Skip to main content
Log in

Distributed fault-tolerant control of modular and reconfigurable robots with consideration of actuator saturation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A novel decomposition-based distributed robust fault-tolerant control method is proposed for modular and reconfigurable robots based on joint torque sensing. The designed robust controller compensates for both model uncertainties and a class of actuator faults. In addition, the proposed scheme does not require a fault detection and diagnosis module, avoiding time delay associated with it. Furthermore, a radial basis function neural network-based compensation scheme is proposed to deal with the actuator saturation problem, which is especially critical when actuator fault has to be tolerated by the control system. Simulation results have shown the effectiveness of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Christoph HB, Jamie P (2018) Mori: a modular origami robot. IEEE Trans Mechatron 22(5):2153–2164

    Google Scholar 

  2. Dong B, Zhou F, Liu KP, Li YC (2018) Decentralized robust optimal control for modular robot manipulators via critic-identifier structure-based adaptive dynamic programming. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3714-8

    Article  Google Scholar 

  3. Tommaso R, Matteo C, Giada G, Iris DF, Arianna M (2016) A soft modular manipulator for minimally invasive surgery: design and characterization of a single module. IEEE Trans Robot 32(1):187–200

    Article  Google Scholar 

  4. Zhang JX, Yang GH (2017) Robust adaptive fault-tolerant control for a class of unknown nonlinear systems. IEEE Trans Ind Electron 64(1):585–594

    Article  Google Scholar 

  5. Yang Y, Yue D (2019) Observer-based decentralized adaptive NNs fault-tolerant control of a class of large-scale uncertain nonlinear systems with actuator failures. IEEE Trans Syst Man Cybern 49(3):528–542

    Article  MathSciNet  Google Scholar 

  6. Yoo SJ, Kim T (2017) Predesignated fault-tolerant formation tracking quality for networked uncertain nonholonomic mobile robots in the presence of multiple faults. Automatica 77:380–387

    Article  MathSciNet  Google Scholar 

  7. Hao L, Yang G (2013) Robust fault tolerant control based on sliding mode method for uncertain linear systems with quantization. ISA Trans 52(5):600–610

    Article  MathSciNet  Google Scholar 

  8. Van M, Mavrovouniotis M, Ge SS (2018) An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans Syst Man Cybern 49(7):1448–1458

    Article  Google Scholar 

  9. Guo C, Li F, Tian Z, Guo W, Tan S (2019) Intelligent active fault-tolerant system for multi-source integrated navigation system based on deep neural network. Neural Comput and Applic. https://doi.org/10.1007/s00521-018-03975-z

    Article  Google Scholar 

  10. Ao W, Song Y, Wen C (2017) Adaptive robust fault tolerant control design for a class of nonlinear uncertain MIMO systems with quantization. ISA Trans 68:63–72

    Article  Google Scholar 

  11. Mekki H, Benzineb O, Boukhetala D, Tadjine M, Benbouzid M (2015) Sliding mode based fault detection, reconstruction and fault tolerant control scheme for motor systems. ISA Trans 57:340–351

    Article  Google Scholar 

  12. Abdul S, Liu G (2008) Decentralised fault tolerance and fault detection of modular and reconfigurable robots with joint torque sensing. In: Proceedings of IEEE international conference on robotics and automation, Pasadena, CA, pp 3520–3526

  13. Mohamed AK, Yu X, Zhang Y (2018) Fault-tolerant cooperative control design of multiple wheeled mobile robots. IEEE Trans on Control Syst Technol 26(2):756–764

    Article  Google Scholar 

  14. Wu Y, Sun F, Zheng J, Song Q (2010) A robust training algorithm of discrete-time MIMO RNN and application in fault tolerant control of robotic system. Neural Comput and Applic 19(7):1013–1027

    Article  Google Scholar 

  15. Van M, Ge SS, Ren H (2017) Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control. IEEE Trans Cybern 47(7):1681–1693

    Article  Google Scholar 

  16. Zhao B, Li YC (2014) Local joint information based active fault tolerant control for reconfigurable manipulator. Nonlinear Dyn 77(3):859–876

    Article  MathSciNet  Google Scholar 

  17. Liu G, Abdul S, Goldenberg AA (2008) Distributed control of modular and reconfigurable robot with torque sensing. Robotica 26(1):75–84

    Article  Google Scholar 

  18. Zhou F, Li Y, Liu G (2017) Robust decentralized force/position fault-tolerant control for constrained reconfigurable manipulators without torque sensing. Nonlinear Dyn 89:955–969

    Article  Google Scholar 

  19. Benosman M, Lum KY (2010) Passive actuators’ fault-tolerant control for affine nonlinear systems. IEEE Trans Control Syst Technol 18(1):152–163

    Article  Google Scholar 

  20. Ma Y, Yang P, Yan Y, Zhang Q (2017) Robust observer-based passive control for uncertain singular time-delay systems subject to actuator saturation. ISA Trans 67:9–18

    Article  Google Scholar 

  21. Li H, Wang J, Shi P (2016) Output-feedback based sliding mode control for fuzzy systems with actuator saturation. IEEE Trans Fuzzy Syst 24(6):1282–1239

    Article  Google Scholar 

  22. Su Y, Xu L, Li D (2016) Adaptive fuzzy control of a class of MIMO nonlinear system with actuator saturation for greenhouse climate control problem. IEEE Trans on Automat Sci Eng 13(2):772–788

    Article  Google Scholar 

  23. Sun L, Wang Y, Feng G (2015) Control design for a class of affine nonlinear descriptor systems with actuator saturation. IEEE Trans Automat Control 60(8):2195–2200

    Article  MathSciNet  Google Scholar 

  24. He W, Dong Y, Sun C (2016) Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans Syst Man Cyber 46(3):334–344

    Article  Google Scholar 

  25. Imura J, Sugie T, Yokokohji Y, Yoshikawa T (1991) Robust control of robot manipulators based on joint torque sensor information. In: Proceedings of IEEE/RSJ international workshop on intelligent robots and system, Osaka, Japan, pp 344–349

  26. Yuan J, Liu G, Wu B (2011) Power efficiency estimation-based system monitoring and fault detection of modular and reconfigurable robot. IEEE Trans Ind Electron 58(10):4880–4887

    Article  Google Scholar 

  27. Gao W, Selmic RR (2006) Neural network control of a class of nonlinear systems with actuator saturation. IEEE Trans Neural Netw 17(1):147–156

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61374051, 61773075, and 61703055), the Scientific Technological Development Plan Project in Jilin Province of China (Grant Nos. 20170204067GX, 20190103004JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanchun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Liu, K., Li, Y. et al. Distributed fault-tolerant control of modular and reconfigurable robots with consideration of actuator saturation. Neural Comput & Applic 32, 13591–13604 (2020). https://doi.org/10.1007/s00521-020-04768-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-04768-z

Keywords

Navigation