
ORIGINAL ARTICLE

Sparse regressions and particle swarm optimization in training high-
order Takagi–Sugeno fuzzy systems

Krzysztof Wiktorowicz1 • Tomasz Krzeszowski1 • Krzysztof Przednowek2

Received: 13 November 2019 / Accepted: 16 June 2020 / Published online: 8 July 2020
� The Author(s) 2020, corrected publication 2020

Abstract
This paper proposes a method for training Takagi–Sugeno fuzzy systems using sparse regressions and particle swarm

optimization. The fuzzy system is considered with Gaussian fuzzy sets in the antecedents and high-order polynomials in the

consequents of the inference rules. The proposed method can be applied in two variants: without or with particle swarm

optimization. In the first variant, ordinary least squares, ridge regression, or sparse regressions (forward selection, least

angle regression, least absolute shrinkage and selection operator, and elastic net regression) determine the polynomials in

the fuzzy system in which the fuzzy sets are known. In the second variant, we have a hybrid method in which particle

swarm optimization determines the fuzzy sets, while ordinary least squares, ridge regression, or sparse regressions

determine the polynomials. The first variant is simpler to implement but less accurate, the second variant is more complex,

but gives better results. A new quality criterion is proposed in which the goal is to make the validation error and the model

density as small as possible. Experiments showed that: (a) the use of sparse regression and/or particle swarm optimization

can reduce the validation error and (b) the use of sparse regression may simplify the model by zeroing some of the

coefficients.

Keywords Fuzzy systems � Least squares approximation � Sparse regression � Particle swarm optimization

1 Introduction

Fuzzy logic systems (or shortly, fuzzy systems), like other

universal approximators, are capable of approximating any

nonlinear function (mapping) with any degree of accuracy.

Fuzzy systems offer a linguistic way of drawing conclusions

because they are based on fuzzy IF-THEN rules. Calculation

of the system outputs can be carried out in various ways. The

literature mainly considers systems implemented with the

use of Mamdani [22] and Takagi–Sugeno (T–S) [33] fuzzy

inference. In a Mamdani system, the output of each rule is a

fuzzy set, while in a T–S system, the output is a function of

input variables. A T–S system is more computationally

efficient since the defuzzification process is based on a

weighted average rather than on a center of gravity.

Training fuzzy systems involve the selection of the

number of rules (structure identification) and the determi-

nation of the parameters of the system. The first task is

solved mainly by means of clustering methods [2, 26, 29],

while the second one uses various optimization methods

such as regressions [10, 35, 36], evolutionary algorithms

[4, 6], particle swarm optimization [12, 15, 21, 26], and

others [13, 43]. These methods are usually used in

searching for the parameters for the antecedents and con-

sequents of the fuzzy inference rules.

The main contributions of this paper are the use of

sparse regressions in training high-order Takagi–Sugeno

fuzzy systems and the proposition of a quality criterion that

expresses a compromise between the accuracy of the model

The original version of this article was revised: An error in

equation (39) in the pdf file of the article has been corrected.

& Krzysztof Wiktorowicz

kwiktor@prz.edu.pl

Tomasz Krzeszowski

tkrzeszo@prz.edu.pl

Krzysztof Przednowek

krzprz@ur.edu.pl

1 Faculty of Electrical and Computer Engineering, Rzeszow

University of Technology, al. Powstancow Warszawy 12,

35-959 Rzeszow, Poland

2 College of Medical Sciences, Institute of Physical Culture

Studies, University of Rzeszow, ul. Towarnickiego 3,

35-010 Rzeszow, Poland

123

Neural Computing and Applications (2021) 33:2705–2717
https://doi.org/10.1007/s00521-020-05133-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-8711-1659
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05133-w&domain=pdf
https://doi.org/10.1007/s00521-020-05133-w

and its sparsity. From the reviewed papers given in Sect. 2,

it can be seen that currently, there are no applications of

sparse regression methods for training fuzzy systems. In

this article, we propose the use of sparse regressions that

give sparse solutions, which means that some of the coef-

ficients of the model are exactly zero. Such models are

compact, and they are easier to interpret [27]. Moreover,

sparse regressions provide regularization, which means that

these methods can be used when the number of variables in

the linear system exceeds the number of observations. In

the proposed method, the premise parameters are deter-

mined manually or by a particle swarm optimization (PSO)

algorithm, whereas the consequent parameters are defined

by a sparse regression. The ordinary least squares (OLS)

regression was used to build a fuzzy reference model. The

proposed approach has been tested in three examples. This

paper is a continuation of the work [38], where the sparsity

of fuzzy models was not considered.

The structure of this article is as follows. Section 2 sur-

veys the related work. Section 3 presents the proposed

hybrid method for training Takagi–Sugeno fuzzy systems.

This section contains the description of the high-order T–S

system, training the consequent and antecedent parameters,

the performance criteria, and the procedure for designing the

fuzzy models. The experimental results and discussion are

presented in Sect. 4. Finally, the conclusions are given in

Sect. 5.

2 Related work

This chapter provides an overview of the literature on the use

of PSO to train fuzzy systems. The review is divided into two

parts: The first part discusses those papers in which PSO is

used for training both the antecedents and consequents,

whereas the second part discusses the papers where hybrid

methods using PSO and regressions were applied.

2.1 Methods based on PSO

A two-phase swarm intelligence algorithm for zero-order

Takagi–Sugeno–Kang (T–S–K) fuzzy systems was pre-

sented in [14]. The first phase aims to learn the structure of

the fuzzy system and its parameters by ant colony opti-

mization. This phase is used to find a good initial fuzzy rule

base for further learning. In the second phase, the algorithm

optimizes all of the free parameters in the fuzzy system

using particle swarm optimization.

A multi-swarm cooperative particle swarm optimization

method was proposed in [24], where the population con-

sists of one master swarm and several slave swarms. The

algorithm was used to automatically design the fuzzy

identifier and the fuzzy controller in dynamical systems.

Takagi–Sugeno fuzzy systems with Gaussian membership

functions in the antecedents and linear functions in the

consequents of the fuzzy rules were considered.

Khayat et al. [17] proposed a hybrid algorithm to design

a fuzzy neural network to implement T–S fuzzy models.

The algorithm consists of two phases. Firstly, the fuzzy

model is generated by a coarse-tuning phase. In this phase,

a fuzzy cluster validity index is used to determine the

optimal number of clusters (rules), and fuzzy c-means is

used to partition the input space. In the second phase, in

order to adjust the parameters of the premise parts and

consequent parts, genetic and PSO algorithms are used.

In [25], there is developed a method, called the

knowledge acquisition with a swarm intelligence approach,

for fuzzy rule evolution. They used a PSO algorithm to

obtain the antecedents, consequents, and connectives

(AND/OR) of the fuzzy rules. A Mamdani-type fuzzy rule-

based system was used. The proposed method was tested

on two examples: the control of an inverted pendulum, and

scheduling in grid computing.

An algorithm that automatically extracts T–S fuzzy

models from data using PSO was presented in [42]. The

authors proposed a cooperative random learning PSO,

where several subswarms search the space and exchange

information. In their method, each fuzzy rule has a label

that is used to decide whether the rule is included in the

inference process or not. The antecedent parameters, the

consequent parameters, and the rule labels are encoded in a

particle.

In [5], there is proposed a heterogeneous multi-swarm PSO

to identify the T–S fuzzy system. The T–S system proposed by

the authors uses linear regression models in several subspaces

to describe a nonlinear system. In the presented algorithm, the

antecedent parameters and the consequent parameters of the

T–S models are encoded in particles and are obtained simul-

taneously in the training process.

In [23], a hierarchical cluster-based multi-species PSO

for building T–S–K fuzzy systems is presented. It is

applied to a spatial analysis problem, in which the area

under study is divided into several subzones. For each

subzone, a zero-order or first-order fuzzy system is

extracted from the dataset.

An immune coevolution PSO with multi-strategy for T–

S fuzzy systems is proposed in [21]. The population con-

sists of one elite subswarm and several normal subswarms.

The parameters identified are the centers and widths of the

membership functions (the antecedent parameters), and the

coefficients of the local models (the consequent

parameters).

In [26], there is presented a learning algorithm based on

a hierarchical PSO (HPSO) to train the parameters of a T–S

fuzzy model. First, an unsupervised fuzzy clustering

algorithm is used to partition the data and identify the

2706 Neural Computing and Applications (2021) 33:2705–2717

123

antecedent parameters of the fuzzy system. Next, a self-

adaptive HPSO algorithm is used to obtain the consequent

parameters of the fuzzy system.

Jhang et al. [12] proposed a T–S–K-type fuzzy cere-

bellar model articulation controller (T-FCMAC) for solv-

ing various problems. To determine the parameters of the

T-FCMAC, a group-based hybrid learning algorithm

(GHLA) was used. The GHLA algorithm was developed by

combining an improved quantum particle swarm opti-

mization algorithm and the Nelder–Mead method. The

authors also adopted the fuzzy C-mean clustering tech-

nique to improve the performance of quantum particle

swarm optimization.

A new approach to optimize the Mamdani fuzzy systems

without a need of any prior knowledge was proposed in

[15]. The membership functions, the scaling factor

parameters, and the fuzzy rule conclusions were optimized

simultaneously with a mixed-coding PSO algorithm by

combining a special monitoring function and a self-adap-

tive threshold.

2.2 Hybrid methods based on PSO
and regressions

The approach proposed in [19] uses a hybrid learning

method for T–S fuzzy systems. This method combines

particle swarm optimization and recursive least squares

(RLSE) to obtain a fuzzy approximation. The PSO is used

to train the antecedent part of the T–S system, whereas the

consequent part is trained by the RLSE method. The root-

mean-square error is used as the cost function to measure

the quality of the approximation.

An approach to building a type-2 neural-fuzzy system

from a set of input–output data was proposed in [40]. First, a

fuzzy clustering method is used to partition the dataset into

clusters. Then, a type-2 fuzzy T–S–K rule is derived from

each cluster. After the set of initial fuzzy rules is obtained, the

parameters are refined using particle swarm optimization and

a divide-and-merge-based least squares estimation.

In [41], there is proposed an approach to function

approximation using robust fuzzy regression and particle

swarm optimization. First, a fuzzy regression is used to

construct a T–S–K fuzzy model. Next, particle swarm

optimization is used to tune the parameters of that fuzzy

model. As the fitness function, the root-mean-square error

is used.

In [20], a self-learning complex neuro-fuzzy system that

uses Gaussian complex fuzzy sets was presented. The

knowledge base of the system consists of the T–S fuzzy

rules with complex fuzzy sets in the antecedent part and

linear models in the consequent part. The antecedent

parameters and the consequent parameters are trained by

the PSO algorithm and recursive least squares,

respectively.

A method for fuzzy c-regression model clustering was

presented in [28]. The proposed approach combines the

advantages of two algorithms: clustering and particle

swarm optimization. The fuzzy model used in this method

is a T–S fuzzy system with local linear models. The con-

sequent parameters of the fuzzy rules are estimated by the

orthogonal least squares method.

In [39], a self-constructing radial basis function neural-

fuzzy system was proposed, using particle swarm opti-

mization for generating the antecedent parameters, and the

least-Wilcoxon norm for the consequent parameters,

instead of the traditional least squares estimation.

A T–S model based on particle swarm optimization and

kernel ridge regression was presented in [2]. This algorithm

works in two main steps. In the first step, the clustering

based on the PSO algorithm separates the input data into

clusters and obtains the antecedent parameters. In the

second step, the consequent parameters are calculated

using a kernel ridge regression. The proposed model was

applied to generalized predictive control.

In [32], the adaptive chaos PSO algorithm (ACPSO) for

identification of the T–S fuzzy model parameters using

weighted recursive least squares was proposed. This

approach is a compromise between the adaptive and chaos

PSO algorithms. The ACPSO algorithm is used to optimize

the parameters of the model; then, the obtained parameters

are used to initialize the fuzzy c-regression model.

An identification method for the Takagi–Sugeno fuzzy

model was proposed in [35]. Firstly, the fuzzy c-means

algorithm is used to determine the optimal rule number.

Next, the initial membership function and the consequent

parameters are obtained by the PSO algorithm. To obtain

the final parameters, a fuzzy c-regression model and

orthogonal least square methods are applied.

In [36], there is proposed a complex fuzzy machine

learning approach to function approximation. The PSO is

used to optimize the premise parameters of the fuzzy

model, while the recursive least squares estimator is used

to find the consequents parameters.

3 Proposed method for training fuzzy
systems

3.1 High-order Takagi–Sugeno fuzzy system

A Takagi–Sugeno (T–S) fuzzy system [33] with one input

x and one output y is described by r fuzzy inference rules

Neural Computing and Applications (2021) 33:2705–2717 2707

123

Rj : IF x 2 AjðxÞ
THEN y ¼ wmjx

m þ � � � þ w1jxþ w0j

ð1Þ

where j ¼ 1; 2; . . .; r;AjðxÞ is a fuzzy set, m� 0 is the

degree of the polynomial, wkj 2 R, and k ¼ 0; 1; . . .;m. The

following definition given in [38] extends the concept of

the T–S system in which zero or first-order polynomials are

used.

Definition 1 The T–S system with the rules (1) is called:

• zero-order if y ¼ w0j, which means that the consequent

functions are constants [33],

• first-order if y ¼ w1jxþ w0j, which means that the

consequent functions are linear [33],

• high-order if m� 2, which means that the consequent

functions are nonlinear [38].

In this paper, we use Gaussian membership functions for

input fuzzy sets that can be unevenly spaced in the universe

of discourse x 2 X ¼ ½p1; pr� (see Fig. 1). These functions

are given by

AjðxÞ ¼ gaussðx; pj; rjÞ

¼ exp � 1

2

x� pj
rj

� �2
 !

ð2Þ

where pj is the peak of the function Aj, and rj [0 is the

width. The peaks pj and the widths rj are written as the

vectors p ¼ ½pj� ¼ ½p1; . . .; pr� and r ¼ ½rj� ¼ ½r1; . . .; rr�,
respectively.

The output of the T–S system is computed by

y ¼
Pr

j¼1 AjðxÞ wmjx
m þ � � � þ w1jxþ w0j

� �
Pr

j¼1 AjðxÞ
ð3Þ

Introducing the notion of a fuzzy basis function, formula

(3) can be written in a compact form.

Definition 2 The fuzzy basis function (FBF) for the jth rule

is the function njðxÞ given by [37]

njðxÞ ¼
AjðxÞPr
j¼1 AjðxÞ

ð4Þ

Employing the definition in (4), the output of the T–S

system can be written as

y ¼
Xr
j¼1

wmjnjðxÞxm þ � � � þ w1jnjðxÞxþ w0jnjðxÞ ð5Þ

In formula (5), the FBFs are multiplied by xk; therefore, we

define a modified fuzzy basis function.

Definition 3 The modified FBF (MFBF) for the jth rule is

the function hkjðxÞ given by

hkjðxÞ ¼ njðxÞxk ð6Þ

where k ¼ 0; 1; . . .;m.

Applying (6), we obtain

y ¼
Xr
j¼1

wmjhmjðxÞ þ � � � þ w1jh1jðxÞ þ w0jh0jðxÞ ð7Þ

We introduce the following vectors:

hjðxÞ ¼ ½hmjðxÞ; . . .; h1jðxÞ; h0jðxÞ� ð8Þ

wj ¼ ½wmj; . . .;w1j;w0j�T ð9Þ

where dimðhjÞ ¼ dimðwjÞ ¼ mþ 1. The output of the T–S

system (3) can now be written as

y ¼ ½h1ðxÞ; . . .; hrðxÞ�
w1

..

.

wr

2
664

3
775 ¼ hðxÞw ð10Þ

where

hðxÞ ¼ ½h1ðxÞ; . . .; hrðxÞ� ð11Þ

w ¼ ½w1; . . .;wr�T ð12Þ

The MFBFs are the elements of the vector hðxÞ, and w is

the vector of p ¼ rðmþ 1Þ model parameters.

3.2 Training the consequent parameters

We assume as known the observations ðxi; yiÞ, where

i ¼ 1; . . .; n. These observations are written as vectors x ¼
½xi�T ¼ ½x1; . . .; xn�T and y ¼ ½yi�T ¼ ½y1; . . .; yn�T. In order

to apply regression methods, we introduce the regression

matrix

X
n�rðmþ1Þ

¼

h1ðx1Þ; . . .; hrðx1Þ
h1ðx2Þ; . . .; hrðx2Þ

..

.

h1ðxnÞ; . . .; hrðxnÞ

2
66664

3
77775 ð13Þ

where hjðxiÞ is given by (8).

Fig. 1 Gaussian membership functions

2708 Neural Computing and Applications (2021) 33:2705–2717

123

The matrix X will be used in determining consequent

parameters of fuzzy rules by regressions such as ordinary

least squares, ridge regression, or sparse regressions. The

ordinary least squares, as the simplest method, will be

applied further to build a fuzzy reference model.

3.2.1 Ordinary least squares

In the OLS, the cost function to be minimized is the sum of

squared errors, given by

JOLS ¼
Xn
i¼1

yi � ŷið Þ2¼
Xn
i¼1

yi � hðxiÞwð Þ2 ð14Þ

where ŷi ¼ hðxiÞw is the estimated output of the system

(see equation (10)) for the ith observation. The vector w

contains the system parameters to be determined. The

number of these parameters is equal to

p ¼ dimðwÞ ¼ rðmþ 1Þ. The optimal solution is given by

[1]

w ¼ XTX
� ��1

XTy ð15Þ

where y ¼ ½y1; . . .; yn�T. This is a batch least squares

because the model parameters are computed directly from

all the data contained in X and y.

3.2.2 Ridge regression

In ridge regression [11], the cost function is the penalized

sum of squared errors

JRIDGE ¼
Xn
i¼1

yi � ŷið Þ2þkwTw ð16Þ

¼
Xn
i¼1

yi � hðxiÞwð Þ2þkwTw ð17Þ

where k� 0 is a regularization parameter. The fuzzy model

weights are given by

w ¼ XTXþ kI
� ��1

XTy ð18Þ

where I is the identity matrix. We apply the ridge regres-

sion because it can be used for ill-conditioned problems,

that is when the matrix XTX is close to singular. Ridge

regression is a one-pass method, and therefore, it is very

fast.

The OLS and ridge regressions have been implemented

in MATLAB using a custom function.

3.2.3 Sparse regressions

The regressions described in this section are sparse, which

means that some of the coefficients of the model are

exactly zero [27]. These methods lead to reduced models

that have a simpler structure and are easier to interpret. The

following sparse methods are considered in this paper:

• Forward selection (FS)—This is a stepwise regression,

i.e., variables are added one by one to the model. The

algorithm starts with all coefficients equal to zero, and

the next variable is chosen based on a certain criterion.

For example, it can be the one with the highest

correlation with the current residual vector [27].

• Least angle regression (LAR) [8, 27]—The LAR works

similarly to the FS procedure, but instead of moving in

the direction of one variable, the estimated parameters

are calculated in a direction in which the angles with

each of the variable currently in the model are equal.

The LAR algorithm is the basis for other sparse

methods, such as the least absolute shrinkage and

selection operator and elastic net regression.

• Least absolute shrinkage and selection operator

(LASSO) [27, 34]—This regression has a mechanism

that implements a coefficient shrinkage and variable

selection. The cost function combines the sum of the

squared errors, and the penalty function is based on the

L1 norm:

JLASSOðw; dÞ ¼ ky� Xwk2
2 þ dkwk1 ð19Þ

where k is a nonnegative regularization parameter.

• Elastic net (ENET) [27, 44]—The ENET regression

combines the features of ridge regression and the

LASSO. The cost function contains a penalty term

related to both the L1 and the L2 norms:

JENETðw; k; dÞ ¼ ky� Xwk2
2 þ kkwk2

2 þ dkwk1 ð20Þ

where k and d are nonnegative regularization param-

eters. To find the solution, the LARS-EN algorithm,

which is based on the LARS algorithm [8], is used.

The sparse regressions have been implemented in

MATLAB using the toolbox SpaSM [27].

3.2.4 Example of an application

To show the use of the ridge method when the problem is

ill-defined (the number of observations is less than the

number of predictors (n\p)), let us consider the following

example of tuning the T–S system for a small amount of

data. We have four observations (n ¼ 4) in the form of

vectors x ¼ ½1; 2; 3; 4�T and y ¼ ½6; 5; 7; 10�T. For the input

x, we define two fuzzy sets (r ¼ 2) with the membership

functions A1ðxÞ ¼ gaussðx; 1; 1:274Þ and A2ðxÞ ¼ gauss

ðx; 4; 1:274Þ. In the consequent part of the rules (1), we

assume the polynomials are linear, that is, m ¼ 1. We can

see that n ¼ p ¼ 4, which means the amount of data is

equal to the number of regressors.

Neural Computing and Applications (2021) 33:2705–2717 2709

123

The regression matrix (13) is

X
4�4

¼

h1ðx1Þ; h2ðx1Þ
h1ðx2Þ; h2ðx2Þ
h1ðx3Þ; h2ðx3Þ
h1ðx4Þ; h2ðx4Þ

2
6664

3
7775

¼

h11ðx1Þ; h01ðx1Þ; h12ðx1Þ; h02ðx1Þ
h11ðx2Þ; h01ðx2Þ; h12ðx2Þ; h02ðx2Þ
h11ðx3Þ; h01ðx3Þ; h12ðx3Þ; h02ðx3Þ
h11ðx4Þ; h01ðx4Þ; h12ðx4Þ; h02ðx4Þ

2
6664

3
7775

ð21Þ

For the data xi, we obtain the following FBFs (4)

n1ðx1Þ ¼ 0:9412 n2ðx1Þ ¼ 0:0588

n1ðx2Þ ¼ 0:7159 n2ðx2Þ ¼ 0:2841

n1ðx3Þ ¼ 0:2841 n2ðx3Þ ¼ 0:7159

n1ðx4Þ ¼ 0:0588 n2ðx4Þ ¼ 0:9412

ð22Þ

Calculating the MFBFs (6) in the matrix (21), which is

omitted here, we obtain

X
4�4

¼

0:9412; 0:9412; 0:0588; 0:0588

1:432; 0:7159; 0:5682; 0:2841

0:8523; 0:2841; 2:148; 0:7159

0:2353; 0:0588; 3:765; 0:9412

2
6664

3
7775 ð23Þ

for which detðXTXÞ ¼ 0:0523. Using the OLS regression

(15), the solution is

w ¼ ½�1:897; 7:930; 1:715; 3:745�T ð24Þ

Assume now that we have only three observations, for

example, x ¼ ½1; 3; 4�T and y ¼ ½6; 7; 10�T. In this case, the

regression matrix is given by

X
3�4

¼
0:9412; 0:9412; 0:0588; 0:0588

0:8523; 0:2841; 2:148; 0:7159

0:2353; 0:0588; 3:765; 0:9412

2
64

3
75 ð25Þ

where n\p. For the matrix (25), we obtain

detðXTXÞ ¼ 1:144e�16, which means that XTX is close to

singularity and the fuzzy model can be unreliable. Apply-

ing the ridge regression (18) with k ¼ 0:05, we get

detðXTXþ kIÞ ¼ 0:2901. The solution in this case is

w ¼ ½1:040; 4:819; 2:575;�0:5194�T ð26Þ

Applying forward selection, we obtain three solutions in

the coefficient path

w1 ¼ ½0; 0; 0; 0�T ð27Þ

w2 ¼ ½0; 0; 2:823; 0�T ð28Þ

w3 ¼ ½4:880; 0; 2:103; 0�T ð29Þ

Similarly, we can obtain solutions from the LAR, LASSO,

and ENET regressions.

3.3 Training the antecedent parameters

A PSO algorithm is used to train the antecedent parame-

ters. PSO was developed by Kennedy and Eberhart [7, 16].

It is based on the social behavior of living organisms that

live in large groups. PSO has many advantages, among

others, it can escape from local optima, it is easy to

implement, and it has fewer parameters to adjust. PSO can

be used for many optimization problems, such as in

[9, 14, 18, 30, 41].

PSO consists of a set of solutions (particles), where each

particle represents a point in a multi-dimensional space. A

group of particles (a population) forms a swarm. Each

particle behaves in a distributed manner, using its own

intelligence and the group intelligence of the swarm. The

particles move through the search space and exchange

information to find the optimal solution. Each particle has a

position (x) and velocity (v). In addition, each particle

remembers its best position (pbest) and has access to the

best position in the swarm (gbest). The learning process in

the PSO method is based on two components:

• the cognition component: attracts particles toward its

local most promising position.

• the social component: attracts particles toward the

global best position discovered by the swarm.

The best solution is obtained by minimizing the objective

function, calculated in this paper as the square root of the

mean square error [19, 31].

The velocity vk and position xk of the kth particle are

determined using the following equations [7]:

vlþ1
k ¼ v½vlk þ c1r1ðpbestlk � xlkÞ þ c2r2ðgbestl � xlkÞ�

ð30Þ

xlþ1
k ¼ xlk þ vlþ1

k ð31Þ

where v is a constriction factor, here equal to 0.7298, r1; r2

are vectors of random numbers uniformly distributed

within [0,1], l is the current iteration number, c1 is the

cognitive coefficient, and c2 is the social coefficient

(c1 ¼ c2 ¼ 2:05).

In this method, each of the particles represents the

parameters of Gaussian fuzzy sets and contains the peaks

(p2; . . .; pr�1) and the widths of all membership (r1; . . .; rr)
functions:

ð32Þ

2710 Neural Computing and Applications (2021) 33:2705–2717

123

We assume that the peaks p1 and pr are known; hence, the

number of parameters to be chosen by the PSO algorithm is

equal to 2r � 2.

To initialize the particles, we first distribute the peaks

evenly in the interval (a, b), that is, the pj is given by

pj ¼ aþ ðj� 1Þd ð33Þ

where j ¼ 1; 2; . . .; r; d ¼ ðb� aÞ=ðr � 1Þ; a ¼ min
i
ðxiÞ and

b ¼ max
i
ðxiÞ. Next, we change p2; . . .; pr�1 according to the

formula

pj :¼ maxðminðpj þ dp � rand � dp=2; prÞ; p1Þ ð34Þ

where rand is a random number in the interval [0, 1], and

dp is the width of the initialization range for the peaks. The

widths rj are initialized using the formula

rj :¼ maxðminðdr � rand;rmaxÞ; rminÞ ð35Þ

where j 2 1; . . .; r; dr is the width of the initialization range

for rj and 0\rmin\rmax. During the optimization, we

limit the peaks pj to the interval ½p1; pr� and the widths rj of

the Gaussian sets to the interval ½rmin; rmax�.

3.4 Performance criteria

In this paper, we use a validation method in which the

dataset is divided into two sets: a training set and a vali-

dation set. The training set is the set of observations used

for learning, that is, for tuning the parameters (weights) of

the fuzzy model. The validation set is also a set of obser-

vations, but it is disjoint from the training set. It is used to

assess how well the model makes predictions based on new

data. The performance criterion is calculated using the

validation set, and it is calculated as the square root of the

mean square error

RMSE ¼

ffi
1

V

Xt
k¼1

yk � ŷkð Þ2

vuut ð36Þ

where V denotes the number of observations in the vali-

dation set, yk denotes the kth target in the validation set,

and ŷk denotes the output of the fuzzy model obtained for

kth input data xk in the validation set.

The fuzzy models used in this paper may be sparse,

which means they may have some coefficients equal to

zero. The following definition introduces the notion of the

sparsity of a fuzzy model.

Definition 4 The sparsity of a T–S fuzzy model is defined

to be

z ¼ nz

rðmþ 1Þ ð37Þ

where nz is the number of zero-valued coefficients in the

polynomials, r is the number of rules, and m is the degree

of the polynomial.

Using the definition of sparsity, we introduce the notion

of density of a fuzzy model as follows.

Definition 5 The density of a T–S fuzzy model is defined

as one minus the sparsity:

d ¼ 1 � z ð38Þ

In this paper, we propose choosing the best T–S model

by minimizing a quality criterion in which the goal is to

make the validation error and the density as small as

possible:

q ¼ a
RMSE

RMSEOLS

þ ð1 � aÞd ð39Þ

where a ¼ 0:5 and RMSEOLS is the value of RMSE for the

OLS regression that is treated as the reference method. The

quality index (39) expresses a compromise between the

accuracy of the model and its sparsity.

3.5 Procedure for designing fuzzy models

The proposed fuzzy models are designed in two variants:

without and with particle swarm optimization. In the first

variant, the regressions are used to determine the polyno-

mials in a fuzzy system in which the fuzzy sets are known.

In the second variant, the PSO determines the fuzzy sets,

while the regressions determine the polynomials.

The following methods for building fuzzy models are

employed in this paper:

• OLS: the method in which the fuzzy sets are defined by

the user, while the polynomials are determined by the

OLS regression.

• RIDGE: the method in which the fuzzy sets are defined

by the user, while the polynomials are determined by

the ridge regression.

• SR: the method in which the fuzzy sets are defined by

the user, while the polynomials are determined by a

sparse regression (SR), e.g., FS, LAR, LASSO, or

ENET.

• PSO-OLS: the method in which the fuzzy sets are

determined by the PSO algorithm, while the polyno-

mials are determined by the OLS regression.

• PSO-RIDGE: the method in which the fuzzy sets are

determined by the PSO algorithm, while the polyno-

mials are determined by the ridge regression.

Neural Computing and Applications (2021) 33:2705–2717 2711

123

• PSO-SR: the method in which the fuzzy sets are

determined by the PSO algorithm, while the polyno-

mials are determined by a sparse regression.

The idea of the procedure for designing the fuzzy

models is presented in Fig. 2.

In Block 1, we determine the Gaussian fuzzy sets. In the

OLS, RIDGE, and SR methods, one proposition is gener-

ated in such a way that these sets are distributed evenly in

the space X, and the cross-point of two adjacent sets is

equal to 0.5. In the PSO-OLS, PSO-RIDGE, and PSO-SR

methods, ten propositions are generated by the PSO algo-

rithm. The outputs of Block 1 are the vectors p and r.

In Block 2, we determine the regression matrix X (13).

In Block 3, we generate the coefficient path for one of

the SR methods.

In Block 4, we validate the OLS, RIDGE, and PSO-

RIDGE methods. As a result of validating the OLS method,

we get the value for RMSEOLS.

In Block 5, we validate the SR and PSO-SR methods.

The validation is done along the coefficient path. For the

PSO-SR method, we select from among ten fuzzy models

the one with the smallest validation error RMSE. The

quality index q is calculated in such a way that the smallest

value is chosen, with the constraint that the RMSE is not

greater than RMSEOLS.

The results of the calculations in Blocks 4 and 5 are the

optimal weights ðwoptÞ of the fuzzy model.

4 Experimental results and discussion

This section gives examples of the application of the

developed methods to the approximation of nonlinear

functions. The following parameters were adopted in all

experiments: k ¼ 1e�08 for the ridge regression (18), k ¼
1e�10 for the ENET regression (20), the number of itera-

tions was 500, and the number of particles was 60 for the PSO

algorithm. The parameter k and the number of iterations were

selected experimentally. The k can prevent an ill-defined

problem from occurring, but if it is too high, it can cause a

deterioration of results. The number of particles was chosen

based on [19]. We applied nine fuzzy rules, and the degree of

the polynomial was two. The number of observations ðxi; yiÞ
was n ¼ 50, and they were evenly distributed in the spaceX.

The dataset was divided into a training set of 40 observations

and a validation set of 10 observations. The number of

observations was chosen based on [3, 31]. The widths of the

initialization range dp; dr and the minimum and maximum

values rmin; rmax were chosen experimentally according to

the range of input variables.

4.1 Experiment 1

We consider the nonlinear function [19]

y ¼ 0:08 1:2ðx� 1Þð Þ cosð3xÞ
þ x� ðx� 1Þ cosð3xÞð Þ sinðxÞ

ð40Þ

where x 2 ½3; 7�. The initialization parameters and limits

were as follows: dp ¼ 3:0; dr ¼ 5:0; rmin ¼ 0:1, and

rmax ¼ 5:0. The experimental results are presented in

Table 1. The smallest value of the quality index q, equal to

0.2955, was obtained for the PSO-ENET method. For this

method, the validation error is smaller than the error for the

reference model. Table 2 compares the parameters of the

fuzzy systems obtained by the OLS method with those from

the PSO-ENET method. It can be seen that the PSO-ENET

method zeroed out 48% of the 27 coefficients. Based on this

table, the fuzzy rules for the best model can be written as

R1 : IF x 2 gaussðx; 3; 1:362Þ
THEN y ¼ 1:085x2 � 23:27x

R2 : IF x 2 gaussðx; 3:939; 0:4366Þ
THEN y ¼ 5:993x2 � 31:31x

. . .

R9 : IF x 2 gaussðx; 7; 5Þ
THEN y ¼ 0

ð41Þ

It is seen that the fuzzy model PSO-ENET has zero poly-

nomial in the consequent part of rule R9. In Fig. 3, the

approximation to the function is shown along with the

approximation error for the PSO-ENET model.

Use sparse
regression?

Generate
coefficient path

p, σ

1

2

4

3

5Perform
valida�on

Determine
matrix X

Perform
valida�on

Propose
fuzzy sets

YESNO

X

w

woptwopt

Fig. 2 The idea of the procedure for designing the fuzzy models

2712 Neural Computing and Applications (2021) 33:2705–2717

123

4.2 Experiment 2

In this experiment, we consider the nonlinear function [31]

y ¼ ðx� 2Þð2x� 1Þ
1 þ x2

ð42Þ

where x 2 ½�8; 12�. The initialization parameters and limits

were chosen to be dp ¼ 12:0; dr ¼ 8:0; rmin ¼ 0:5, and

rmax ¼ 10:0. The results of the applied methods are

presented in Table 3. For the PSO-FS method, the quality

index q equal to 0.4059 was the smallest value obtained for

all simulations. The sparsity of this model was 26%.

Table 4 presents the parameters of the fuzzy systems

obtained using the OLS method and the PSO-FS method.

The fuzzy rules for the best model can be written as

R1 : IF x 2 gaussðx;�8; 0:9144Þ
THEN y ¼ �0:0565x2 � 0:7357x

R2 : IF x 2 gaussðx;�3:040; 1:756Þ
THEN y ¼ �0:2759x2 � 2:456x� 1:725

. . .

R9 : IF x 2 gaussðx; 12; 3:921Þ
THEN y ¼ 0:0117x2

ð43Þ

Figure 4 shows the approximation of the function and the

error between the target function and the estimator for the

PSO-FS model.

4.3 Experiment 3

Here, the nonlinear function is given by [3]

y ¼ 0:1 þ 1:2xþ 2:8 sinð4px2Þ ð44Þ

where x 2 ½0; 1�. The parameters for initialization and

limits were as follows: dp ¼ 0:3; dr ¼ 1:0; rmin ¼ 0:1, and

rmax ¼ 1:0. The results of these experiments are presented

in Table 5. The smallest value of q, equal to 0.2714, was

obtained for the PSO-ENET algorithm. The sparsity of the

chosen fuzzy model was z ¼ 52%. Table 6 presents the

parameters of the fuzzy systems obtained using the OLS

3 3.5 4 4.5 5 5.5 6 6.5 7
-10

-5

0

5

10

3 3.5 4 4.5 5 5.5 6 6.5 7
-4

-2

0

2
10-4

Fig. 3 Experiment 1: Approximation of the function and the error

between the target function y and the estimator ŷ for the PSO-ENET

model in Table 2

Table 1 Performance comparison for Experiment 1

Algorithm RMSE z q

OLS 1.635e-03 0 1

RIDGE 2.795e-02 0 9.045

FS 1.454e-03 0.0370 0.9260

LAR 1.514e-03 0.0370 0.9445

LASSO 1.298e-03 0.0370 0.8784

ENET 1.901e-03 0 1.081

PSO-OLS * * *

PSO-RIDGE 1.762e-04 0 0.5032

PSO-FS 2.171e-04 0.5185 0.3071

PSO-LAR 2.363e-04 0.5185 0.3130

PSO-LASSO 1.690e-04 0.4444 0.3295

PSO-ENET 1.186e-04 0.4815 0.2955

The asterisk ‘*’ means no solution

Table 2 Parameters of fuzzy systems in Experiment 1

Rule p r w2 w1 w0

OLS

R1 3 0.2123 - 13.05 71.89 - 98.03

R2 3.5 0.2123 20.82 - 148.3 262.5

R3 4 0.2123 - 4.886 45.18 - 103.4

R4 4.5 0.2123 - 30.30 260.5 - 561.4

R5 5 0.2123 33.93 - 349.8 893.7

R6 5.5 0.2123 18.79 - 189.9 469.8

R7 6 0.2123 - 38.98 473.9 - 1441

R8 6.5 0.2123 30.23 - 391.9 1272

R9 7 0.2123 1.451 - 1.518 - 54.22

PSO-ENET

R1 3 1.362 1.085 - 23.27 0

R2 3.939 0.4366 5.993 - 31.31 0

R3 3.428 0.5482 - 4.775 0 0

R4 4.397 0.4716 - 3.421 1.371 0

R5 5.187 0.6116 - 2.290 - 32.52 0

R6 3.496 1.999 14.70 - 4.811 0

R7 6.047 0.6575 - 20.51 112.3 0

R8 6.726 5 0 - 6.985 0

R9 7 5 0 0 0

Neural Computing and Applications (2021) 33:2705–2717 2713

123

and PSO-ENET methods. The fuzzy rules for the PSO-

ENET method are as follows:

R1 : IF x 2 gaussðx; 0; 0:2139Þ
THEN y ¼ 14:51x� 2:028

R2 : IF x 2 gaussðx; 0:8145; 0:1Þ
THEN y ¼ 126:3

. . .

R9 : IF x 2 gaussðx; 1; 0:1Þ
THEN y ¼ 32:53x2 þ 32:71

ð45Þ

It is worth noting that the fuzzy model PSO-ENET has zero

polynomial in the consequent part of rule R6. The

approximation of the function using the PSO-ENET

method, together with the approximation error, is shown in

Fig. 5.

4.4 Discussion

Based on the results presented in this section, it can be

observed that:

• in the first variant (without PSO), the use of sparse

regressions may reduce the validation error RMSE and

-8 -6 -4 -2 0 2 4 6 8 10 12

0

1

2

3

4

-8 -6 -4 -2 0 2 4 6 8 10 12
-5

0

5

10-3

Fig. 4 Experiment 2: Approximation to the function and the error

between the target function y and the estimator ŷ for the PSO-FS

model in Table 4

Table 3 Performance comparison for Experiment 2

Algorithm RMSE z q

OLS 4.144e-02 0 1

RIDGE 3.700e-02 0 0.9464

FS 3.526e-02 0.1482 0.8514

LAR 3.047e-02 0.0741 0.8306

LASSO 3.179e-02 0.1482 0.8095

ENET 3.179e-02 0.1482 0.8095

PSO-OLS * * *

PSO-RIDGE 1.413e-03 0 0.5191

PSO-FS 2.941e-03 0.2593 0.4059

PSO-LAR 3.128e-03 0.2593 0.4081

PSO-LASSO 2.963e-03 0.2222 0.4246

PSO-ENET 3.004e-03 0.2593 0.4066

The asterisk ‘*’ means no solution

Table 4 Parameters of fuzzy systems in Experiment 2

Rule p r w2 w1 w0

OLS

R1 - 8 1.062 3.429 56.91 240.3

R2 - 5.5 1.062 - 4.327 - 48.15 - 135.1

R3 - 3 1.062 6.106 39.67 73.47

R4 - 0.5 1.062 - 10.14 - 12.99 - 6.421

R5 2 1.062 6.344 - 28.99 38.91

R6 4.5 1.062 - 3.369 32.26 - 79.26

R7 7 1.062 1.986 - 28.49 105.4

R8 9.5 1.062 - 1.399 27.04 - 130.4

R9 12 1.062 0.8924 - 22.08 138.6

PSO-FS

R1 - 8 0.9144 - 0.0565 - 0.7357 0

R2 - 3.040 1.756 - 0.2759 - 2.456 - 1.725

R3 - 1.624 0.5104 - 1.138 - 2.621 0

R4 - 0.8196 0.5 - 3.031 - 3.186 1.676

R5 - 1.919 0.8712 3.216 19.18 36.43

R6 9.408 6.938 0.5113 2.321 - 1.786

R7 8.237 4.424 0.1441 - 3.222 0

R8 11.55 5.518 - 0.5326 0 0

R9 12 3.921 0.0117 0 0

Table 5 Performance comparison for Experiment 3

Algorithm RMSE z q

OLS 9.688e-03 0 1

RIDGE 4.039e-02 0 2.585

FS 8.539e-03 0.0741 0.9037

LAR 9.505e-03 0.0370 0.9720

LASSO 9.507e-03 0.0741 0.9537

ENET 9.945e-03 0 1.013

PSO-OLS * * *

PSO-RIDGE 1.351e-04 0 0.5017

PSO-FS 1.935e-04 0.4074 0.3063

PSO-LAR 1.060e-03 0.5185 0.2954

PSO-LASSO * * *

PSO-ENET 5.946e-03 0.5185 0.2714

The asterisk ‘*’ means no solution

2714 Neural Computing and Applications (2021) 33:2705–2717

123

the quality index q compared to the fuzzy OLS-based

reference model,

• in the second variant (with PSO), the experiments did

not give results for the PSO-OLS method, but they were

obtained for the PSO-RIDGE method,

• comparing the results in the second variant with the

PSO-RIDGE method:

• in the first experiment, a reduction in the error

RMSE and the quality index q was obtained for the

PSO-LASSO and PSO-ENET methods,

• in the second and third experiments, the error RMSE

for sparse regression methods was worse than for

the PSO-RIDGE method, while the quality index

q was better,

• the results of the error RMSE and the quality index q in

the second variant are better than in the first variant,

• in each experiment, the model was simplified by

reducing the number of polynomial coefficients: In

the first experiment, a reduction of 48% was obtained,

in the second—26%, while in the third 52%.

The obtained results show that the use of sparse regressions

can reduce the validation error compared to the reference

model and simplify fuzzy models by zeroing some coeffi-

cients. It should be emphasized that the developed method

applies to T–S models [33] that have polynomials in their

consequents, not fuzzy sets, as is the case of Mamdani

models [22].

5 Conclusions

Two methods of training high-order Takagi–Sugeno sys-

tems using sparse regressions and particle swarm opti-

mization have been proposed. In the first, the antecedent

parameters are set manually and in the second are set by a

particle swarm optimization algorithm. In both variants, the

consequent parameters are determined by a sparse regres-

sion. A fuzzy model based on the ordinary least squares

regression is used as a reference method. To assess the

quality of the fuzzy models, a quality criterion that

expresses a compromise between the accuracy of the model

and its sparsity was proposed. This criterion is based on the

square root of the mean square error calculated for the

validation set and the density of a fuzzy model. Compared

with the reference method, the conducted experiments

showed that: a) the use of sparse regressions and/or particle

swarm optimization can reduce the validation error; b) the

use of sparse regressions may simplify the fuzzy model by

setting some of the coefficients to zero.

This paper uses a high-order T–S system to approximate

the functions of one variable. Future work will focus on

generalizing the proposed method for fuzzy systems with

many input variables. Such systems can be applied to

various applications, for example, for the approximation of

functions with more than one variable, the identification of

nonlinear models, the determination of inverse kinematics

in robotics. Moreover, some work will be carried out

toward the use of other optimization methods.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1
10-3

Fig. 5 Experiment 3: Approximation to the function and the error

between the target function y and the estimator ŷ for the PSO-ENET

model in Table 6

Table 6 Parameters of fuzzy systems in Experiment 3

Rule p r w2 w1 w0

OLS

R1 0 0.0531 - 46.46 - 1.027 - 0.0060

R2 0.125 0.0531 132.9 - 22.80 1.798

R3 0.25 0.0531 - 97.88 64.29 - 7.759

R4 0.375 0.0531 - 3.852 4.315 2.501

R5 0.5 0.0531 - 425.3 374.3 - 81.12

R6 0.625 0.0531 1030 - 1267 389.8

R7 0.75 0.0531 - 922.5 1432 - 553.3

R8 0.875 0.0531 121.9 - 291.9 162.9

R9 1 0.0531 655.8 - 1249 595.1

PSO-ENET

R1 0 0.2139 0 14.51 - 2.028

R2 0.8145 0.1 0 0 126.3

R3 0.0090 0.9261 - 28.92 - 33.44 0

R4 0.7227 0.1 - 81.64 0 0

R5 0.8748 0.1 - 108.1 0 0

R6 0.7960 0.1356 0 0 0

R7 0.6655 0.1225 17.93 0 - 10.26

R8 0.5463 0.2385 - 19.69 0 30.78

R9 1 0.1 32.53 0 32.71

Neural Computing and Applications (2021) 33:2705–2717 2715

123

Compliance with ethical standards

Conflict of Interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Bishop CM (2006) Pattern recognition and machine learning.

Information science and statistics. Springer, New York

2. Boulkaibet I, Belarbi K, Bououden S, Marwala T, Chadli M

(2017) A new T–S fuzzy model predictive control for nonlinear

processes. Expert Syst Appl 88:132–151. https://doi.org/10.1016/

j.eswa.2017.06.039

3. Bouzerdoum A (2000) Classification and function approximation

using feed-forward shunting inhibitory artificial neural networks.

In: Proceedings of the IEEE–INNS–ENNS international joint

conference on neural networks (IJCNN 2000). Neural computing:

new challenges and perspectives for the new millennium, vol 6,

pp 613–618. https://doi.org/10.1109/IJCNN.2000.859463

4. Chen C, Liu Y (2018) Enhanced ant colony optimization with

dynamic mutation and ad hoc initialization for improving the

design of TSK-type fuzzy system. Comput Int Neurosci. https://

doi.org/10.1155/2018/9485478

5. Cheung NJ, Ding XM, Shen HB (2014) Optifel: a convergent

heterogeneous particle swarm optimization algorithm for Takagi–

Sugeno fuzzy modeling. IEEE Trans Fuzzy Syst 22(4):919–933

6. Cortés-Antonio P, Batyrshin I, Martı́nez-Cruz A, Villa-Vargas

LA, Ramı́rez-Salinas MA, Rudas I, Castillo O, Molina-Lozano H

(2020) Learning rules for Sugeno ANFIS with parametric con-

junction operations. Appl Soft Comput 89:106095. https://doi.

org/10.1016/j.asoc.2020.106095

7. Eberhart RC, Shi Y (2000) Comparing inertia weights and con-

striction factors in particle swarm optimization. In: Proceedings

of the 2000 congress on evolutionary computation (CEC 2000),

vol 1, pp 84–88

8. Efron B, Hastie T, Johnstone I, Tibshirani R et al (2004) Least

angle regression. Ann Stat 32(2):407–499

9. Fu Y, Ding M, Zhou C, Hu H (2013) Route planning for

unmanned aerial vehicle (UAV) on the sea using hybrid differ-

ential evolution and quantum-behaved particle swarm optimiza-

tion. IEEE Trans Syst Man Cybern Syst 43(6):1451–1465. https://

doi.org/10.1109/TSMC.2013.2248146

10. Ge D, Zeng XJ (2019) A self-evolving fuzzy system which learns

dynamic threshold parameter by itself. IEEE Trans Fuzzy Syst

27(8):1625–1637. https://doi.org/10.1109/TFUZZ.2018.2886154

11. Hoerl AE, Kennard RW (1970) Ridge regression: biased esti-

mation for nonorthogonal problems. Technometrics 12(1):55–67

12. Jhang JY, Lin CJ, Li L (2019) Supervised and reinforcement

group-based hybrid learning algorithms for TSK-type fuzzy

cerebellar model articulation controller. Control Eng Appl Inform

21(2):11–21

13. Juang C, Hung C, Hsu C (2014) Rule-based cooperative contin-

uous ant colony optimization to improve the accuracy of fuzzy

system design. IEEE Trans Fuzzy Syst 22(4):723–735. https://

doi.org/10.1109/TFUZZ.2013.2272480

14. Juang CF, Lo C (2008) Zero-order TSK-type fuzzy system

learning using a two-phase swarm intelligence algorithm. Fuzzy

Sets Syst 159(21):2910–2926

15. Kacimi MA, Guenounou O, Brikh L, Yahiaoui F, Hadid N (2020)

New mixed-coding PSO algorithm for a self-adaptive and auto-

matic learning of Mamdani fuzzy rules. Eng Appl Artif Intell

89:103417. https://doi.org/10.1016/j.engappai.2019.103417

16. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:

Proceedings of the IEEE international conference on neural net-

works, vol 4. IEEE Press, Piscataway, pp 1942–1948

17. Khayat O, Ebadzadeh MM, Shahdoosti HR, Rajaei R, Kha-

jehnasiri I (2009) A novel hybrid algorithm for creating self-

organizing fuzzy neural networks. Neurocomputing

73(1):517–524. https://doi.org/10.1016/j.neucom.2009.06.013

18. Krzeszowski T, Przednowek K, Wiktorowicz K, Iskra J (2016)

Estimation of hurdle clearance parameters using a monocular

human motion tracking method. Comput Methods Biomech

Biomed Eng 19(12):1319–1329 PMID: 26838547

19. Li C, Wu T (2011) Adaptive fuzzy approach to function

approximation with PSO and RLSE. Expert Syst Appl

38(10):13266–13273

20. Li C, Wu T, Chan FT (2012) Self-learning complex neuro-fuzzy

system with complex fuzzy sets and its application to adaptive

image noise canceling. Neurocomputing 94:121–139

21. Lin G, Zhao K, Wan Q (2016) Takagi–Sugeno fuzzy model

identification using coevolution particle swarm optimization with

multi-strategy. Appl Intell 45(1):187–197

22. Mamdani EH, Assilian S (1975) An experiment in linguistic

synthesis with a fuzzy logic controller. Int J Man–Mach Stud

7(1):1–13

23. Martino FD, Loia V, Sessa S (2014) Multi-species PSO and fuzzy

systems of Takagi–Sugeno–Kang type. Inf Sci 267(Supplement

C):240–251

24. Niu B, Zhu Y, He X, Shen H (2008) A multi-swarm optimizer

based fuzzy modeling approach for dynamic systems processing.

Neurocomputing 71(7–9):1436–1448

25. Prado RP, Garcia-Galan S, Exposito JEM, Yuste AJ (2010)

Knowledge acquisition in fuzzy-rule-based systems with particle-

swarm optimization. IEEE Trans Fuzzy Syst 18(6):1083–1097.

https://doi.org/10.1109/TFUZZ.2010.2062525

26. Rastegar S, Araujo R, Mendes J (2017) Online identification of

Takagi–Sugeno fuzzy models based on self-adaptive hierarchical

particle swarm optimization algorithm. Appl Math Model

45(Supplement C):606–620

27. Sjöstrand K, Clemmensen L, Larsen R, Einarsson G, Ersbøll B

(2018) SpaSM: a MATLAB toolbox for sparse statistical mod-

eling. J Stat Softw 84(10):1–37. https://doi.org/10.18637/jss.

v084.i10

28. Soltani M, Chaari A, Ben Hmida F (2012) A novel fuzzy C-re-

gression model algorithm using a new error measure and particle

swarm optimization. Int J Appl Math Comput Sci 22(3):617–628

29. Soltani M, Telmoudi AJ, Chaouech L, Ali M, Chaari A (2019)

Design of a robust interval-valued type-2 fuzzy C-regression

model for a nonlinear system with noise and outliers. Soft

Comput 23(15):6125–6134. https://doi.org/10.1007/s00500-018-

3265-z

30. Srinivasan D, Loo WH, Cheu RL (2003) Traffic incident detec-

tion using particle swarm optimization. In: Proceedings of the

IEEE swarm intelligence symposium (SIS’03), pp 144–151

2716 Neural Computing and Applications (2021) 33:2705–2717

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.eswa.2017.06.039
https://doi.org/10.1016/j.eswa.2017.06.039
https://doi.org/10.1109/IJCNN.2000.859463
https://doi.org/10.1155/2018/9485478
https://doi.org/10.1155/2018/9485478
https://doi.org/10.1016/j.asoc.2020.106095
https://doi.org/10.1016/j.asoc.2020.106095
https://doi.org/10.1109/TSMC.2013.2248146
https://doi.org/10.1109/TSMC.2013.2248146
https://doi.org/10.1109/TFUZZ.2018.2886154
https://doi.org/10.1109/TFUZZ.2013.2272480
https://doi.org/10.1109/TFUZZ.2013.2272480
https://doi.org/10.1016/j.engappai.2019.103417
https://doi.org/10.1016/j.neucom.2009.06.013
https://doi.org/10.1109/TFUZZ.2010.2062525
https://doi.org/10.18637/jss.v084.i10
https://doi.org/10.18637/jss.v084.i10
https://doi.org/10.1007/s00500-018-3265-z
https://doi.org/10.1007/s00500-018-3265-z

31. Sun TY, Tsai SJ, Tsai CH, Huo CL, Liu CC (2008) Nonlinear

function approximation based on least Wilcoxon Takagi–Sugeno

fuzzy model. In: 2008 Eighth international conference on intel-

ligent systems design and applications, vol 1, pp 312–317

32. Taieb A, Soltani M, Chaari A (2018) A fuzzy C-regression model

algorithm using a new PSO algorithm. Int J Adapt Control Signal

Process 32(1):115–133. https://doi.org/10.1002/acs.2829

33. Takagi T, Sugeno M (1985) Fuzzy identification of systems and

its applications to modeling and control. IEEE Trans Syst Man

Cybern SMC–15(1):116–132

34. Tibshirani R (1996) Regression shrinkage and selection via the

lasso. J R Stat Soc Ser B Methodol 58(1):267–288

35. Tsai SH, Chen YW (2018) A novel identification method for

Takagi–Sugeno fuzzy model. Fuzzy Sets Syst 338:117–135

36. Tu CH, Li C (2018) Multiple function approximation—a new

approach using complex fuzzy inference system. In: Nguyen

NT, Hoang DH, Hong TP, Pham H, Trawiński B (eds) Intelli-

gent information and database systems. Springer, Cham,

pp 243–254

37. Wang L, Mendel JM (1992) Fuzzy basis functions, universal

approximation, and orthogonal least-squares learning. IEEE

Trans Neural Netw 3(5):807–814

38. Wiktorowicz K, Krzeszowski T (2020) Training high-order

Takagi–Sugeno fuzzy systems using batch least squares and

particle swarm optimization. Int J Fuzzy Syst 22(1):22–34.

https://doi.org/10.1007/s40815-019-00747-2

39. Yang YK, Sun TY, Huo CL, Yu YH, Liu CC, Tsai CH (2013) A

novel self-constructing radial basis function neural-fuzzy system.

Appl Soft Comput 13(5):2390–2404

40. Yeh CY, Jeng WHR, Lee SJ (2011) Data-based system modeling

using a type-2 fuzzy neural network with a hybrid learning

algorithm. IEEE Trans Neural Netw 22(12):2296–2309

41. Ying KC, Lin SW, Lee ZJ, Lee IL (2011) A novel function

approximation based on robust fuzzy regression algorithm model

and particle swarm optimization. Appl Soft Comput

11(2):1820–1826 The Impact of Soft Computing for the Progress

of Artificial Intelligence

42. Zhao L, Qian F, Yang Y, Zeng Y, Su H (2010) Automatically

extracting T–S fuzzy models using cooperative random learning

particle swarm optimization. Appl Soft Comput 10(3):938–944

43. Zhao W, Niu Q, Li K, Irwin GW (2013) A hybrid learning

method for constructing compact rule-based fuzzy models. IEEE

Trans Cybern 43(6):1807–1821

44. Zou H, Hastie T (2005) Regularization and variable selection via

the elastic net. J R Stat Soc Ser B Stat Methodol 67(2):301–320

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:2705–2717 2717

123

https://doi.org/10.1002/acs.2829
https://doi.org/10.1007/s40815-019-00747-2

	Sparse regressions and particle swarm optimization in training high-order Takagi--Sugeno fuzzy systems
	Abstract
	Introduction
	Related work
	Methods based on PSO
	Hybrid methods based on PSO and regressions

	Proposed method for training fuzzy systems
	High-order Takagi--Sugeno fuzzy system
	Training the consequent parameters
	Ordinary least squares
	Ridge regression
	Sparse regressions
	Example of an application

	Training the antecedent parameters
	Performance criteria
	Procedure for designing fuzzy models

	Experimental results and discussion
	Experiment 1
	Experiment 2
	Experiment 3
	Discussion

	Conclusions
	Open Access
	References

