71.78 62.07 62.04 75.05 80.88

WL [69] 87.28 55.61 70.06 77.23 78.43 73.76 89.79

DGK [83] 86.17 59.88 71.69 64.40 67.14 72.75 87.76

MLK [38] 87.23 62.20 71.35 77.57 75.91 77.02 91.17

DCNN [4] 66.51 55.79 65.22 63.10 60.67 OMR 76.10

SGS [37] 88.61 - - 62.72 62.62 - -

F_GSD [78] 92.12 62.80 73.42 79.80 78.84 77.10 95.58

SGE [21] 91.11 63.53 71.89 83.23 82.92 74.92 95.71

HSGE (pyr.) 91.11 65.29 75.32 85:24 83:24 78.73 100:00

HSGE (gen. pyr.) 92.22 67.94 75.50 83.36 81.73 79:32 100:00

HSGE (hier.) 93:33 67.06 76:31 82.85 81.33 72.03 100:00

HSGE (exhaus.) 92.22 70:88 76.58 83.84 82.12 73.90 100:00

In the table, RW corresponds to the random walk kernel [27], SP stands for the shortest path kernel [8], GK

denotes the graphlet kernel [70], WL indicates the Weisfeiler-Lehman kernel [69], DGK corresponds to the

deep graph kernel [83], MLK stands for the multiscale Laplacian graph kernel [38], DCNN indicates the

diffusion CNNs [4], SGS denotes the strong graph spectrums [37], F_GSD stands for the family of graph

spectral distances [78], SGE corresponds to the stochastic graphlet embedding [21], and HSGE indicates

the hierarchical graph embeddings proposed by us. The best results obtained on a dataset is indicated by

bold face

Table 3 Classification accuracy

on labeled molecular graph

datasets

Methods MUTAG PTC PROTEINS NCI1 NCI109 D&D MAO

MLK [38] 87.94 63.26 - 81.75 - 78.18 88.29

DCNN [4] 66.98 56.60 - 62.61 - OMR 75.14

PSCN [55] 92.63 62.90 - 78.59 - 77.12 -

GS [39] 88.11 - - 65.00 - - -

SGE [21] 88.33 57.94 74.05 83.44 81.89 77.37 94.29

HSGE (pyr.) 91.11 62.06 75.68 84:79 82.03 77.46 94.29

HSGE (gen. pyr.) 92:78 65.59 76:58 81.31 80.24 79.66 97:14

HSGE (hier.) 91.11 67:35 75.77 82.50 82.88 79.32 94.29

HSGE (exhaust.) 91.67 66.18 76.04 84.42 84:42 80:25 97:14

In the table, MLK stands for the multiscale Laplacian graph kernel [38], DCNN indicates the diffusion

CNNs [4], PSCN corresponds to the PATCHY-SAN [55], GS denotes the graphlet spectrum (GS) [39],

SGE corresponds to the stochastic graphlet embedding (SGE) [21], and HSGE indicates the hierarchical

graph embeddings proposed by us. The best results obtained on a dataset is specified by bold face

Neural Computing and Applications (2020) 32:11579–11596 11589

123

to a vector space. Contrary to the previous experiments on

unlabeled datasets, in this case, the hierarchical configu-

ration has performed reasonably better. This fact shows

that on labeled graphs, the hierarchical edges together with

the connecting levels might provide important structural

information. Also, it is important to note that the level

information also performed consistently on all the datasets.

7.2 Experiments on AIDS, GREC, COIL-DEL
and histograph datasets

While the datasets considered in the previous set of

experiments were mostly molecular in nature, the set of

experiments to be discussed in this section consider graphs

from various fields, such as, Biology, Computer Vision,

Graphics Recognition and Handwriting Recognition.

Underneath, we give a brief description of the datasets

considered followed by the experimental setup, results and

discussions.

7.2.1 Dataset description

In this experiment, we consider four different datasets;

three of them viz. AIDS, GREC and COIL-DEL are taken

from the IAM graph database repository1 [60]. The first

one, viz., the AIDS database consists of 2000 graphs rep-

resenting molecular compounds which are constructed

from the AIDS Antiviral Screen Database of Active

Compounds.2 This dataset consists of two classes, viz.,

active (400 elements) and inactive (1600 elements), which,

respectively, represent molecules with possible activity

against HIV. The GREC dataset consists of 1100 graphs

representing 22 different classes (characterizing architec-

tural and electronic symbols) with 50 instances per class;

these instances have different noise levels. The COIL-DEL

database includes 3900 graphs belonging to 100 different

classes with 39 instances per class; each instance has a

different rotation angle. The HistoGraph dataset3 [74]

consists of graphs representing words from the communi-

cating letters written by the first US president, George

Washington. It consists of 293 graphs generated from 30

distinct words. Therefore, given a word, the task of the

classifier is to predict its class which should be among the

30 words. Nodes are only labeled with their position in the

image. Furthermore, this dataset used six different graph

representation paradigms for delineating a single word into

a graph, which results in six different subsets of graphs.

The entire dataset is divided into 90, 60 and 143 graphs,

respectively, for train, validation and test purposes. See

Table 4 for the relevant statistics on these four datasets.

7.2.2 Experimental setup

In this case as well, we have employed a C-SVM solver

[14] as a classifier. Since the datasets used in this set of

experiments contain well defined train and test sets, we

have reported the obtained accuracies on the test set of the

respective datasets in Table 5.

7.2.3 Results and discussion

Similar to the experimental results obtained in the previous

section, in this set of experiments as well, our proposed

hierarchical embeddings have achieved the best results on

most datasets. In this set of experiments, the leading scores

are mostly obtained by the exhaustive configuration, which

shows the effectiveness of combining multiscale structural

information together with the hierarchical connections. For

some datasets, our hierarchical embedding does not

achieve the best results, but it has performed very

Table 4 Details of the AIDS, GREC, COIL-DEL and HistoGraph datasets

Datasets Subsets # Graphs # Classes Avg. |V| Avg. |E| Node labels

AIDS - 2000 (250, 250, 1500) 2 15.7 16.2 Chemical symbol

GREC - 1100 (286, 286, 528) 22 (50 each) 11.5 11.9 Type, (x, y) position

COIL-DEL - 3900 (2400, 500, 1000) 100 21.5 54.2 (x, y) position

HistoGraph Keypoint 293 (90, 60, 143) 30 101.8 94.8 (x, y) position

Grid-NNA 56.4 81.4

Grid-MST 66.1 64.4

Grid-DEL 74.1 205.1

Projection 63.1 58.8

Split 73.3 69.8

1 Available at http://www.fki.inf.unibe.ch/databases/iam-graph-

database.
2 See at http://dtp.nci.nih.gov/docs/aids/aids_data.html. 3 Available at http://www.histograph.ch.

11590 Neural Computing and Applications (2020) 32:11579–11596

123

http://www.fki.inf.unibe.ch/databases/iam-graph-database
http://www.fki.inf.unibe.ch/databases/iam-graph-database
http://dtp.nci.nih.gov/docs/aids/aids_data.html
http://www.histograph.ch

competitively. This also proves the robustness of the

hierarchical graph representation.

7.3 Discussion on the parameters involved
in the algorithm

Our algorithm is mainly controlled by three different

parameters: (1) the number of levels L of the graph pyra-

mid, (2) the reduction ratio R and (3) the maximum

number of edges T of a graphlet. For illustrating how these

three parameters control the performance of the system,

first we plot the classification accuracy by varying the

levels of the graph pyramid (see Fig. 3), reduction ratio

(see Fig. 4) and T (see Fig. 5). Here it is worth mentioning

that for the sake of simplicity, for each level we just con-

sider the maximum accuracy obtained by any configuration

mentioned in Sect. 4.3. From Fig. 3, we can observe that

for all the datasets, considering a second level together

with the base graph increases the classification accuracy.

However, the successive inclusion of hierarchical levels

does not always increase the performance. It has been

observed that for smaller graphs (with less number nodes

and edges, e.g., the graphs from MUTAG), the further

inclusion of hierarchical abstraction decreases the perfor-

mance of the system; this means that for smaller graphs a

higher level abstraction can introduce noise or distortion.

The reduction ratio R directly decides the number of

clusters in a given level, and hence the number of nodes in

the next higher level of the hierarchy. For example, R ¼ 1

indicates that the number of clusters should remain the

same with the number of nodes, while R ¼ 2 indicates that

the number of clusters should be half the number of nodes

in that level. Figure 4 shows the behavior of our method

with different values of R while we have fixed L ¼ 2. From

these plots, one must observe that R is completely depen-

dant on the datasets irrespective of the size of graphs they

contain. For PTC, PROTEINS, and MAO datasets, the

performance mostly increases with the increase of R, while

for MUTAG, it improves until R ¼ 2, and then it decreases

for all hierarchical configurations. For MAO dataset, all the

hierarchical configurations behave exactly in the same way

with the increase of R, which might be because the smaller

sized graphs on which the contribution of different hier-

archical configuration is indistinguishable.

In Fig. 5, we show the performance trend on six datasets

(i.e., MUTAG, PTC, PROTEINS, NCI1, and NCI109) only

with the SGE algorithm, which is the baseline graph

embedding technique that we considered. The hierarchical

configurations are not considered in this case because they

have different graphlet sizes in different hierarchical levels,

so understanding their behavior would have been compli-

cated. From Fig. 5, it is clear that increasing T mostly

improves the performance of the system on all the datasets.

Albeit, there are some exceptions (e.g., for PTC dataset,

T ¼ 6), which suggests that graphlets with T edges are less

informative for that particular graph dataset.

7.4 Discussion on the stochasticity
of the algorithm

It is important to note that our proposed algorithm is

stochastic in nature because of the involvement of the

stochastic graphlet sampling and the subsequent graph

embedding procedure. The graphlet sampling engaged here

uniformly samples graphlets from a given population of

graphs, and by the law of large numbers, this sampling

guarantees that the empirical distribution of graphlets is

Table 5 Results obtained on the AIDS, GREC, COIL-DEL and HistoGraph datasets

Methods AIDS GREC COIL-DEL HistoGraph

Keypoint Grid-NNA Grid-MST Grid-DEL Projection Split

RW [27] 98.50 96.20 94.20 - - - - - -

DE [12] 98.10 95.10 96.80 - - - - - -

NAS [29] 98.30 99.20 98.10 - - - - - -

GED [61] - - - 77.62 65.03 74.13 62.94 81:82 80.42

SGE [21] 98.67 99:62 98.14 79.02 72:73 77.62 74.83 79.72 81.12

HSGE (pyr.) 98.87 99.43 98.79 79.02 72:73 77.62 74.83 79.72 81.12

HSGE (gen. pyr.) 98.35 99.43 98.37 77.62 72.03 77.62 74.13 79.72 81.45

HSGE (hier.) 98.33 99.05 98:99 79.02 70.63 76.22 75:52 80.42 80.42

HSGE (exhaust.) 99:00 99.43 98.86 79:72 72.03 78:32 74.83 81:82 81:82

In the table, RW corresponds to the random walk kernel [27], DE stands for the dissimilarity embedding [12], NAS indicates the node attribute

statistics [29], GED denotes to the approximated graph edit distance [61], SGE corresponds to the stochastic graphlet embedding (SGE) [21], and

HSGE indicates our hierarchical graph embeddings. The best results obtained on a dataset is indicated by bold face

Neural Computing and Applications (2020) 32:11579–11596 11591

123

asymptotically close to the actual distribution [58]. For

demonstrating the fact that the stochastic behavior of our

algorithm does not heavily impact on the experimental

results, we repeated the last experiment on all the datasets

considered for 10 iterations, and in each iteration, we

randomly seeded the sampling algorithm. The mean and

standard deviation of the classification accuracy obtained

for each dataset is reported in Table 6. The mean accura-

cies reported in the table are quite close to the ones

reported in Table 5, and the standard deviations are com-

paratively low (all of them are less than 1.0). This suggests

that the proposed graph embedding technique, although

employed a stochastic process, is consistent in terms of

performance.

8 Conclusions

In this paper, we have proposed to enhance the infor-

mation encoded in graph embeddings by means of hier-

archical representations. We have experimentally

validated that the abstract information is able to improve

the graph classification performance. The embedding

function is based on a stochastic sampling of graphlets to

obtain the graphlet distribution within the graph. Graph-

lets of different sizes are considered to allow a change on

the node context. Moreover, the hashing functions are

used to identify graphlets in an efficient way. Event

though considering different size graphlets provides

robustness in terms of graph distortions, they still provide

Fig. 3 Plots showing classification accuracies by varying the levels of pyramidal graph construction on different datasets: MUTAG, PTC,

PROTEINS, MAO

11592 Neural Computing and Applications (2020) 32:11579–11596

123

local information when we consider larger graphs.

Therefore, building a graph hierarchy allows to increase

the graphlet context without increasing the time needed

for identifying the graphlet. In this work, we have care-

fully validated the performance of our approach in dif-

ferent application scenarios, showing that we outperform

the state-of-the-art approaches in the graph classification

task using an SVM as a classifier.

Further research will focus on improving the hierar-

chical graph construction. Even though the Girvan–

Newman algorithm is able to exploit the desired prop-

erties of the graph, creating clusterings that allow to

create good abstractions, their time complexity is a

drawback that should be studied when considering large

graphs.

Fig. 4 Plots showing classification accuracies by varying the reduction ratio of pyramidal graph construction on different datasets: MUTAG,

PTC, PROTEINS, MAO

Fig. 5 Plot showing the classification accuracy obtained by SGE by

varying the maximum number of edges of the sampled graphlets from 3 to

7 on different datasets: MUTAG, PTC, PROTEINS, MAO, NCI1, NCI109

Neural Computing and Applications (2020) 32:11579–11596 11593

123

Acknowledgements This work has been partially supported by the

European Union’s research and innovation program under the Marie

Skłodowska-Curie Grant Agreement No. 665919 (P-SPHERE pro-

ject), the Spanish projects RTI2018-102285-A-I00 and RTI2018-

095645-B-C21, the FPU fellowship FPU15/06264 from the Spanish

Ministerio de Educación, Cultura y Deporte, the Ramon y Cajal

Fellowship RYC-2014-1683, and the CERCA Program/Generalitat de

Catalunya. Anjan Dutta was a Marie-Curie Fellow (under the

P-SPHERE Project) at the Computer Vision Center of Barcelona,

where most of the work was done and the paper was written.

Compliance with ethical standards

Conflict of interest Anjan Dutta, Pau Riba, Josep Lladós and Alicia

Fornés declare that they do not have any conflict of interest.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Adelson EH, Anderson CH, Bergen JR, Burt PJ, Ogden JM

(1984) Pyramid methods in image processing. RCA Eng

29(6):33–41

2. Ahuja N, Todorovic S (2010) From region based image repre-

sentation to object discovery and recognition. In: S?SSPR, vol

6218, pp 1–19

3. Almeida H, Guedes D, Meira W, Zaki MJ (2011) Is there a best

quality metric for graph clusters? In: MLKDD, pp 44–59

4. Atwood J, Towsley D (2016) Diffusion-convolutional neural

networks. In: NIPS, pp 1993–2001

5. Aziz F, Wilson R, Hancock E (2013) Backtrackless walks on a

graph. IEEE Trans Neural Netw Learn Syst 24(6):977–989

6. Barbu E, Héroux P, Adam S, Trupin E (2005) Frequent graph

discovery: application to line drawing document images. Electron

Lett Comput Vis Image Anal 5(2):47–54

7. Bodic PL, Héroux P, Adam S, Lecourtier Y (2012) An integer

linear program for substitution-tolerant subgraph isomorphism

and its use for symbol spotting in technical drawings. Pattern

Recognit 45(12):4214–4224

8. Borgwardt K, Kriegel HP (2005) Shortest-path kernels on graphs.

In: ICDM, pp 74–81

9. Borzeshi EZ, Piccardi M, Riesen K, Bunke H (2013) Discrimi-

native prototype selection methods for graph embedding. Pattern

Recognit 46(6):1648–1657

10. Broelemann K, Dutta A, Jiang X, Lladós J (2012) Hierarchical

graph representation for symbol spotting in graphical document

images. In: S?SSPR, vol 7626. Springer, Berlin, pp 529–538

11. Broelemann K, Dutta A, Jiang X, Lladós J (2013) Hierarchical

plausibility-graphs for symbol spotting in graphical documents.

In: GREC, pp 13–18

12. Bunke H, Riesen K (2010) Improving vector space embedding of

graphs through feature selection algorithms. Pattern Recognit

44(9):1928–1940

13. Caelli T, Kosinov S (2004) An eigenspace projection clustering

method for inexact graph matching. IEEE Trans Pattern Anal

Mach Intell 26(4):515–519

14. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector

machines. ACM Trans Intell Syst Technol (TIST) 2(3):27

15. Comellas F, Paz-Sánchez J (2008) Reconstruction of networks

from their betweenness centrality. In: AEC. Springer, Berlin,

pp 31–37

16. Conte D, Foggia P, Sansone C, Vento M (2004) Thirty years of

graph matching in pattern recognition. Int J Pattern Recognit

Artif Intell 18(3):265–298

17. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional

neural networks on graphs with fast localized spectral filtering.

In: NIPS, pp 1–14

18. Dupé F.X, Brun L (2010) Hierarchical bag of paths for kernel

based shape classification. In: S?SSPR, pp 227–236

19. Dutta A, Lladós J, Bunke H, Pal U (2017) Product graph-based

higher order contextual similarities for inexact subgraph match-

ing. Pattern Recognit 76:596–611

20. Dutta A, Riba P, Lladós J, Fornés A (2017) Pyramidal stochastic

graphlet embedding for document pattern classification. In:

ICDAR, pp 33–38

21. Dutta A, Sahbi H (2019) Stochastic graphlet embedding. IEEE

Trans Neural Netw Learn Syst 30(8):2369–2382

Table 6 Mean and standard deviation of the accuracies obtained by

repeating the classification task on the AIDS, GREC, COIL-DEL and

HistoGraph datasets for 10 iterations. Here the mean accuracies

consistent with the ones in Table 5 and the low standard deviations

show that the proposed graph embedding is not sensitive to the

stochasticity involved in the algorithm

Methods AIDS GREC COIL-DEL HistoGraph

Keypoint Grid-NNA Grid-MST Grid-DEL Projection Split

HSGE (pyr.) 98:74 99.36 98.74 78.98 72:71 77.57 74.79 79.72 81.04

ð	0:13Þ ð	0:19Þ ð	0:21Þ ð	0:32Þ ð	0:10Þ ð	0:43Þ ð	0:62Þ ð	0:99Þ ð	0:84Þ
HSGE (gen. pyr.) 98.12 99.58 98.49 79:31 71.28 78.05 74.96 79.94 80.24

ð	0:27Þ ð	0:23Þ ð	0:49Þ ð	0:52Þ ð	0:58Þ ð	0:47Þ ð	0:71Þ ð	0:18Þ ð	0:74Þ
HSGE (hier.) 98.24 99.04 98:98 79.03 70.51 76.20 75:47 80.39 80.38

ð	0:36Þ ð	0:16Þ ð	0:60Þ ð	0:20Þ ð	0:55Þ ð	0:40Þ ð	0:86Þ ð	0:17Þ ð	0:21Þ
HSGE (exhaust.) 98:74 99:64 98.84 79.01 71.96 78:28 74.79 80:82 81:53

ð	0:21Þ ð	0:80Þ ð	0:17Þ ð	0:70Þ ð	0:10Þ ð	0:97Þ ð	0:01Þ ð	0:46Þ ð	0:94Þ

The best results obtained on a dataset is specified by bold face

11594 Neural Computing and Applications (2020) 32:11579–11596

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

22. Farabet C, Couprie C, Najman L, LeCun Y (2013) Learning

hierarchical features for scene labeling. IEEE Trans Pattern Anal

Mach Intell 35(8):1915–1929

23. Fei-Fei L, Perona P (2005) A Bayesian hierarchical model for

learning natural scene categories. In: CVPR, pp 524–531

24. Felzenszwalb P, Schwartz J (2007) Hierarchical matching of

deformable shapes. In: CVPR, pp 1–8

25. Foggia P, Percannella G, Vento M (2014) Graph matching and

learning in pattern recognition in the last 10 years. Int J Pattern

Recognit Artif Intell 28(1):1–40

26. Freeman LC (1977) A set of measures of centrality based on

betweenness. Sociometry 40(1):35–41

27. Gärtner T (2003) A survey of kernels for structured data. ACM

SIGKDD Explor Newslett 5(1):49–58

28. Gentile C, Li S, Kar P, Karatzoglou A, Zappella G, Etrue E

(2017) On context-dependent clustering of bandits. In: ICML,

pp 1253–1262. JMLR.org

29. Gibert J, Valveny E, Bunke H (2012) Graph embedding in vector

spaces by node attribute statistics. Pattern Recognit

45(9):3072–3083

30. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017)

Neural message passing for quantum chemistry. In: ICML,

pp 1263–1272

31. Girvan M, Newman M (2002) Community structure in social and

biological networks. Proc Natl Acad Sci USA 99(12):7821–7826

32. Horváth T, Gärtner T, Wrobel S (2004) Cyclic pattern kernels for

predictive graph mining. In: KDD, pp 158–167

33. Jolion JM, Rosenfeld A (1994) A pyramid framework for early

vision: multiresolutional computer vision. Kluwer Academic

Publishers, Norwell

34. Jouili S, Tabbone S (2010) Graph embedding using constant shift

embedding. In: ICPR, pp 83–92

35. Kashima H, Tsuda K, Inokuchi A (2004) Kernels for graphs.

Kernel Methods Comput Biol 39(1):101–113

36. Kipf TN, Welling M (2017) Semi-supervised classification with

graph convolutional networks. In: ICLR, pp 1–10

37. Kondor R, Borgwardt KM (2008) The skew spectrum of graphs.

In: ICML, pp 496–503

38. Kondor R, Pan H (2016) The multiscale Laplacian graph kernel.

In: NIPS, pp 2982–2990

39. Kondor R, Shervashidze N, Borgwardt KM (2009) The graphlet

spectrum. In: ICML, pp 529–536

40. Korda N, Szörényi B, Li S (2016) Distributed clustering of linear

bandits in peer to peer networks. In: ICML

41. Kriege N, Mutzel P (2012) Subgraph matching kernels for

attributed graphs. In: ICML, pp 1015–1022

42. Kuramochi M, Karypis G (2001) Frequent subgraph discovery.

In: IEEE

43. Lafferty J, Lebanon G (2005) Diffusion kernels on statistical

manifolds. J Mach Learn Res 6:129–163

44. Li S, Chen W, Li S, Leung K (2019) Improved algorithm on

online clustering of bandits. In: IJCAI

45. Li S, Karatzoglou A, Gentile C (2016) Collaborative filtering

bandits. In: SIGIR

46. Liu X, Lin L, Li H, Jin H, Tao W (2008) Layered shape matching

and registration: Stochastic sampling with hierarchical graph

representation. In: ICPR, pp 1–4

47. Luqman MM, Ramel JY, Lladós J, Brouard T (2013) Fuzzy

multilevel graph embedding. Pattern Recognit 46(2):551–565

48. Marfil R, Molina-Tanco L, Bandera A, Sandoval F (2007) The

construction of bounded irregular pyramids with a union-find

decimation process. In: GbRPR, pp 307–318

49. Mehlhorn K (1984) Graph algorithms and NP-completeness.

Springer, New York

50. Mousavi SF, Safayani M, Mirzaei A, Bahonar H (2017) Hierar-

chical graph embedding in vector space by graph pyramid. Pat-

tern Recognit 61:245–254

51. Neuhaus M, Bunke H (2004) An error-tolerant approximate

matching algorithm for attributed planar graphs and its applica-

tion to fingerprint classification. In: S?SSPR, pp 180–189

52. Neuhaus M, Bunke H (2007) Bridging the gap between graph edit

distance and kernel machines. World Scientific, Singapore

53. Newman MJ (2005) A measure of betweenness centrality based

on random walks. Soc Netw 27(1):39–54

54. Niebles J, Fei-Fei L (2007) A hierarchical model of shape and

appearance for human action classification. In: CVPR, pp 1–8

55. Niepert M, Ahmed M, Kutzkov K (2016) Learning convolutional

neural networks for graphs. In: ICML, pp 2014–2023

56. Pekalska E, Duin RPW (2005) The dissimilarity representation

for pattern recognition: foundations and applications. World

Scientific, Hackensack

57. Pelillo M, Siddiqi K, Zucker SW (1999) Matching hierarchical

structures using association graphs. IEEE Trans Pattern Anal

Mach Intell 21(11):1105–1120

58. Pržulj N (2007) Biological network comparison using graphlet

degree distribution. Bioinformatics 23(2):e177

59. Riba P, Lladós J, Fornés A (2017) Error-tolerant coarse-to-fine

matching model for hierarchical graphs. In: International work-

shop on graph-based representations in pattern recognition.

Springer, pp 107–117

60. Riesen K, Bunke H (2008) IAM graph database repository for

graph based pattern recognition and machine learning. In:

S?SSPR, pp 287–297

61. Riesen K, Bunke H (2009) Approximate graph edit distance

computation by means of bipartite graph matching. Image Vis

Comput 27(7):950–959

62. Riesen K, Bunke H (2009) Graph classification by means of

Lipschitz embedding. IEEE Trans Syst Man Cybern Part B

39(6):1472–1483

63. Riesen K, Neuhaus M, Bunke H (2007) Bipartite graph matching

for computing the edit distance of graphs. In: Escolano F, Vento

M (eds) Graph-based representations in pattern recognition,

LNCS, vol 4538. Springer, Berlin, pp 1–12

64. Robles-Kelly A, Hancock ER (2007) A riemannian approach to

graph embedding. Pattern Recognit 40(3):1042–1056

65. Saund E (2013) A graph lattice approach to maintaining and

learning dense collections of subgraphs as image features. IEEE

Trans Pattern Anal Mach Intell 35(10):2323–2339

66. Schellewald C, Schnörr C (2005) Probabilistic subgraph match-

ing based on convex relaxation. In: EMMCVPR, pp 171–186

67. Serratosa F, Alquézar R, Sanfeliu A (2000) Efficient algorithms

for matching attributed graphs and function-described graphs. In:

International conference on pattern recognition, vol 2,

pp 867–872

68. Shervashidze N, Borgwardt K.M (2009) Fast subtree kernels on

graphs. In: NIPS, pp 1660–1668

69. Shervashidze N, Schweitzer P, van Leeuwen EJ, Mehlhorn K,

Borgwardt KM (2011) Weisfeiler-Lehman graph kernels. J Mach

Learn Res 12:2539–2561

70. Shervashidze N, Vishwanathan SVN, Petri T, Mehlhorn K,

Borgwardt K (2009) Efficient graphlet kernels for large graph

comparison. In: AISTATS, pp 488–495

71. Shokoufandeh A, Macrini D, Dickinson S, Siddiqi K, Zucker S

(2005) Indexing hierarchical structures using graph spectra. IEEE

Trans Pattern Anal Mach Intell 27(7):1125–1140

72. Smola AJ, Kondor R (2003) Kernels and regularization on

graphs. In: COLT, pp 144–158

73. Solnon C (2010) All different-based filtering for subgraph iso-

morphism. Artif Intell 174(12–13):850–864

Neural Computing and Applications (2020) 32:11579–11596 11595

123

74. Stauffer M, Fischer A, Riesen K (2016) A novel graph database

for handwritten word images. In: S?SSPR, pp 553–563

75. Suh Y, Adamczewski K, Mu Lee K (2015) Subgraph matching

using compactness prior for robust feature correspondence. In:

CVPR

76. Ulrich M, Wiedemann C, Steger C (2012) Combining scale-space

and similarity-based aspect graphs for fast 3d object recognition.

IEEE Trans Pattern Anal Mach Intell 34(10):1902–1914

77. Vento M (2015) A long trip in the charming world of graphs for

pattern recognition. Pattern Recognit 48(2):291–301

78. Verma S, Zhang ZL (2017) Hunt for the unique, stable, sparse

and fast feature learning on graphs. In: NIPS, pp 87–97

79. Vishwanathan SVN, Schraudolph NN, Kondor R, Borgwardt KM

(2010) Graph kernels. J Mach Learn Res 11:1201–1242

80. Watkins C (1999) Kernels from matching operations. Technical

report, Computer Science Department, University of London

81. Weissman T, Ordentlich E, Seroussi G, Verdu S, Weinberger MJ

(2003) Inequalities for the l1 deviation of the empirical distri-

bution. Technical report, HP Labs, Palo Alto

82. Wilson R, Hancock E, Luo B (2005) Pattern vectors from alge-

braic graph theory. IEEE Trans Pattern Anal Mach Intell

27(7):1112–1124

83. Yanardag P, Vishwanathan S (2015) Deep graph kernels. In:

KDD, pp 1365–1374

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

11596 Neural Computing and Applications (2020) 32:11579–11596

123

	Hierarchical stochastic graphlet embedding for graph-based pattern recognition
	Abstract
	Introduction
	Related work
	Graph embedding
	Explicit graph embedding
	Implicit graph embedding

	Hierarchical graph representation

	Definitions and notations
	Hierarchical embedding
	Graph clustering
	Hierarchical construction
	Hierarchical embedding

	Stochastic graphlet embedding
	Stochastic graphlets sampling
	Hashed graphlets distribution
	Hierarchical stochastic graphlet embedding

	Computational complexity
	Hierarchical embedding complexity
	Stochastic graphlet embedding complexity

	Experimental validation
	Experiments on molecular graph datasets
	Dataset description
	Experimental setup
	Results and discussion

	Experiments on AIDS, GREC, COIL-DEL and histograph datasets
	Dataset description
	Experimental setup
	Results and discussion

	Discussion on the parameters involved in the algorithm
	Discussion on the stochasticity of the algorithm

	Conclusions
	Acknowledgements
	References

