Skip to main content
Log in

Design of backtracking search heuristics for parameter estimation of power signals

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This study presents a novel implementation of evolutionary heuristics through backtracking search optimization algorithm (BSA) for accurate, efficient and robust parameter estimation of power signal models. The mathematical formulation of fitness function is accomplished by exploiting the approximation theory in mean squared errors between actual and estimated responses, as well as, true and approximated decision variables. Variants of BSA-based meta-heuristics are applied for parameter estimation problem of power signals for identification of amplitude, frequency and phase parameters for different scenarios of noise variation. Analysis of performance evaluation for BSAs is conducted through exhaustive statistical observations in terms of mean weight deviation, root mean square error and Thiel inequality coefficient-based assessment metrics, as well as, ANOVA tests for statistical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Van Cutsem T, Vournas C (2007) Voltage stability of electric power systems. Springer, Berlin

    Google Scholar 

  2. Dugan RC, McGranaghan MF, Beaty HW, Santoso S (1996) Electrical power systems quality, vol 2. Mcgraw-Hill, New York

    Google Scholar 

  3. Phan AT, Wira P, Hermann G (2018) A dedicated state space for power system modeling and frequency and unbalance estimation. Evol Syst 9(1):57–69

    Google Scholar 

  4. Acha E, Madrigal M (2001) Power systems harmonics. Wiley, New York

    Google Scholar 

  5. Xu L, Ding F (2018) Iterative parameter estimation for signal models based on measured data. Circuits Syst Signal Process 37:1–24

    MathSciNet  MATH  Google Scholar 

  6. Xu L, Xiong W, Alsaedi A, Hayat T (2018) Hierarchical parameter estimation for the frequency response based on the dynamical window data. Int J Control Autom Syst 16(4):1756–1764

    Google Scholar 

  7. Li H, Zhou M, Wu R, Zhang Z, Zheng J (2018) Parameter estimation of air maneuvering target for multi-antenna system via reconstructing time samples and signal. Multidimens Syst Signal Process 29(2):621–641

    MathSciNet  MATH  Google Scholar 

  8. Cao Y, Liu Z (2010) Signal frequency and parameter estimation for power systems using the hierarchical identification principle. Math Comput Model 52(5–6):854–861

    MathSciNet  MATH  Google Scholar 

  9. Qian H, Zhao R, Chen T (2007) Interharmonics analysis based on interpolating windowed FFT algorithm. IEEE Trans Power Deliv 22(2):1064–1069

    Google Scholar 

  10. Zhang Q, Liu H, Chen H, Li Q, Zhang Z (2008) A precise and adaptive algorithm for interharmonics measurement based on iterative DFT. IEEE Trans Power Deliv 23(4):1728–1735

    Google Scholar 

  11. Zubair S, Chaudhary NI, Khan ZA, Wang W (2018) Momentum fractional LMS for power signal parameter estimation. Signal Process 142:441–449

    Google Scholar 

  12. Chaudhary NI et al (2017) A new computing approach for power signal modeling using fractional adaptive algorithms. ISA Trans 68:189–202

    Google Scholar 

  13. Chaudhary NI et al (2013) Identification of input nonlinear control autoregressive systems using fractional signal processing approach. Sci World J 2013:467276. https://doi.org/10.1155/2013/467276

    Article  Google Scholar 

  14. Wan L, Ding F (2019) Decomposition-and gradient-based iterative identification algorithms for multivariable systems using the multi-innovation theory. Circuits Syst Signal Process 38:1–21

    Google Scholar 

  15. Huang C, Liu L, Yuen C (2018) Asymptotically optimal estimation algorithm for the sparse signal with arbitrary distributions. IEEE Trans Veh Technol 67(10):10070–10075

    Google Scholar 

  16. Xia H, Ji Y, Xu L, Hayat T (2019) Maximum likelihood-based recursive least-squares algorithm for multivariable systems with colored noises using the decomposition technique. Circuits Syst Signal Process 38:1–19

    Google Scholar 

  17. Shuai Z, Zhang J, Tang L, Teng Z, Wen H (2018) Frequency shifting and filtering algorithm for power system harmonic estimation. IEEE Trans Ind Inform 15:1554–1565

    Google Scholar 

  18. Liu S, Ding F, Xu L, Hayat T (2019) Hierarchical principle-based iterative parameter estimation algorithm for dual-frequency signals. Circuits Syst Signal Process 38:1–18

    Google Scholar 

  19. Hu B, Gharavi H (2018) A fast recursive algorithm for spectrum tracking in power grid systems. IEEE Trans Smart Grid 10:2882–2891

    Google Scholar 

  20. Hu Y, Zhou Q, Yu H, Zhou Z, Ding F (2018) Two-stage generalized projection identification algorithms for stochastic systems. Circuits Syst Signal Process 38:1–17

    Google Scholar 

  21. El Maani R, Radi B, El Hami A (2019) Multiobjective backtracking search algorithm: application to FSI. Struct Multidiscip Optim 59:1–21

    MathSciNet  Google Scholar 

  22. Mallick S, Kar R, Mandal D, Ghoshal SP (2016) CMOS analogue amplifier circuits optimisation using hybrid backtracking search algorithm with differential evolution. J Exp Theor Artif Intell 28(4):719–749

    Google Scholar 

  23. Nazri NN, Malik NN, Idoumghar L, Latiff NM, Ali S (2018) Backtracking search optimization for collaborative beamforming in wireless sensor networks. Telkomnika 16(4):1801–1808

    Google Scholar 

  24. Askarzadeh A, dos Santos Coelho L (2014) A backtracking search algorithm combined with Burger’s chaotic map for parameter estimation of PEMFC electrochemical model. Int J Hydrog Energy 39(21):11165–11174

    Google Scholar 

  25. Yang H, Yu J, Qiu Y, Li Q, Chen W (2018) A coordinated optimization method considering time-delay effect of islanded photovoltaic microgrid based on modified backtracking search algorithm. J Renew Sustain Energy 10(2):023503

    Google Scholar 

  26. Zhou J, Zhang C, Peng T, Xu Y (2018) Parameter identification of pump turbine governing system using an improved backtracking search algorithm. Energies 11(7):1668

    Google Scholar 

  27. Yan S, Zhou J, Zheng Y, Li C (2018) An improved hybrid backtracking search algorithm based T–S fuzzy model and its implementation to hydroelectric generating units. Neurocomputing 275:2066–2079

    Google Scholar 

  28. Modiri-Delshad M, Kaboli SHA, Taslimi-Renani E, Rahim NA (2016) Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options. Energy 116:637–649

    Google Scholar 

  29. Hannan MA, Lipu MSH, Hussain A, Saad MH, Ayob A (2018) Neural network approach for estimating state of charge of lithium-ion battery using backtracking search algorithm. IEEE Access 6:10069–10079

    Google Scholar 

  30. Khan WU et al (2018) Backtracking search integrated with sequential quadratic programming for nonlinear active noise control systems. Appl Soft Comput 73:666–683

    Google Scholar 

  31. Agarwal SK, Shah S, Kumar R (2015) Classification of mental tasks from EEG data using backtracking search optimization based neural classifier. Neurocomputing 166:397–403

    Google Scholar 

  32. bin Mohd Zain MZ, Kanesan J, Kendall G, Chuah JH (2018) Optimization of fed-batch fermentation processes using the backtracking search algorithm. Expert Syst Appl 91:286–297

    Google Scholar 

  33. Lin J (2019) Backtracking search based hyper-heuristic for the flexible job-shop scheduling problem with fuzzy processing time. Eng Appl Artif Intell 77:186–196

    Google Scholar 

  34. Bian J, Xing J, Liu J, Li Z, Li H (2016) An adaptive and computationally efficient algorithm for parameters estimation of superimposed exponential signals with observations missing randomly. Digit Signal Process 48:148–162

    MathSciNet  Google Scholar 

  35. Li X, Ding F (2013) Signal modeling using the gradient search. Appl Math Lett 26(8):807–813

    MathSciNet  MATH  Google Scholar 

  36. Mehmood A, Chaudhary NI, Zameer A et al (2020) Novel computing paradigms for parameter estimation in power signal models. Neural Comput Appl 32:6253–6282

    Article  Google Scholar 

  37. Zhou L, Li X, Xu H, Zhu P (2016) Multi-innovation stochastic gradient method for harmonic modelling of power signals. IET Signal Process 10(7):737–742

    Google Scholar 

  38. Pan J, Yang X, Cai H, Mu B (2016) Image noise smoothing using a modified Kalman filter. Neurocomputing 173:1625–1629

    Google Scholar 

  39. Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219(15):8121–8144

    MathSciNet  MATH  Google Scholar 

  40. Chatzipavlis A, Tsekouras GE, Trygonis V, Velegrakis AF, Tsimikas J, Rigos A, Hasiotis T, Salmas C (2019) Modeling beach realignment using a neuro-fuzzy network optimized by a novel backtracking search algorithm. Neural Comput Appl 31(6):1747–1763

    Google Scholar 

  41. Wang H, Hu Z, Sun Y, Su Q, Xia X (2019) A novel modified BSA inspired by species evolution rule and simulated annealing principle for constrained engineering optimization problems. Neural Comput Appl 31(8):4157–4184

    Google Scholar 

  42. Mehmood A et al (2019) Backtracking search optimization heuristics for nonlinear Hammerstein controlled auto regressive auto regressive systems. ISA Trans 91:99–113

    Google Scholar 

  43. Bhattacharjee K (2018) Economic dispatch problems using backtracking search optimization. Int J Energy Optim Eng (IJEOE) 7(2):39–60

    Google Scholar 

  44. Zaman F et al (2019) Backtracking search optimization paradigm for pattern correction of faulty antenna array in wireless mobile communications. Wirel Commun Mob Comput 2019:9046409. https://doi.org/10.1155/2019/9046409

    Article  Google Scholar 

  45. Raja MAZ, Akhtar R, Chaudhary NI, Khan WU, Zhiyu Z, Jamil A, Zaman F (2020) Design of backtracking search optimization paradigm for joint amplitude-angle measurement of sources lying in fraunhofer zone. Measurement 149:106977

    Google Scholar 

  46. Yu K, Liang JJ, Qu BY, Cheng Z, Wang H (2018) Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models. Appl Energy 226:408–422

    Google Scholar 

  47. Mehmood A, Zameer A, Chaudhary NI, Raja MAZ (2019) Backtracking search heuristics for identification of electrical muscle stimulation models using Hammerstein structure. Appl Soft Comput 24:105705

    Google Scholar 

  48. Kayri I, Gencoglu MT (2019) Predicting power production from a photovoltaic panel through artificial neural networks using atmospheric indicators. Neural Comput Appl 31(8):3573–3586

    Google Scholar 

  49. El-Sattar SA, Kamel S, El Sehiemy RA et al (2019) Single- and multi-objective optimal power flow frameworks using Jaya optimization technique. Neural Comput Appl 31:8787–8806. https://doi.org/10.1007/s00521-019-04194-w

    Article  Google Scholar 

  50. Mohamed MA, Diab AAZ, Rezk H et al (2019) A novel adaptive model predictive controller for load frequency control of power systems integrated with DFIG wind turbines. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04205-w

    Article  Google Scholar 

  51. Mishra SP, Dash PK (2019) Short-term prediction of wind power using a hybrid pseudo-inverse Legendre neural network and adaptive firefly algorithm. Neural Comput Appl 31(7):2243–2268

    Google Scholar 

  52. Wang T, He X, Deng T (2019) Neural networks for power management optimal strategy in hybrid microgrid. Neural Comput Appl 31(7):2635–2647

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammara Mehmood.

Ethics declarations

Conflict of interest

All the authors of the manuscript declare that there is no potential conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, A., Shi, P., Raja, M.A.Z. et al. Design of backtracking search heuristics for parameter estimation of power signals. Neural Comput & Applic 33, 1479–1496 (2021). https://doi.org/10.1007/s00521-020-05029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05029-9

Keywords

Navigation