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Abstract
Much of modern practice in financial forecasting relies on technicals, an umbrella term for several heuristics applying

visual pattern recognition to price charts. Despite its ubiquity in financial media, the reliability of its signals remains a

contentious and highly subjective form of ‘domain knowledge’. We investigate the predictive value of patterns in financial

time series, applying machine learning and signal processing techniques to 22 years of US equity data. By reframing

technical analysis as a poorly specified, arbitrarily preset feature-extractive layer in a deep neural network, we show that

better convolutional filters can be learned directly from the data, and provide visual representations of the features being

identified. We find that an ensemble of shallow, thresholded convolutional neural networks optimised over different

resolutions achieves state-of-the-art performance on this domain, outperforming technical methods while retaining some of

their interpretability.
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1 Introduction

In financial media, extensive attention is given to the study

of charts and visual patterns. Known as technical analysis

or chartism, this form of financial analysis relies solely on

historical price and volume data to produce forecasts, on

the assumption that specific graphical patterns hold pre-

dictive information for future asset price fluctuations [1].

Early research into genetic algorithms devised solely from

technical data (as opposed to e.g. fundamentals or senti-

ment analysis) showed promising results, sustaining the

view that there could be substance to the practice [2, 3].

The rising popularity of neural networks in the past

decade, fuelled by advances in computational processing

power and data availability, renewed interest in their

applicability to the domain of finance. Krauss et al. [4]

applied multilayer perceptrons (MLPs) to find patterns in

the daily returns of the S&P500 stock market index. Dixon

et al. [5] further demonstrated the effectiveness of neural

nets on intraday data, deploying MLPs to classify returns

on commodity and FX futures over discrete 5-min inter-

vals. Architectures comprised of 4 dense hidden layers

were sufficient to generate annualised Sharpe ratios in

excess of 2.0 on their peak performers. In each instance,

patterns were sought in the time series of returns rather

than in the price process itself.

Seminal findings by Lo et al. [6] employed instead the

visuals emerging from line charts of stock closing prices,

relying on kernel regression to smooth out the price process

and enable the detection of salient trading patterns. An

equally common visual representation of price history in

finance is the candlestick. Candlesticks encode the opening

price, closing price, maximum price and minimum price

over a discrete time interval, visually represented by a

vertical bar with lines extending on either end. Much as

with line charts, technical analysts believe that specific

sequences of candlesticks reliably foreshadow impending

price movements. A wide array of such patterns are com-

monly watched for [7], each with their own pictogram and

associated colourful name (‘inverted hammer’, ‘abandoned

baby’, etc).
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Though recurrent neural networks–and in particular

Long Short-Term Memory (LSTM) models [8]—have been

the most popular choice for deep learning on time series

data [9–11], promising results have begun to appear from

the application of convolutional neural networks to finan-

cial data. Neural networks have frequently been labelled as

black boxes, limiting their deployment in domains where

interpretability is sought. Convolutional neural networks

partially overcome this, by extracting locally inter-

pretable features in their early layers. Furthermore, recent

research suggests that these models bear the capacity to

generalise not merely across time but across assets as well,

identifying universal features of stock market behaviour

[12, 13].

The contributions of this paper are threefold: firstly, we

rigorously evaluate the practice of candlestick chartism,

and find little evidence to support it. The human-engi-

neered features prescribed by technical analysis produce

classifiers that barely outperform guesswork, unlike the

patterns identified through deep learning. Secondly, we

show that filters learned and tested on 22 years of S&P500

price data in a CNN architecture yield modest gains in

accuracy over both technical methods and machine learn-

ing alternatives, including MLPs unsupported by the fea-

ture extraction capabilities of a convolutional layer.

Thirdly, we demonstrate that considerable gains in fore-

casting capability are achievable through ensemble meth-

ods and thresholding based on model confidence.

This paper evaluates quantitatively the merits of can-

dlestick-driven technical analysis before proposing an

improved, data-driven approach to financial pattern

recognition. Formally, we reframe candlestick patterns as a

form of feature engineering intended by chartists to extract

salient features, facilitating the classification of future

returns with higher fidelity than the raw price process

would otherwise allow. After a brief review of neural

networks, we define the data used throughout the paper

(Sect. 2) and motivate the pursuit of new, better visual

heuristics for finance by assessing the predictiveness of

candlestick formations (Sect. 3). Feeding candlestick data

through a neural network involving separate filters for each

technical pattern, we classify next-day returns with the

filters implied by chartist doctrine (Sects. 4.1–4.2) and set

this cross-correlational approach as a baseline to improve

upon [14]. We then compare the model’s accuracy when

filters are not preset but instead learned by convolutional

neural networks (CNNs) during their training phase

(Sect. 4.3), and benchmark deep learning against alterna-

tive methods drawn from both traditional finance and

machine learning (Sect. 4.4). We enhance the accuracy of

CNNs through the addition of thresholding and ensembling

(Sect. 4.5), and finish with two practically minded exten-

sions: the backtested performance of the model (Sect. 4.6)

and the visual interpretation of the features extracted by the

CNN (Sect. 4.7).

2 Methodology overview

Over the last decade, neural networks have risen dramati-

cally in popularity, propelled by the success of deep

learning in a wide range of practical applications. For-

mally, neural networks map inputs to outputs through a

collection of nonlinear computation nodes, called neurons,

stacked into hidden layers. Inputs and outputs are con-

nected by potentially many such hidden layers, leading to

the so-called deep learning architectures. Neural networks

can be interpreted as an ultra-parametric extension of linear

regression models, wherein each neuron computes a

weighted linear combination of its inputs, applies a non-

linear transformation to the newfound value and forwards

its output to the next layer’s neurons.

2.1 Multilayer perceptrons

The benefit of nonlinear transformation is particularly

pronounced as architectures are extended in depth: without

nonlinearity, additional layers would not confer any

incremental value, as the linear combinations of linear

combinations would themselves just be linear combina-

tions with different weights. In other words, multiple hid-

den layers without nonlinear transformations would be

equivalent to a single hidden layer with appropriately

chosen weights. The inclusion of nonlinear transforma-

tions, termed activation functions, between the hidden

layers allows neural networks to learn complex functional

mappings. MLPs harness this potential by including mul-

tiple layers between input and output and allowing each

layer to possess many neurons (Fig. 1). The activation

functions employed are commonly the hyperbolic tangent

function tanhðoÞ, logistic function rðoÞ and rectified linear

unit ReLU(o).

Fig. 1 A multilayer perceptron with 2 hidden layers. Each neuron

within a layer computes a linear combination of its inputs followed by

a nonlinear transformation
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tanhðoÞ ¼ sinhðoÞ
coshðoÞ ¼

eo � e�o

eo þ e�o
ð1Þ

rðoÞ ¼ 1

1þ e�o
ð2Þ

ReLU ðoÞ ¼maxð0; oÞ ð3Þ

We adopt ReLu as our preferred activation function, a

common choice in neural network architectures given its

computational efficiency and performance [15].

2.2 Convolutional neural networks

Convolutional neural networks extend multilayer percep-

trons, by adding one or several additional layers at the

beginning of the architecture. These layers, termed con-

volutional layers, consist of a set of learned filters. These

filters are typically much smaller than the input, and

measure local similarity (calculated by sliding dot or

Hadamard product). The output of a convolutional layer is

a feature map, identifying regions where the input to the

layer was similar to the learned filter. In effect, convolution

functions as bespoke feature extractors for neural network

architectures, enabling in the process vastly superior model

performance (Fig. 2).

2.3 Definition of candlestick data

Both the financial time series data and the candlestick

technical filters used by chartists take the same form. Asset

price data for a discrete time interval is represented by four

features: the opening price (price at the start of the inter-

val), closing price (price at the end of the interval), high

price (maximum over the interval) and low price (mini-

mum over the interval). The candlestick visually encodes

this information (Fig. 3): the bar’s extremities denote the

open and close prices, and the lines protruding from the bar

(the candle’s ‘wicks’ or shadow) denote the extrema over

the interval. The colour of the bar determines the relative

ordering of the open and close prices: a white bar denotes a

positive return over the interval (close price[open price)

and a black or shaded bar denotes a negative return (close

price\ open price).

We can therefore summarise the candlestick represen-

tation of a financial time series of length n timesteps as a

4� n price signal matrix F capturing its four features.

Throughout this paper, we rely on daily market data, but

the methods can be extended to high-frequency pattern

recognition on limit order books—an active area for cur-

rent research [13].

2.4 Definitions of technical patterns

We include major candlestick patterns cited by practi-

tioners of technical analysis at three timescales: 1-day, 2-

day and 3-day patterns. The simple 1-day patterns include

the hammer (normal and inverted), hanging man, shooting

star, dragonfly doji, gravestone doji, and spinning tops

(bullish and bearish, where bullish implies a positive future

return and bearish implies a negative future return). Our 2-

day patterns cover the engulfing (bullish and bearish),

harami (bullish and bearish), piercing line, cloud cover,

tweezer bottom and tweezer top. Finally our 3-day patterns

cover some of the most cited cases in chartist practice: the

abandoned baby (bullish and bearish), morning star, eve-

ning star, three white soldiers, three black crows, three

inside up and three inside down. Figure 4 provides both the

visual template associated with each pattern and the future

price direction it is meant to presage. As before, we sum-

marise a technical pattern P of length m timesteps as a

4� m matrix TPm
, standardised for comparability to have

zero mean and unit variance.

Fig. 2 A convolutional neural network with 2 convolutional layers.

The red hashed outline contains the feature-extractive convolutional

layers, and the blue hashed outline is effectively a single-layer

perceptron. In this architecture, convolutional outputs over a local

area are reduced to a single value via subsampling or pooling, an
operation designed to improve the model’s memory footprint and

invariance to translations/rotations. Image from Nvidia (https://

developer.nvidia.com/discover/convolutional-neural-network)

Fig. 3 Candlestick representation of financial time series data
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2.5 Empirical data

Throughout our work, we use daily technical (i.e. open,

close, high and low price) data from the S&P500 stock

market index constituents for the period January 1994–

December 2015, corresponding to n = 2,439,184 entries of

financial data in the price signal F.1 This data set covers a

representative cross section of US companies across a wide

timeframe suitable for learning the patterns, if any, of both

expansionary and recessionary periods in the stock market.

3 Evaluation of current tools

As a preliminary motivation for the adoption of machine

learning for technical forecasts, we assess the merits of

candlestick chartism in finance. We run several diagnostics

to assess separately the informativeness and predictiveness

for each technical pattern.

3.1 Conditioning returns on the presence
of a pattern

The 4� m matrix representation TPm
for pattern P of length

m and equal-length, standardised rolling windows Fn of the

full price signal F at timestep n can be cross-correlated

together to generate a time series SP measuring the degree

of similarity between the price signal and the pattern. For a

given pattern P, at each timestep n:

SP;n ¼
�

TPm

kTPm
k ;

Fn

kFnk
;

�
ð4Þ

where h�; �i is the inner product of the two matrices and

k � k is the L2 norm.

For each pattern P, we produce a conditional distribu-

tion of next-day returns by extracting the top quantile (in

our study, decile and centile) of similarity scores SP.

3.2 Informativeness

For our purposes, we define a technical pattern to be in-

formative if its presence significantly alters the distribution

of next-day returns in a Kolmogorov–Smirnov two-sample

(K–S) test [16], comparing the unconditional distribution

of all next-day returns to the distribution conditioned on

having just witnessed the pattern. The K–S test is a non-

parametric test which can be used to compare similarity

between two empirical or analytical distributions. The two-

sample K–S test is one of the most useful and general

nonparametric methods, as it is sensitive to differences in

both location and shape of the empirical cumulative dis-

tribution functions of the two samples. As the test is non-

parametric, no assumptions are made regarding the nature

of the sample distributions. Denoting by fRP
n1
t¼1g the subset

of returns conditioned on matching pattern P and fRn2
t¼1g

the full set of unconditional returns, we compute their

1 We include 500 individual stocks from the S&P500 index as of 31

December 2015. Each stock’s daily open, close, high and low is

recorded over a period of up to 22 years, with each year including 252

business days on average.

Fig. 4 For each timescale (1-day, 2-day and 3-day), we specify 8 chartist patterns and the future direction they predict (‘bullish’ for positive

returns, ‘bearish’ for negative returns)
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empirical cumulative distribution functions F1ðzÞ and

F2ðzÞ. The K–S test evaluates the null hypothesis that the

distributions generating both samples have identical cdfs,

by computing the K–S statistic:

c ¼
�

n1n2
n1 þ n2

�1=2

sup
�1\z\1

jF1ðzÞ � F2ðzÞj ð5Þ

The limiting distribution of c provides percentile thresholds
above which we reject the null hypothesis. When this

occurs, we infer that conditioning on the pattern does

materially alter the future returns distribution.

3.3 Predictiveness

While these patterns may bear some information, it does

not follow that their information is actionable, or even

aligns with the expectations prescribed by technical anal-

ysis. Notched boxplots of both unconditional returns and

returns conditioned on each of the filters (Fig. 5) allow us

to gauge whether the pattern’s occurrence does in fact yield

significant returns in the intended direction.

A closer examination suggests that several of the 1-day

patterns are in fact relevant, but that the more elaborate

2-day and 3-day formations are not. Conditioning on 14 of

the 16 multi-day patterns produces no significant alteration

in the median of next-day returns distributions (Fig. 6):

only the ‘Bearish Engulfing’ and ‘Three Black Crows’

patterns produce a conditional distribution for which the

95% confidence interval of the median (denoted by the

notch) differs markedly from its unconditional counterpart.

3.4 Findings

We report the empirical results of the K–S goodness-of-fit

tests and top decile and centile (Tables 1, 2, respectively)

conditional distribution summary statistics, using daily

stock data from the S&P500. Though several of the pat-

terns do indeed bear information altering the distribution of

future returns, their occurrence is neither a reliable pre-

dictor of price movements (high standard deviation relative

to the mean) nor even, in many instances, an accurate

classifier of direction. Elaborate multi-day patterns sys-

tematically perform worse than their single-day counter-

parts. Surprisingly, 6 of the 8 single-day patterns do in fact

produce meaningful deviations from the unconditional

baseline, with the dragonfly and gravestone doji standing

out as significant outliers (- 25.81 bp2 and ? 22.41 bp,

respectively, when conditioning on the top centile of sim-

ilarity score, Table 2). But even in those instances, tech-

nical analysis forecasts incorrectly, as prices move in the

direction opposite to chartism’s predictions. McLean and

Pontiff [18] showed that predictor variables lose on aver-

age 58% of their associated return, post-publication. In a

similar vein, we hypothesise that these patterns may have

once been predictive on a historical data set, but that their

disclosure and subsequent overuse has long since negated

their value. Conceptually, the notion of using filters in

financial data to extract informative feature maps may bear

merit—but the chartist filter layer is demonstrably an

improper specification today.

4 Proposed improved approach

The approach of searching for informative intermediate

feature maps in classification problems has seen wide-

spread success in domains ranging from computer vision

[15] to acoustic signal processing [19]. Where technical

analysis uses filters that are arbitrarily pictographic in

nature, we turn instead to convolutional layers to extract

features from data. We evaluate the performance of passing

the raw data both with and without chartist filters, and

subsequently measure the incremental gain from learning

optimal feature maps by convolution. The findings are then

benchmarked against widely recognised approaches to time

series forecasting including autoregression, recurrent neu-

ral networks, nearest neighbour classifiers, support vector

machines (SVM) and random forests.

Fig. 5 Notched boxplots of the distributions of returns in basis points

(100th of a percent), conditional on observing each of the technical

patterns (similarity score SP in its top centile). Whiskers cover twice

the interquartile range. At a glance, none of the conditional

distribution medians diverge substantively from the unconditional

baseline of zero, and the distributions’ deviations dwarf their medians

by two orders of magnitude

2 A basis point (bp) corresponds to one hundredth of one percentage

point.
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In the experimental results that follow, we split our

S&P500 time series data into training and test sets corre-

sponding to single stock prices from 1994–2004 and

2005–2015, respectively.3 This specific train-test split of

the data includes both expansionary and recessionary

periods in each subset, to ensure the model is capable of

learning the financial patterns that may emerge in different

economic regimes.4

4.1 Multi-layer perceptron

To address issues of scale and stationarity, we process the

original 4� n price signal matrix F into a new 80� n price

signal matrix F* where each column is a standardised

encoding of 20 business days of price data. This encoding

provides 4 weeks of price history, a context or ‘image’

within which neural network filters can scan for the

occurrence of patterns and track their temporal evolution.

We pass F* through a multilayer perceptron (MLP)

involving fully connected hidden layers. Preliminary five-

fold cross-validation experiments with financial time series

determined the network topology required for the model to

Fig. 6 Close-up of boxplot notches for the distributions of returns in

basis points (100th of a percent), conditional on observing each of the

technical patterns (similarity score SP in its top centile). Absence of

overlap between the boxplot notches of a conditional distribution and

the unconditional distribution provides evidence at the 95% confi-

dence threshold that the medians of the 2 distributions differ [17].

Surprisingly, several single-day patterns do in fact correlate with

abnormal next-day returns. Almost all of the multi-day patterns

exhibit notches that overlap with the unconditional distribution’s,

implying that the distribution medians are not meaningfully changed

by conditioning. Only ‘Bearish Engulfing’ and ‘Three Black Crows’

seem to be significant—as harbingers of better times, despite their

names

Table 1 Summary statistics for the next-day return distributions

conditioned on matching technical patterns

PATTERN c l (bp) r (bp)

UNCONDITIONAL 4.26 229.40

HAMMER 11.17 � 10.20 214.20

INVERTED HAMMER 8.37 ? 9.83 216.49

HANGING MAN 9.84 � 11.67 220.59

SHOOTING STAR 10.90 ? 9.99 222.52

DRAGONFLY DOJI 10.65 � 11.37 217.57

GRAVESTONE DOJI 9.46 ? 10.53 220.37

BULLISH SPINNING TOP 4.97 � 0.42 209.17

BEARISH SPINNING TOP 5.22 � 1.47 213.24

BULLISH ENGULFING 2.78 ? 1.30 226.39

BEARISH ENGULFING 5.65 ? 0.83 228.06

BULLISH HARAMI 2.65 ? 4.11 224.22

BEARISH HARAMI 4.39 � 0.04 214.6

PIERCING LINE 2.28 ? 0.44 232.04

CLOUD COVER 2.56 � 0.72 220.12

TWEEZER BOTTOM 3.45 ? 3.26 230.10

TWEEZER TOP 2.78 ? 0.93 218.13

ABANDONED BABY- 4.03 � 4.24 224.60

ABANDONED BABY? 2.88 ?4.87 227.16

EVENING STAR 2.53 � 2.32 223.24

MORNING STAR 2.79 ? 4.86 228.15

THREE BLACK CROWS 14.28 ? 5.62 265.14

THREE WHITE SOLDIERS 12.97 � 7.98 208.90

THREE INSIDE DOWN 2.91 ? 0.45 231.62

THREE INSIDE UP 3.27 ? 0.71 220.71

A match on pattern P is deemed to have occurred when the cross-

correlational similarity score SP is in its top decile. K–S statistics c
above 1.95 are significant at the 0.001 level. Mean return l for each

pattern is expressed as a difference from the unconditional baseline.

The incremental mean returns are dwarfed by their standard deviation,

and do not even always move in the direction prescribed by chartism

3 Our classes are best be defined as ‘negative return’ and ‘strictly

positive return’. As zero return days occur (albeit infrequently) in

assets with low denomination, we address the issue of class imbalance

in two ways. Firstly, we add Gaussian noise with variance 10�6 to all

returns, evenly spreading the zero return days across both classes.

Secondly, we select the boundary value that separates our training set

into two equally balanced classes (? 0.0000005%) The resulting

training set is perfectly balanced, against a very mild positive skew in

the test set (51.1% strictly positive return days, 48.9% negative return

days).
4 The models of Sect. 4 were also tested on shorter, more recent

intervals (training on data from 2010–2012, testing on data from

2013–2015). While still supportive of our findings, the results were

less impressive—in part because deep learning models require

substantial amounts of data to perform.
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learn from its training data.5 Insufficient height (neurons

per hidden layer) and depth (number of hidden layers) led

to models incapable of learning their training data. We

settled on 2 fully connected layers of 64 neurons with

ReLU activation functions, followed by a softmax output

layer to classify positive and negative returns. Regulari-

sation was achieved via the inclusion of dropout [21] in the

fully connected layers of the network, limiting the model’s

propensity towards excessive co-adaptation across layers.

A heavily regularised (dropout ¼ 0:5) 2-layer MLP is

already able to identify some structure in its data (out-of-

sample accuracy of 50.6% after 100 epochs, Table 3).

From our experiments with alternative dropout rates, we

found that insufficient regularisation (dropout ¼ 0:3) led to

overfitted models with poor out-of-sample performance,

but that erring on the side of excessive regularisation

(dropout ¼ 0:7) was an acceptable choice, leading to

similar generalisation to our base case at the expense of

needing more epochs to converge.

4.2 Technically filtered MLP

Reframing technical patterns as pre-learned cross-correla-

tional filters, we consider for each pattern length m the 8

pattern matrices TPm
defined visually in Fig. 4. Each such

formation, of form 4� m, is stacked along the depth

dimension, producing a 4� m� 8 tensor T whose inner

product with standardised windows of the raw price signal

F yields a new 8� n input matrix FT ,

FT ¼
�
T ;F

�
: ð6Þ

This new input is the result of cross-correlating the raw

price signal F with the technical analysis filter tensor T, and

can be interpreted as the feature map generated by tech-

nical analysis. We now use FT as the input to the same

MLP as before and look for improvements in model fore-

casts. The results we find are consistent with Sect. 3: using

technical analysis for feature extraction hinders the clas-

sifier, slightly degrading model performance (out-of-

Table 2 Summary statistics for the next-day return distributions

conditioned on matching technical patterns more stringently

PATTERN c l (bp) r (bp)

Unconditional 4.26 229.40

HAMMER 5.13 � 15.80 223.04

INVERTED HAMMER 5.00 ? 13.75 211.62

HANGING MAN 3.71 � 14.92 222.06

SHOOTING STAR 4.78 ? 12.01 232.42

DRAGONFLY DOJI 14.73 � 25.81 219.99

GRAVESTONE DOJI 12.93 ? 22.41 223.57

BULLISH SPINNING TOP 2.64 � 0.72 214.70

BEARISH SPINNING TOP 1.67 ?0.94 213.30

BULLISH ENGULFING 1.61 � 0.28 236.50

BEARISH ENGULFING 4.16 ? 5.75 238.47

BULLISH HARAMI 1.07 ? 5.5 222.17

BEARISH HARAMI 1.51 � 0.96 219.43

PIERCING LINE 2.29 ?0.78 241.42

CLOUD COVER 1.06 � 0.75 218.24

TWEEZER BOTTOM 1.76 ?4.19 223.23

TWEEZER TOP 1.22 ? 2.97 221.93

ABANDONED BABY- 3.29 � 4.04 232.45

ABANDONED BABY? 1.27 ? 2.94 232.28

EVENING STAR 2.89 � 0.27 231.76

MORNING STAR 1.80 ? 2.59 231.89

THREE BLACK CROWS 6.85 ? 13.09 229.40

THREE WHITE SOLDIERS 6.30 � 11.77 203.26

THREE INSIDE DOWN 1.63 ? 2.72 233.12

THREE INSIDE UP 2.50 ? 0.13 220.75

A match on pattern P is deemed to have occurred when the cross-

correlational similarity score SP is in its top centile

Table 3 Accuracy (%) obtained after training a 2-layer MLP on

single stock data from the S&P500, using open-close-high-low price

data

EPOCHS IN SAMPLE OUT-OF-SAMPLE

1 50.3 50.3

5 50.7 50.4

10 51.4 50.5

50 52.2 50.6

100 52.5 50.6

Table 4 Accuracy (%) obtained after training a technically filtered

MLP (filter length m ¼ 1) on single stock data from the S&P500,

using open-close-high-low price data

EPOCHS IN SAMPLE OUT-OF-SAMPLE

1 50.0 50.2

5 50.2 49.8

10 50.2 49.7

50 50.4 49.9

100 50.5 49.8

Multi-day filters produced similarly lacklustre results. The technical

analysis filters produce feature maps with less discernible structure

than the original input

5 For optimisation, we employed Adam, an extension of stochastic

gradient descent that dynamically adapts per-parameter learning rates

to deal with sparse and noisy data sets [20].
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sample accuracy of 49.8% after 100 epochs using the 1-day

patterns, Table 4).

4.3 Convolutional neural network

We now deepen the neural network by adding a single

convolutional layer with 8 filters (so chosen to match the

number of technical filters at each timescale, per Fig. 4) to

our earlier MLP (architecture detailed in Table 5). Separate

experiments are run for convolutional filters of size 4, 8

and 12, corresponding to scanning for 1-day, 2-day and

3-day patterns. Their performance is reported in Table 6.

The CNN finds much greater structure in its training data

than the MLP could, and generalises better. Accounting for

the size of the test set (n = 1,332,395), the leap from the

MLP’s out-of-sample accuracy of 50.6% to the 1-day

CNN’s out-of-sample accuracy of 51.3% is considerable.

4.4 Model evaluation

To investigate whether the predictive performance of the

neural network classifiers is not merely considerable but

statistically significant, we derive the area under the curve

(AUC) of each model’s receiver operating characteristic

curve (ROC), and exploit an equivalence between the AUC

and Mann–Whitney–Wilcoxon test statistic U [22]:

AUC ¼ U

nPnN
ð7Þ

where nP and nN are the number of positive and negative

returns in the test set, respectively. In our binary classifi-

cation setting, the Mann–Whitney–Wilcoxon test evaluates

the null hypothesis that a randomly selected value from one

sample (e.g. the subset of test data classified as positive

next-day returns) is equally likely to be less than or greater

than a randomly selected value from the complement

sample (the remaining test data, classified as negative next-

day returns). Informally, we are testing the null hypothesis

that our models have classified at random. The test statistic

U is approximately Gaussian for our sample size, so we

compute each model’s standardised Z-score and look for

extreme values that would violate this null hypothesis.

Z ¼ U � lU
rU

ð8Þ

where:

lU ¼ nPnN
2

ð9Þ

and

rU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nPnNðnP þ nN þ 1Þ

12

r
ð10Þ

We benchmark our CNNs against traditional linear models

popular in finance (AR(1) and AR(5) models), a buy-and-

hold strategy and a range of machine learning alternatives

detailed below.

4.4.1 Recurrent neural networks (RNN)

Deep learning for time series analysis has typically relied

on recurrent architectures capable of learning temporal

relations in the data. Long Short-Term Memory (LSTM)

networks have achieved prominence for their ability to

memorise patterns across vast spans of time by addressing

the vanishing gradient problem. A thorough RNN archi-

tecture search [23] identified a small, but persistent gap in

performance between LSTMs and the recently introduced

Table 5 Details of the

architecture for a CNN scanning

patterns of length m

# LAYER UNITS ACTIVATION FUNCTION DROPOUT FILTER SHAPE OUTGOING DIMENSIONS

1 INPUT – – – – (INPUT) [4� 20]

2 CONVOLUTIONAL 8 RELU 0.5 [4� m] [8� 20]

3 FC 64 RELU 0.5 – [64]

4 FC 64 RELU 0.5 – [64]

5 FC 2 SOFTMAX – – (OUTPUT, 2 CLASSES) [2]

The number of filters in the convolution layer was deliberately kept low (8), and their dimensions (4� m)
match the technical patterns used in Sect. 4.2, to enable like-for-like comparability with the technical filter

approach

Table 6 Accuracy (%) obtained In-Sample (IS) and Out-of-Sample

(OoS) after training a deep neural network with a single convolutional

layer learning 1-day, 2-day and 3-day patterns

FILTER LENGTH 1-DAY 2-DAY 3-DAY

EPOCHS IS OOS IS OOS IS OOS

1 50.3 50.4 50.2 50.3 50.1 50.2

5 50.6 50.3 50.7 50.4 50.5 50.3

10 50.9 50.7 51.0 50.7 51.1 50.6

50 51.4 51.1 51.5 50.9 51.4 51.0

100 51.7 51.3 51.8 51.2 51.7 51.2
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Gated Recurrent Unit [24] on a range of synthetic and real-

world data sets. Our benchmark RNNs involve a prelimi-

nary recurrent layer (LSTM and GRU, in separate experi-

ments) of 8 neurons followed by 2 dense layers of 64

neurons with dropout, comparable in architectural com-

plexity to the CNN models of Sect. 4.3.

4.4.2 k-Nearest Neighbours (k-NN)

We evaluate a range of nearest neighbour classifiers,

labelling each day of the test set with the most frequently

observed class label (positive or negative next-day return)

in the k training points that were closest in Euclidean space.

4.4.3 Support vector machines (SVM)

SVMs have been applied to financial time series forecast-

ing in prior literature, and achieved moderate success when

the input features were not raw price data but hand-crafted

arithmetic derivations like Moving Averages and MACD

[25]. We report SVM performance under different kernel

assumptions (linear and RBF), where the model hyperpa-

rameters (regularisation parameter C to penalise margin

violations, RBF kernel coefficient c to control sensitivity)

were selected by cross-validation on a subset of the training

data.

In their study of European financial markets, Ballings

et al. [26] evaluated the classification accuracy of ensemble

methods against single classifiers. Their empirical work

highlighted the effectiveness of random forests in classi-

fying stock price movements and motivates their inclusion

in our list of benchmarks, under varying assumptions for

the number of trees hyperparameter n.

4.4.4 Benchmark findings

Table 7 provides the AUC, Z-score and significance of

each model, where significance measures the area of the

distribution below Z. We disregard significance for

Table 7 Benchmark

performance across a range of

models trained on S&P500

technical data for January–

December 1994 and tested on

January 2005–December 2015

MODEL ACC PREC REC F1 AUC Z SIGNIFICANCE

MLP 50.6 49.7 49.6 49.6 51.1 23.766 \0:0001

TECHNICAL NN 49.8 49.1 49.3 49.2 49.9 � 1:878 –

1-DAY CNN 51.3 50.9 51.2 51.0 51.8 36.546 \ 0:0001

2-DAY CNN 51.2 51.0 51.0 51.0 51.5 31.291 \ 0:0001

3-DAY CNN 51.2 50.8 51.0 50.9 51.5 31.423 \ 0:0001

RNN-LSTM 50.8 50.6 51.0 50.8 51.0 19.616 \ 0:0001

RNN-GRU 50.9 50.3 50.8 50.6 51.2 24.880 \ 0:0001

1-NN 50.0 50.0 50.0 50.0 50.1 1.087 0.1386

10-NN 49.9 49.9 49.9 49.9 49.8 � 3.317 –

100-NN 49.7 49.6 49.9 49.8 49.6 � 7.651 –

LINEAR SVM 49.9 49.9 49.8 49.8 49.8 � 0.962 –

RBF SVM 49.9 49.8 49.8 49.8 49.8 � 2.416 –

10-RF 50.0 49.9 49.8 49.9 50.0 0.256 0.3991

50-RF 49.8 49.9 49.8 49.8 49.7 � 5.986 –

100-RF 49.8 49.8 49.7 49.7 49.6 � 7.628 –

AR(1) 49.9 50.1 49.9 50.0 49.9 � 2.129 –

AR(5) 49.8 50.1 49.8 49.9 49.8 � 3.323 –

BUY-AND-HOLD 51.1 26.2 51.1 34.7 51.2 23.701 \ 0:0001

Precision and recall are computed as weighted averages across both classes. Significance refers to the

p value of the Mann–Whitney–Wilcoxon test for each model

Fig. 7 Model accuracy as a function of softmax threshold a. For each
model, we indicate by a cross the threshold level that retains the 1%

of test data for which the model’s output probabilities imply the

highest confidence
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negative Z-scores (as is the case for the technically filtered

neural network) as they imply classifiers that performed

(significantly) worse than random chance. The results

underscore the scale of the challenge for pattern recogni-

tion in finance: deep learning achieved the best results by a

significant margin, and most alternative methods yielded

accuracies that were not statistically distinguishable from

guesswork.6 Convolution also outperforms recurrence in

Table 8 Performance

comparison between MLP,

CNN and TCNN models trained

on S&P500 technical data for

January–December 1994 and

tested on January 2005–

December 2015. Precision and

recall are computed as weighted

averages across both classes

MODEL ACC PREC REC F1 AUC Z SIGNIFICANCE

MLP 50.6 49.7 49.6 49.6 51.1 23.766 \0:0001

TECHNICAL NN 49.8 49.1 49.3 49.2 49.9 �1:878 -

1-DAY CNN 51.3 50.9 51.2 51.0 51.8 36.546 \0:0001

2-DAY CNN 51.2 51.0 51.0 51.0 51.5 31.291 \0:0001

3-DAY CNN 51.2 50.8 51.0 50.9 51.5 31.423 \0:0001

CNN ENSEMBLE 51.2 51.0 51.2 51.1 51.7 35.628 \0:0001

1-DAY TCNN 56.7 56.5 56.6 56.5 57.2 14.533 \0:0001

2-DAY TCNN 56.3 56.1 56.7 56.4 56.5 13.017 \0:0001

3-DAY TCNN 55.9 57.1 55.9 56.5 56.2 12.493 \0:0001

TCNN ENSEMBLE 57.5 56.9 57.0 56.9 57.5 15.301 \0:0001

Significance refers to the p value of the Mann–Whitney–Wilcoxon test for each model

Fig. 8 Activity level of the various TCNN models through a 11-year

period. As we retain the top centile from the 1,408,679 test points,

each model is generating 14,087 trading decisions over 2868 business

days, or on average 4.91 trades per day. Though the model is active

throughout the window, discernible spikes in activity occur around

major events, most notably the US debt ceiling crisis in August 2011

6 The best alternative was also the simplest: buy-and-hold outper-

formed many systematic alternatives. This is in part a reflection of the

test window (2005–2015) and the upwards bias of equity markets.
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our experiments, suggesting that a 20-day window may be

sufficient to capture temporal dependencies in markets.

4.5 Methodological extensions to the ConvNet
framework

Learning neural network filter specifications via convolu-

tion yields a significant boost to predictive prowess over

the baseline model of Sect. 4.1 and technically filtered

variant of Sect. 4.2. The CNNs’ outperformance of

autoregressive and machine learning techniques further

confirms the aptitude of convolutional feature extraction on

technical data, and spurs us to target domain-specific

enhancements to our deep learning models.

4.5.1 Confidence thresholding

In contrast to mission-critical application domains like

autonomous navigation, finance does not require an algo-

rithmic agent to be accurate at all times. It is accept-

able (and factoring in friction costs, preferable) for a model

to be sparse in making decisions, only generating ‘high

conviction’ calls, if this results in greater accuracy.

Furthermore, and unlike several other common classifiers

in machine learning like SVMs or Nearest Neighbours, the

output values in the final layer of the CNN can be assigned

a probabilistic interpretation, enabling a filtered, nuanced

approach to classification. We replicate this by adding a

confidence threshold a to the classification output of the

final softmax layer of Table 5: test points where neither

class is assigned a probability greater than a are deemed

uncertain, and disregarded by the thresholded convolu-

tional neural network (TCNN). For each model (1-, 2- and

3-day TCNN), the confidence threshold a is tuned through

fivefold cross-validation. Accuracy as a function of confi-

dence threshold a is presented in Fig. 7, and demonstrates

in all 3 cases that a substantial increase in model prowess

can be achieved by thresholding the softmax output to only

consider class assignments with high certainty. We also

highlight the a threshold which retains the top centile of

test outputs, corresponding to the model’s most confident

assignments. These vary by model (54.2%, 54.1% and

55.3% for the 1-, 2- and 3-day TCNNs, respectively), but in

each case form a reliable heuristic for balancing model

confidence and sample size. A notable analogue to the

study of technical analysis in Sect. 3: models searching for

more elaborate multi-day patterns tend to underperform the

single-day TCNN.

4.5.2 Ensembling TCNNs

An effective technique in image processing involves

homogeneous ensembling of multiple copies of the same

CNN architecture, averaging across the class assignments

of the constituent models [15, 27]. Combining this proba-

bilistic interpretation of the softmax layer with model

averaging, we construct a heterogeneous ensemble out of

our 1-day, 2-day and 3-day TCNNs. The ensemble benefits

from learning patterns manifesting at different timescales,

and achieves a higher accuracy (57.5%) on its top-confi-

dence centile than any of the individual learners (56.7%,

56.3% and 55.9% for the 1-day, 2-day and 3-day TCNN,

respectively, Fig. 7).

Performance metrics of both the TCNNs and TCNN

ensemble are provided in Table 8. While the Z-scores of

Fig. 9 Cumulative profit (as a multiple of starting wealth, per

Table 7) generated by the various TCNN models between January

2005 and December 2015, in the absence of friction costs. The models

are steadily profitable, with occasional spikes related to major events.

Drawdowns are infrequent and of limited scale

Table 9 Compound Annual

Growth Rate (CAGR, in %) and

Sharpe ratio of the TCNN

models under various

assumptions for the cost of

trading

FRICTION COST MODEL NO FRICTION 0.10% PER TRANSACTION 0.25% PER TRANSACTION

PROFIT CAGR SHARPE PROFIT CAGR SHARPE PROFIT CAGR SHARPE

1-DAY TCNN 46.9 42.15 8.04 32.8 37.72 7.16 11.7 25.98 4.75

2-DAY TCNN 36.9 39.16 7.81 22.8 33.41 6.61 1.7 9.52 1.65

3-DAY TCNN 44.6 41.50 5.95 30.5 36.84 5.59 9.4 23.71 3.49

TCNN ENSEMBLE 48.2 42.50 6.57 34.1 38.20 5.86 13.0 27.13 4.08

The TCNN ensemble and 1-day TCNN are optimal choices (denoted in bold) for return and risk-adjusted

return maximisation, respectively
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the TCNN models are lower than those of unthresholded

CNN models, this is primarily the consequence of sample

size on statistical significance tests—AUC improves

markedly under thresholding.

4.6 Practical implementation

Through thresholding, we enforce sparsity in the model’s

decision-making. In a real-world deployment, infrequent

activity keeps friction costs low—a desirable outcome for

trading algorithms. We track the activity level of the var-

ious models over time, as well as the cumulative profit they

would generate over the 11-year test window. We assume

the model fully captures the 1-day return associated with

the top centile of its thresholded class assignments, addi-

tively for positive class predictions and subtractively for

negative class predictions.

The models are heavily skewed towards buying activity,

with accurately timed spikes centred around major world

events (Fig. 8). The 2 largest single-day buy orders

occurred on 9 August 2011 (328 buys), at the tail end of the

US debt ceiling crisis which caused the S&P500 to drop

20% in 2 weeks, and on 24 August 2015 (241 buys), fol-

lowing a flash crash in which US markets erased 12% of

their value before recovering. The largest sell volume

occurred on 22 September 2008 (31 sells), a full week after

the collapse of Lehman Brothers. This coincides with

market-wide relief over Nomura’s decision to buy Leh-

man’s operations—and presented the last opportunity to

sell before the nosedive of the Great Financial Crisis in late

2008. Despite having no information about world news in

their technical data set, the models were capable of both

inferring crucial moments in history, and timing trading

decisions around them.

Figure 9 presents the model’s profitability over time to

highlight the relative steadiness of convolution’s perfor-

mance in identifying stock market patterns, when the

decisions are generated by TCNNs and their ensemble.

Table 9 translates this performance into compounded

annual returns and Sharpe ratios under various assumptions

for friction. Even in the absence of tight execution (average

trading cost of 0.25% from the mid-market price), the

models remain highly profitable. This sensitivity analysis

does nevertheless highlight the importance of good exe-

cution in any real-world deployment of algorithmic trad-

ing: the TCNN ensemble can only just break even if the

per-transaction cost rises to 0.35%.

4.7 Interpretable feature extraction

The convolutional filters learned by the network provide a

basis for feature extraction. In particular, the convolutional

layer’s filters define patches whose cross-correlation with

the original input data was informative in minimising both

in-sample and out-of-sample categorical cross-entropy. We

produce a mosaic of these filters as Hinton diagrams7

(Fig. 10) and visualise them in the language of technical

analysis as candlestick patterns (Figs. 11 and 12), cross-

correlational templates whose occurrence is informative for

Fig. 10 Weight-space visualisation as Hinton diagrams for the 24 cross-correlational filters learned from the first layer of each CNN (8 per

constituent model)

Fig. 11 Hinton diagram of the sixth cross-correlational filter learned

in the first layer of the 3-day CNN. The relative values of the

standardised open, close, low and high for each column in the filter

define, in a chartist sense, a specific candlestick sequence (or patch

thereof, in instances where the filter’s open or close is incompatible

with the high-low range) which the neural network extracted as

informative for time series forecasting

7 Hinton diagrams provide a means of visualising numerical values in

a matrix. The area occupied by a square is proportional to the value’s

magnitude, and the sign of the matrix entry is colour-coded (white for

positive values, black for negative values).
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financial time series forecasting. Unlike technical patterns,

however, these templates have no set meaning: the purpose

of individual neurons in a convolutional layer is not readily

interpretable.

5 Conclusion

Our results present, to our knowledge, the first rigorous

statistical evaluation of candlestick patterns in time series

analysis, using normalised signal cross-correlation to

identify pattern matches. We find little evidence of pre-

dictive prowess in any of the standard chartist pictograms,

and suspect that the enduring quality of such practices

owes much to their subjective and hitherto unverified nat-

ure. Nevertheless, it is not inconceivable that price history

might contain predictive information, and much of quan-

titative finance practice relies on elements of technical

pattern recognition (e.g. momentum-tracking) for its suc-

cess. Through a deep learning lens, technical analysis is

merely an arbitrary and incorrect specification of the fea-

ture-extractive early layers of a neural network. Within

relatively shallow architectures, learning more effective

filters from data improves accuracy significantly while also

providing an interpretable replacement for chartism’s

visual aids. The simplicity of our architecture showcases

the potential for deep learning to supplant technical anal-

ysis: we do not expect shallow convolution to be optimal.

In the context of computer vision, accuracy improved

significantly through the expansion of model depth.8 We

hypothesise that a thorough neural architecture search will

yield similar incremental gains in our space. Hybrid neural

architectures, including recurrent layers capable of learning

long-term dependencies between the patterns identified by

convolution, may further enhance the potential for deep

learning in finance. Thresholding and deep ensembling of

such models would form a robust framework for systematic

decision-making in financial markets.
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