Skip to main content
Log in

Full-reference image quality metric for blurry images and compressed images using hybrid dictionary learning

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The image quality degradation due to the loss of high-frequency components of images is often seen in real scenarios, such as artifacts caused by image compression and image blur caused by camera shake or out of focus. Quantifying such degradation is very useful for many tasks that are related to image quality. In this paper, an effective approach is proposed for the image quality assessment on images with blur as well as images with compression artifacts. Based on the relation between the dictionaries of the degraded image and the reference image, we build up a hybrid dictionary learning model to characterize the space of patches of the reference image as well as that of the degraded image. The image quality is then measured by the difference between the two resulting dictionaries. Combined with a simple sparse-coding-based metric, the proposed method shows competitive performance on five benchmark datasets, which demonstrates its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A Olshausen B, Field D (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607–9

    Article  Google Scholar 

  2. Aharon M, Elad M, Bruckstein A (2006) \(K\)-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

    MATH  Google Scholar 

  3. Akbarizadeh G (2012) A new recognition approach based on genetic algorithm for classifying textures in satellite sar images. Int J Remote Sens Appl 2(4):7–19

    Google Scholar 

  4. Alasvand Z, Naderan M, Akbarizadeh G (2017) Superpixel-based feature learning for joint sparse representation of hyperspectral images. In: Proceedings of international conference on pattern recognition and image Analysis, IEEE, pp 156–159

  5. Andekah ZA, Naderan M, Akbarizadeh G (2017) Semi-supervised hyperspectral image classification using spatial-spectral features and superpixel-based sparse codes. In: Iranian Conference on Electrical Engineering, IEEE, pp 2229–2234

  6. Bahrami K, Kot AC (2014) A fast approach for no-reference image sharpness assessment based on maximum local variation. IEEE Signal Process Lett 21(6):751–755

    Article  Google Scholar 

  7. Barlow H (2001) Redundancy reduction revisited. Network (Bristol, England) 12:241–53

    Article  Google Scholar 

  8. Chang HW, Yang H, Gan Y, Wang MH (2013) Sparse feature fidelity for perceptual image quality assessment. IEEE Trans Image Process 22(10):4007–18

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferzli R, Karam LJ (2009) A no-reference objective image sharpness metric based on the notion of just noticeable blur (jnb). IEEE Trans Image Process 18(4):717–728

    Article  MathSciNet  MATH  Google Scholar 

  10. Gore A, Gupta S (2015) Full reference image quality metrics for jpeg compressed images. AEU-Int J Electron Commun 69(2):604–608

    Article  Google Scholar 

  11. Gu S, Zuo W, Xie Q, Meng D, Feng X, Zhang L (2015) Convolutional sparse coding for image super-resolution. In: Proceedings of IEEE conference on computer vision, pp 1823–1831

  12. Guha T, Nezhadarya E, Ward RK (2014) Sparse representation-based image quality assessment. Signal Process Image Commun 29(10):1138–1148

    Article  Google Scholar 

  13. Gunawan H (2002) A generalization of bessel” s inequality and parseval” s identity. Periodica Math Hungarica 44(2):177–181

    Article  MathSciNet  MATH  Google Scholar 

  14. He L, Tao D, Li X, Gao X (2012) Sparse representation for blind image quality assessment. In: Proceedings of IEEE conference on computer vision and pattern recognition, IEEE, pp 1146–1153

  15. Larson EC, Chandler DM (2010) Most apparent distortion: full-reference image quality assessment and the role of strategy. J Electron Imaging 19(1):011006

    Article  Google Scholar 

  16. Li L, Cai H, Zhang Y, Lin W, Kot AC, Sun X (2016) Sparse representation-based image quality index with adaptive sub-dictionaries. IEEE Trans Image Process 25(8):3775–3786

    MathSciNet  MATH  Google Scholar 

  17. Li L, Wu D, Wu J, Li H, Lin W, Kot AC (2016) Image sharpness assessment by sparse representation. IEEE Trans Multimedia 18(6):1085–1097

    Article  Google Scholar 

  18. Li L, Xia W, Fang Y, Gu K, Wu J, Lin W, Qian J (2016) Color image quality assessment based on sparse representation and reconstruction residual. J Visual Commun Image Represent 38:550–560

    Article  Google Scholar 

  19. Liu Y, Zhai G, Gu K, Liu X, Zhao D, Gao W (2018) Reduced-reference image quality assessment in free-energy principle and sparse representation. IEEE Trans Multimedia 20(2):379–391

    Article  Google Scholar 

  20. Ma K, Wu Q, Wang Z, Duanmu Z, Yong H, Li H, Zhang L (2016) Group mad competition-a new methodology to compare objective image quality models. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1664–1673

  21. Narvekar ND, Karam LJ (2011) A no-reference image blur metric based on the cumulative probability of blur detection (cpbd). IEEE Trans Image Process 20(9):2678–2683

    Article  MathSciNet  MATH  Google Scholar 

  22. Olshausen BA, Field DJ (1997) Sparse coding with an overcomplete basis set: a strategy employed by v1? Vision Res 37(23):3311–3325

    Article  Google Scholar 

  23. Ponomarenko N, Lukin V, Zelensky A, Egiazarian K, Carli M, Battisti F (2004) Tid 2008—a database for evaluation of full-reference visual quality assessment metrics. Adv Modern Radioelectron 10:30–45

    Google Scholar 

  24. Ponomarenko N, Ieremeiev O, Lukin V, Egiazarian K, Jin L, Astola J, Vozel B, Chehdi K, Carli M, Battisti F (2013) Color image database tid2013: peculiarities and preliminary results. In: Proceedings of European workshop on visual information processing, pp 106–111

  25. Quan Y, Xu Y, Sun Y, Luo Y (2014) Lacunarity analysis on image patterns for texture classification. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 160–167

  26. Quan Y, Huang Y, Ji H (2015) Dynamic texture recognition via orthogonal tensor dictionary learning. In: Proceedings of IEEE conference on computer vision

  27. Quan Y, Bao C, Ji H (2016) Equiangular kernel dictionary learning with applications to dynamic texture analysis. In: Proceedings of IEEE conference on computer vision pattern recognition

  28. Quan Y, Xu Y, Sun Y, Huang Y (2016) Supervised dictionary learning with multiple classifier integration. Pattern Recognit 55:247–260

    Article  MATH  Google Scholar 

  29. Saha A, Wu QJ (2013) Perceptual image quality assessment using phase deviation sensitive energy features. Signal Process 93(11):3182–3191

    Article  Google Scholar 

  30. Shan Q, Jia J, Agarwala A (2008) High-quality motion deblurring from a single image. ACM Trans Graph 27:73

    Google Scholar 

  31. Sharifzadeh F, Akbarizadeh G, Kavian YS (2019) Ship classification in sar images using a new hybrid CNN-MLP classifier. J Indian Soc Remote Sens 47(4):551–562

    Article  Google Scholar 

  32. Sheikh HR, Bovik AC (2006) Image information and visual quality. IEEE Trans Image Process 15(2):430–44

    Article  Google Scholar 

  33. Sheikh HR, Wang Z, Cormack L, Bovik AC (2002) Blind quality assessment for jpeg2000 compressed images. In: Proceedings of conference on signals, systems and computers, IEEE, vol 2, pp 1735–1739

  34. Sheikh HR, Bovik AC, Cormack L (2005) No-reference quality assessment using natural scene statistics: Jpeg 2000. IEEE Trans Image Process 14(11):1918–1927

    Article  Google Scholar 

  35. Sheikh HR, Sabir MF, Bovik AC (2006) A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans Image Process 15(11):3440–51

    Article  Google Scholar 

  36. Shi J, Xu L, Jia J (2015) Just noticeable defocus blur detection and estimation. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 657–665

  37. Shi Z, Zhang J, Cao Q, Pang K, Luo T (2018) Full-reference image quality assessment based on image segmentation with edge feature. Signal Process 145:99–105

    Article  Google Scholar 

  38. Sun W, Liao Q, Xue JH, Zhou F (2018) SPSIM: a superpixel-based similarity index for full-reference image quality assessment. IEEE Trans Image Process 27(9):4232–4244

    Article  MathSciNet  MATH  Google Scholar 

  39. Taibi F, Akbarizadeh G, Farshidi E (2019) Robust reservoir rock fracture recognition based on a new sparse feature learning and data training method. Multidimens Syst Signal Process 30:1–34

    Article  MATH  Google Scholar 

  40. Tirandaz Z, Akbarizadeh G (2015) A two-phase algorithm based on kurtosis curvelet energy and unsupervised spectral regression for segmentation of sar images. IEEE J Sel Topics Appl Earth Observ Remote Sens 9(3):1244–1264

    Article  Google Scholar 

  41. Wang S, Rehman A, Wang Z, Ma S, Gao W (2012) SSIM-motivated rate-distortion optimization for video coding. IEEE Trans Circuits Syst Video Technol 22(4):516–529

    Article  Google Scholar 

  42. Wang S, Deng C, Zhao B, Huang GB, Wang B (2016) Gradient-based no-reference image blur assessment using extreme learning machine. Neurocomputing 174:310–321

    Article  Google Scholar 

  43. Wang Z, Li Q (2010) Information content weighting for perceptual image quality assessment. IEEE Trans Image Process 20(5):1185–1198

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang Z, Bovik AC, Evan BL (2000) Blind measurement of blocking artifacts in images. In: Proceedings of international conference on image processing, vol 3, pp 981–984

  45. Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In: Proceedings of conference signals, systems and computers, IEEE, vol 2, pp 1398–1402

  46. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–12

    Article  Google Scholar 

  47. Xu Y, Quan Y, Zhang Z, Ji H, Fermüller C, Nishigaki M, Dementhon D (2012) Contour-based recognition. In: Proceedings of IEEE conference on computer vision and pattern recognition, IEEE, pp 3402–3409

  48. Xu Y, Liu D, Quan Y, Le Callet P (2015) Fractal analysis for reduced reference image quality assessment. IEEE Trans Image Process 24(7):2098–2109

    Article  MathSciNet  MATH  Google Scholar 

  49. Parvez Sazzad ZM, Kawayoke Y, Horita Y (2008) MICT image quality evaluation database. http://mict.eng.u-toyama.ac.jp/mict/index2.html

  50. Zayed AI (1998) A convolution and product theorem for the fractional fourier transform. IEEE Signal Process Lett 5(4):101–103

    Article  Google Scholar 

  51. Zhang H, Wang S, Xu X, Chow TW, Wu QJ (2018) Tree2vector: learning a vectorial representation for tree-structured data. IEEE Trans Neural Netw Learn Syst 99:1–15

    MathSciNet  Google Scholar 

  52. Zhang H, Wang S, Zhao M, Xu X, Ye Y (2018) Locality reconstruction models for book representation. IEEE Trans Knowl Data Eng 30(10):1873–1886

    Article  Google Scholar 

  53. Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (61872151, 61602184, 61672241, U1611461), National Nature Science Foundation of Guangdong Province (2017A030313376, 2016A030308013), Science and Technology Program of Guangdong Province (20140904-160), Science and Technology Program of Guangzhou (201802010055), and Fundamental Research Funds for Central Universities of China (x2js-D2181690).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhui Quan.

Ethics declarations

Conflict of interest

We declare that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Li, J., Xu, Y. et al. Full-reference image quality metric for blurry images and compressed images using hybrid dictionary learning. Neural Comput & Applic 32, 12403–12415 (2020). https://doi.org/10.1007/s00521-019-04694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04694-9

Keywords

Navigation