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Abstract The result of a multiobjective or a many objective optimization prob-
lem is a large set of non-dominated solutions. Once the Pareto Front (or a good
approximation of it) has been found, then providing the decision maker with a
smaller set of “interesting solutions” is a key step.

Here the focus is on how to select such a set of Solutions of Interest which,
in contrast to previous approaches that relied on geometrical features, is carried
out considering the Decision Maker’s preferences. The proposed a posteriori ap-
proach consists in assigning an interval of potential scores to every solution, where
such scores depend on the decision maker’s preferences. The solutions are then
compared and filtered according to their corresponding intervals, using a recently
proposed possibility degree formula. Three examples, with two, three and many
objectives are used to show the benefits of the proposal.

Keywords: Multi Objective Optimization, Solutions of Interest, Preferences ar-
ticulation

1 Introduction

Most of the problems arising in the current social and technological context require
the simultaneous optimization of several conflicting objectives. These multiobjec-
tive (and many objective) optimization problems (MOPs, in what follows) are
approximately solved through specific optimization algorithms that try to obtain
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a set of solutions which hopefully are close to the so-called true Pareto Optimal
Set.

Research on these algorithms (mainly those belonging to the class of evolu-
tionary algorithms) has been prolific in the last decades. Despite their type, all
of them rely on the fact that “the ultimate goal of multiobjective optimization is
to help the decision maker find solutions that meet, at most, his/her preferences”
[18].

In this context, the motivation for this work comes from the following observa-
tion: while the Pareto Front of a given MOP is unique, the selected solution will depend

on the preferences of the Decision Maker (DM).
The relation between the DM’s preferences and MOPs has many facets that

can, essentially, be grouped into two sets. Firstly, to incorporate the preferences in
the solving algorithm (e.g. using goals, weights and reference vectors) thus guiding
the searching algorithm to specific regions of the solutions’ space. These methods
can be classified as a priori or progressive approaches [8].

Secondly, to use the preferences after the optimization process to help the
DM selecting a solution. These approaches are known as a posteriori and consist,
for example, in applying some techniques to help the DM to select his/her most
preferred solutions [6]. In this case, the DM does not need to provide any preference
information prior to the search.

A crucial point here is the number of solutions that the DM will have to
manage. As stated in [8]:

“The number of elements of the Pareto optimal set that tends to be
generated is normally too large to allow an effective analysis from the DM.”

Moreover, in [9], one can read:

“The DM is interested in discovering only the zone of the Pareto front
corresponding to his/her preferences, instead of the whole Pareto front. It
is essential to provide the DM with a small number of satisfactory alterna-
tives, due to the human cognitive limitations [...].”

And a similar conclusion is given in [21]:

“The empirical investigation revealed dysfunctional effects of informa-
tion overload if the respondents were provided with ten or more alternatives
in the choice set [...].”

Therefore, there is a need to develop approaches to help the DM to find this set
of Solutions of Interest (SOI, in what follows) that can be vaguely defined as those
solutions that are preferred by the DM [4]. Several measures were proposed to
identify the SOI (we will comment them later), but to the best of our knowledge,
they focus on a more geometric interpretation of the solutions in the Pareto Front,
losing the DM’s perspective.

The aim of this contribution is to present an approach to identify a set of
SOI from a large set of (already known) non-dominated solutions taking the DM’s
preferences into account, which is a clear distinction from existing methods. Thus,
in the context of multiobjective optimization, this is an a posteriori approach. The
DM’s preferences are given as a linear ordering of the objectives, therefore partially
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avoiding the issue recognized in [26]: “in many cases the user does not have a clear

preference when little knowledge about the problem is available”.
While other approaches search for SOI on an n-dimensional objectives space,

this proposal relies on comparing solutions in a bi-dimensional space using a pos-
sibility distribution function whose values are later used to filter out and reduce
the number of SOI.

The paper is organized as follows. Section 2 introduces some preliminary con-
cepts of Multiobjective Optimization; other approaches to detect SOI; also possi-
bility functions to make interval numbers comparison. The proposed approach is
detailed in Section 3. Three examples using problems with two, three and many
objectives are shown in Section 4 together with an overall discussion of the results.
The conclusions are outlined in Section 5.

2 Background and Related Works

We recall here some basic concepts about multiobjective optimization and we
comment on other approaches to detect SOI. Then we fully describe Possibility-
degree formulae for interval numbers comparison.

2.1 Multiobjective Optimization

Basic definitions associated with MOPs are recalled below. They are adapted from
[8], considering maximization problems.

Definition 1 (Multiobjective Optimization Problem, MOP): A MOP is de-
fined as maximizing F (x) = (f1(x), . . . , fn(x)) subject to gi(x) ≤ 0, i = 1, . . . , p,
and hj(x) = 0, j = 1, . . . , q, x ∈ Ω. A MOP solution maximizes the components of
a vector F (x) where x is a k-dimensional decision variable vector x = (x1, . . . , xk)
from some universe Ω. It is noted that gi(x) ≤ 0 and hj(x) = 0 represent con-
straints that must be fulfilled while maximizing F (x) and Ω contains all possible
x that can be used to satisfy an evaluation of F (x).

The term many objective optimization problem is applied when the number of
objectives is greater than three.

Definition 2 (Pareto Dominance): A vector u = (u1, . . . , un) is said to dominate
another vector v = (v1, . . . , vn) (denoted by u � v) if, and only if, u is partially
greater than v, i.e., ∀i ∈ 1, . . . , n, ui ≥ vi ∧ ∃i ∈ 1, . . . , n : ui > vi.

Definition 3 (Pareto Optimal Set): For a given MOP, F (x), the Pareto Optimal
Set, P∗, is defined as:

P∗ := {x ∈ Ω | ¬∃x′ ∈ Ω | F (x′) � F (x)}.

Definition 4 (Pareto Front): For a given MOP, F (x), and Pareto Optimal Set,
P∗, the Pareto Front PF∗ is defined as:

PF∗ := {u = F (x)|x ∈ P∗}.
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2.2 On Detecting Solutions of Interest

There are two pathways to provide the DM with a reduced set of non-dominated
solutions.

The first involves incorporating the DM’s preferences in the solving algorithm
thus guiding the searching algorithm to a “Region of Interest” (ROI); and secondly,
to use some strategy after the optimization process to help the DM in selecting a
solution. Methods within the first set require the DM to describe his/her prefer-
ences as desired goals, reference points or a pre-ordering on the objectives prior to
the search. These a priori approaches have been widely used in the past. The in-
terested reader can check some recent reviews on the topic [26,20,18]. As has been
recently recognized in [18], the definition of ROI is vague: it could be any region of
the Pareto Front, controlling its size is far from trivial, and just concentrating on
a pre-defined ROI can lead the user to lose some relevant information regarding
the boundaries of the Pareto Front. To overcome these problems, the authors pro-
pose, in the context of decomposition-based evolutionary multiobjective methods,
a systematic way to incorporate the DM’s preference information, either a priori
or interactively, based on a nonuniform mapping scheme of the reference points
that guide the search. The DM is required to define an expected value on each
objective.

Secondly, the reduction of a Pareto Front (obtained by any means) to a smaller
set of “diverse solutions” can be attained using some sort of geometric interpre-
tation. Following [5], several approaches exist for detecting SOI in multiobjective
problems with more than two objectives.

The first such approach is the maximum convex bulge [11]. It is a purely geo-
metric approach that selects a subset of those located in the “maximum bulge” of
the Pareto Optimal Front as SOI. The second one is the hypervolume contribution
[32]. The SOI are those that produce the maximum gain in the hypervolume. It is
computationally expensive and it is also a purely geometric approach. The third
one is the local curvature [4] approach. Some curvature is calculated from a given
solution and its neighborhoods, and those with the highest curvature are consid-
ered more preferable. The whole approach may fail if the Pareto Front is neither
continuous nor symmetric The Expected Marginal Utility Measure (EMU) [7]),
the fourth approach, is aimed at identifying the so-called “knee solutions”. The
knee is defined as a solution on the tradeoff surface, where significant compromise
needs to be made in at least one objective in order to obtain small gains in another.
This is a stricter definition than “solution of interest”. Although EMU seems to
work well with 2-3 objectives, it is observed that “as the number of objectives
increases, the proportion of solutions with nonzero EMUs decreases and there are
very few solutions with unique EMU values”[5]. To overcome this limitation, the
authors in [5] proposed EMUr where, using recursive calculations of EMU, they
are able to identify K unique sparse SOI.

Some aspects are common in these works: first, as no information regarding
the DM’s preferences is required, their authors proposed some metrics to detect
solutions that are “interesting” from a geometrical point of view; and second, as
these metrics focus on different features, they may end up suggesting a completely
different set of solutions.
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2.3 Possibility-degree formulae for interval numbers comparison

In our proposal, every solution in the Pareto Front will be assigned to an interval,
thus we will compare solutions in terms of their corresponding intervals. Compar-
ing and ranking interval numbers is a widely studied topic. Although reviewing
the methods in the literature is out of the scope of this work, some references are
given in order to offer a general view of the topic.

Since the initial work from Moore [22] on interval arithmetic, many approaches
have been proposed, ranging from establishing order relations between interval
numbers (which are summarized in [14]) to ranking methods that depend on prob-
abilistic or fuzzy concepts [16,23].

In the present work, the focus is on using possibility distributions for interval
numbers comparisons, following the approach presented in Liu et al. [19]. The
authors propose a formulation of a possibility degree to compare (and thus rank)
intervals depending on a function that reflects the attitude, idea and knowledge
of the DM. Moreover, under certain conditions, Liu’s proposal is able to capture
the behaviour of other approaches.

Let A = [al, ar], B = [bl, br] be two nonnegative interval numbers with al, ar, bl, br ∈
R+

0 . The possibility degree of A being greater than B, namely P (A ≥ B), proposed
in [19] is defined as follows:

1. if A ∩B = ∅,

P (A ≥ B) =

{
0 ar ≤ bl
1 al ≥ br

(1)

2. if A ∩B 6= ∅,

P (A ≥ B) =

∫ ar
bl

f(x)dx∫ ar
bl

f(x)dx+
∫ br
al
f(x)dx

, (2)

where f(x) describes the attitude of the DM.

Three typical functions for modeling the DM’s attitudes are suggested: f(x) = c

a neutral attitude, f(x) = 1/x a pessimistic attitude1 and f(x) =
√
x an optimistic

attitude.
When A∩B 6= ∅ the possibility degree for each attitude is calculated as follows:

Neutral attitude → P (A ≥ B) =
ar − bl

ar − al + br − bl
(3)

Pessimistic attitude → P (A ≥ B) =
ln ar − ln bl

ln ar − ln al + ln br − ln bl
(4)

Optimistic attitude → P (A ≥ B) =
ar
√
ar − bl

√
bl

ar
√
ar − al

√
al + br

√
br − bl

√
bl

(5)

The previous formulation with a neutral attitude (Eq. (3)) is able to capture the
behaviour of other approaches [10,12,25,27,31]. Also, the formulations proposed

1 For certain attitude functions like f(x) = 1/x the intervals must be defined inR+.



6 Marina Torres et al.

P (A ≥ B = [0.3, 0.7])
Neutral Optim. Pessim.

A0 = [0.1, 0.2] 0 0 0
A1 = [0.1, 0.6] 0.33 0.35 0.26
A2 = [0.3, 0.6] 0.43 0.42 0.45
A3 = [0.3, 0.7] 0.50 0.50 0.50
A4 = [0.4, 0.8] 0.63 0.62 0.64
A5 = [0.5, 0.7] 0.67 0.64 0.72
A6 = [0.8, 0.9] 1 1 1

Table 1 Comparison of seven intervals Ai against a reference one B = [bl, br] = [0.3, 0.7].
The evaluations show the value of P (A ≥ B) with Neutral, Optimistic and Pessimistic DM’s
attitudes.

in [30,33] are equivalent to some of the above [17]. That means that a proper use
of the formulation proposed by Liu et al. allows the same results as other methods
to be obtained while, at the same time, the interval comparison is easily modified
to consider different DM’s attitudes.

Table 1 shows seven cases of comparison between intervals according to the
previous definition of possibility degree and three different attitudes. For each
interval A = {A0, A1, A2, A3, A4, A5, A6} the possibility degree of A being greater
than B, P (A ≥ B = [0.3, 0.7]) is displayed. An interval Ai has a possibility degree
greater that 0.5 if the interval lies “above” B, and less than 0.5 if it lies “below”.
Note that, with all attitudes, the interval A0 = [0.1, 0.2] has zero possibility of being
greater than interval B = [0.3, 0.7] (it has no overlapping and is always lower than
B) and the interval A6 = [0.8, 0.9] has a possibility of 1 (it has no overlapping and
is always greater than B). All attitudes also lead to P (A3 ≥ B) = 0.5 because an
interval always has a possibility degree of 0.5 of being greater than itself.

In what follows, and for the sake of clarity and simplicity, the neutral attitude
detailed in Eq. (3) will be used.

3 An approach to identify Solutions of Interest

In this section we describe our proposal: an approach to identify a set of “Solutions
of Interest” (SOI) from a possibly large Pareto Front.

The general idea is to assign an interval to every solution. The intervals repre-
sent the range of potential scores that a solution can attain after an aggregation
process. Then, using the possibility degree formulae, a comparison between those
intervals is made which is later used to filter them obtaining the set of SOI. The
overall approach is shown with the workflow in Fig. 1. There are four steps, namely,
1) intervals calculation, 2) reference interval identification, 3) intervals comparison
and 4) set of SOI calculation. These steps are explained below.

3.1 Step 1: Intervals Calculation

After solving a given MOP by any means, we obtain a set of solutions sj ∈ P∗,
j = 1, . . . ,m that can be organized as a table where every row is a solution
{s1, s2, . . . , sm} and every column represents each objective function {f1, f2, . . . , fn}.



An Approach to SOI Identification 7

Fig. 1 Workflow diagram. The DM indicates the ordinal relation of objectives to calculate
the intervals. Then, a reference interval is identified and the comparison between intervals is
made according to the DM’s attitude, obtaining an interval’s evaluation. The last step is to
use these evaluations to calculate the SOI.

We denote as fij = fi(sj), the value of the solution sj under the objective function
fi. Without loss of generality, it is assumed that fij ∈ [0, 1], i = 1, . . . , n, j = 1...m.

One simple way to detect SOI is to assign a score to every solution and then
rank them, keeping the top ones. This can be readily done using aggregation
functions. An aggregation function ag(F (sj),W ), ag : [0, 1]n → [0, 1] combines the
inputs (fij) into a single value (score) that can be later used to sort the solutions.
There is a great diversity of aggregation functions. The reader may be referred to
[3] for a complete introduction to the topic. One well known aggregation function
is the weighted sum:

ag(F (sj),W ) =
n∑
i=1

wifij , (6)

where W = {w1, w2, . . . , wn} with
∑
wi = 1 and wi ∈ [0, 1].

Regarding W , it should be noted that a) weights’ determination is far from
trivial and studies have shown that the use of aggregation affects the quality of
the decision [15], and b) any specific selection of the set of weights W leads to a
different score for every solution. Possible sets of weights could be obtained using
Surrogate weighting methods [1] with the most common ones being the Rank Sum
(RS) weights, Rank Reciprocal (RR) weights [24], Rank Order Centroid (ROC)
weights and Equal (EW) weights [2] or more sophisticated methods [28,29] in the
event of uncertain linguistic environments.

In this proposal, it assumed that the DM’s preferences are given using an ordi-
nal relation among the objectives (thus avoiding that the DM provides a specific
set of weights). We shall assume, without loss of generality, that this relation is
f1 �p f2 �p · · · �p fn. Symbol �p should be read as “is at least as preferred to”.
In terms of the weights, this implies w1 ≥ w2 ≥ · · · ≥ wn.

The Potential Scores space is then defined as a bi-dimensional space that rep-
resents all the scores a solution sj can obtain under the assumption of w1 ≥
w2 ≥ · · · ≥ wn. It is built combining the inputs fij , i = 1, . . . , n, into two values
Ij = [Lj , Uj ] (the minimum and maximum scores that a solution sj can attain)
with Lj ≤ Uj and Lj , Uj ∈ [0, 1]. It holds that ag(F (sj),W ) ∈ [Lj , Uj ], ∀W satis-
fying w1 ≥ w2 ≥ · · · ≥ wn,

∑
wi = 1 and wi ∈ [0, 1].
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Now the question is how such interval bounds Lj and Uj could be obtained.
The solution of the two following independent Linear Programming (LP) problems,
where wi, i = 1, . . . , n are the decision variables, is the answer.

MIN Lj =
∑n
i=1 wifij , (7)

s.t.

w1 ≥ w2 ≥ · · · ≥ wn,∑n
i=1 wi = 1,

wi ∈ [0, 1].

MAX Uj =
∑n
i=1 wifij , (8)

s.t.

w1 ≥ w2 ≥ · · · ≥ wn,∑n
i=1 wi = 1,

wi ∈ [0, 1].

Nowadays, solving these linear programs is easy and very fast from a computa-
tional point of view. However, as stated in [1], there is no need to run an algorithm
like Simplex to solve these specific LP problems, because “by the well-known prop-

erties of a linear program, only the extreme points of the ranked weights need to be

considered to effect the desired optimum and they are readily available”. This implies
that, instead of solving the LP problems, solutions need to be scored only at the
extreme points (three sets of weights). Then, the minimum and maximum are se-
lected as Lj and Uj and the process is finished. Let n be the number of objectives,
thus, the sets of weights to consider are:

1. W = (1, 0, . . . , 0): all the weight is assigned to the most preferred objective.
2. W = (1/(n−1), 1/(n−1), . . . , 1/(n−1)): the least preferred objective is assigned

wn = 0 while the others get wi = 1/(n− 1), ∀i 6= n.
3. W = (1/n, 1/n, . . . , 1/n): all the objectives are equally important.

For example, having a decision problem with three objectives, n = 3, and
f1 �p f2 �p f3, every solution (out of m) needs to be evaluated on just these three
sets of weights: (1, 0, 0), (1/2, 1/2, 0) and (1/3, 1/3, 1/3). Then the maximum and
minimum value attained are selected.

Such process is linear in the number of objectives, thus the interval calculation
is O(n). Having m solutions, the computational complexity of this step is O(mn).
However, as the value of n is expected to be small2, the interval calculation can
be considered as constant. As a consequence, the whole process for this step can
be considered linear in the number of solutions (O(m)).

It should be noted that this space is always bi-dimensional regardless of the
number of objectives the initial MOP has. In other words, the approach can be
readily used in a Many objective Optimization Problem.

2 The benchmark provided in the Competition on Many-Objective Optimization at the 2018
IEEE Congress on Evolutionary Computation, included functions with 5, 10 and 15 objectives
https://www.cs.bham.ac.uk/~chengr/CEC_Comp_on_MaOO/2018/webpage.html
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Fig. 2 Example of interval representation Ij = [Lj , Uj ] for each solution sj . The reference
interval is I∗ = I5. The evaluation line represents the value P (Ij ≥ I∗).

The following step consists in comparing solutions using the corresponding
intervals in the Potential Scores space.

3.2 Steps 2 and 3: Reference Interval Identification and Intervals Comparison

The next step is to compare the solutions sj using their corresponding intervals. In-
stead of using a full pairwise comparison, which would be computationally expen-
sive, a reference solution s∗ will be identified, and then the intervals Ij = [Lj , Uj ]
will be compared against I∗ = [L∗, U∗] (the interval corresponding to s∗). It is
here that the intervals comparison detailed in Sec. 2.3 appears.

The reference solution s∗ is the one having the greatest lower bound value
among all intervals in the Potential Scores space3, i.e., the one which has I∗ =
[L∗, U∗] | L∗ ≥ Lj , ∀ j.

Then, for every solution sj , the possibility degree P (Ij ≥ I∗) ∈ [0, 1) is calcu-
lated following Eq. (2) (considering a neutral attitude, f(x) = c). As s∗ is the solu-
tion with the greatest lower bound there is no interval that verifies P (Ij ≥ I∗) = 1.
This means that there is no solution that always scores better than the chosen refer-
ence solution. The solutions sj such that their intervals Ij verify P (Ij ≥ I∗) = 0 will
always attain a lower score than s∗: there is no set of weights that can make sj bet-
ter than s∗. Also, the reference solution s∗ will always score 0.5 as P (I∗ ≥ I∗) = 0.5.

The reference interval identification is O(m). The comparison of two intervals
using the possibility distribution with a neutral attitude is O(1), thus the whole
process is O(m).

Figure 2 shows the evaluation of P (Ij ≥ I∗) where I∗ = I5 (the reference
solution is identified as s∗ = s5). This should be understood as follows: the pos-
sibility degree of interval I8 = [0.53, 0.99] being greater than the reference in-
terval I∗ = [0.55, 0.78] is calculated as P (I8 ≥ I∗) = 0.99−0.55

0.99−0.53+0.78−0.55 = 0.64.

3 In the special case where this interval is not unique, the reference interval is the one that
also has the greatest upper bound.
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In this example, the solutions s0, s1, s2 will never score better than the refer-
ence solution s∗ = s5 because their intervals on the Potential Scores space have
a possibility degree of zero of being greater than the reference interval, that is,
P ({I0, I1, I2} ≥ I∗) = 0. In general, every interval that lies completely below the
horizontal line (which represents L∗) has always zero possibilities of being greater
than the reference interval and, because of that, the corresponding solution is
always worse than the reference solution.

3.3 Step 4: Set of Solutions of Interest Calculation

Up to this point, the reference solution s∗ has been identified, every solution sj ∈
P∗ has an associated interval Ij = [Lj , Uj ] and the possibility degrees P (Ij ≥ I∗)
were calculated. The idea now is to filter out solutions to reduce the amount of
information the DM has to evaluate.

The set of SOI is defined as:

Sλ = {sj | P (Ij ≥ I∗) > λ}, (9)

where λ ∈ [0, 1) is a value selected by the DM and stands for the minimum
value of P that a solution needs to have in order to be considered as “interesting”.
It holds that if λ1 < λ2 then Sλ2

⊆ Sλ1
, the higher the value of λ, the smaller the

size of Sλ. Also, s∗ ∈ Sλ ⇐⇒ λ < 0.5.
Note that if the solutions are sorted in terms of their possibility degrees (these

can be done in O(mlog(m))), obtaining the different Sλ sets can be done in constant
time.

We shall see some examples using the solutions from Fig. 2. If λ = 0, the
set of SOI consists in the solutions sj with P (Ij ≥ I∗) > 0. Then, Sλ=0 =
{s3, s4, s5, s6, s7, s8}, 6 solutions have more than 0 possibility of being greater than
the reference. If λ = 0.3, the set of SOI is Sλ=0.3 = {s5, s6, s7, s8}.

Once the set of SOI is defined, the DM has a much smaller set of relevant
solutions to work with.

4 Illustrative Examples

In this section, using examples from optimization problems with two, three and
many objectives the behaviour of the proposal is illustrated.

Firstly, the DM needs to indicate his/her preferences among the objectives.
Without loss of generality, it is assumed f1 �p f2 �p · · · �p fn and fi ∈ [0, 1], ∀i.
Regarding the possibility distribution, a neutral attitude is considered (Eq. 3).

4.1 Example A: two objectives with random Pareto Front

The objective of this first example is to provide a clear view of the sets of SOI and
their sizes using the Pareto Front, shown in Fig. 3(a). It contains 300 solutions
from a two objective problem, generated using a randomized greedy algorithm
available at https://github.com/TorresM/DataSets.
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Example A: (a) the initial Pareto Front with 300 solutions. The solutions are evaluated
on two objectives with the objective 1 being preferred to the objective 2. Both of them are
normalized. In (b), the interval representation of Ij , I

∗ = [L∗, U∗] and the evaluations P (Ij ≥
I∗) for every solution sj are depicted. Solutions follow the same order in both plots. The value
of |Sλ| as a function of λ is shown in (c). Three sets of SOI are shown below, (d) Sλ=0, (e)
Sλ=0.25, and (f) Sλ=0.5, where the reference solution s∗ is identified with an arrow.

Initially, the intervals on the Potential Scores space are calculated and the ref-
erence interval I∗ is identified. In Fig. 3(a) the corresponding reference solution
is marked with an arrow. Next, the possibility degree values P (Ij ≥ I∗) are cal-
culated. Figure 3(b) shows both the scores’ intervals Ij and the possibility degree
P (Ij ≥ I∗) for every solution, sj . The reference interval corresponds to the solution
s151, with I∗ = I151 = [0.57, 0.60].

Figure 3(c) shows the variation of the number of SOI (|Sλ|) as a function of
λ. When λ = 0, |Sλ=0| = 189, which, in turn, means that 111 solutions are not
in the set of SOI Sλ=0. In other words, 1/3 of the initial solutions are readily
discarded: such solutions will never score better than the reference solution. As λ
increases, the size of Sλ decreases. For example, |Sλ=0.25| = 150, |Sλ=0.5| = 108,
|Sλ=0.6| = 85 and |Sλ=0.8| = 20. In this particular example, there is a clear linear
relation between λ and |Sλ|.

Now the question is where these SOI are located in the Pareto Front. It should
be recalled that f1 �p f2. Figure 3 shows the sets (d) Sλ=0, (e) Sλ=0.25 and (f)
Sλ=0.5 together with the location of the reference solution. Although s∗ 6∈ Sλ=0.5,
it is included in the plot for visualization purposes.
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Example B: (a) the initial Pareto Front with 1612 solutions from a three objective
problem. In (b), the interval representation Ij , I

∗ = [L∗, U∗] and P (Ij ≥ I∗) for every solution
sj . In (c), the value of |Sλ| as a function of λ. Three sets of SOI are shown below, (d) Sλ=0,
(e) Sλ=0.35, and (f) Sλ=0.7. The reference solution s∗ is identified with an arrow.

4.2 Example B: three objectives problem

In this second example, taken from [7], the approach is applied to a larger Pareto
Front corresponding to a three objectives optimization problem. The Pareto Front
has 1612 solutions and is depicted in Fig. 4(a). Here we have f1 �p f2 �p f3.

Firstly, the intervals on the Potential Scores space are calculated and the ref-
erence interval is identified: I∗ = I1391 = [0.41, 0.56]. The corresponding reference
solution is marked with an arrow. Then, the possibility degree of each interval
P (Ij ≥ I∗) is calculated.

The intervals and their evaluations are shown in Fig. 4(b). In order to facilitate
visualization, the solutions are ordered by their possibility degree value.

Figure 4(c) shows the size of SOI for different λ values. When considering
λ = 0, then |Sλ=0| = 879 which means that the number of “interesting solutions”
can be halved. If λ is further increased, smaller sets of SOI can be achieved. For
example, |Sλ=0.35| = 382 and |Sλ=0.7| = 23. At this point, the DM will have a
number of affordable solutions to consider.

It is also relevant to know the location of the SOI in the original Pareto Front.
The sets (d) Sλ=0, (e) Sλ=0.35 and (f) Sλ=0.7 are depicted in Fig. 4. Although
s∗ 6∈ Sλ=0.7, it is included in the plot for visualization purposes.
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(a)

(b)

(c)

Fig. 5 Example C: (a) interval representation and evaluation of P (Ij ≥ I∗) for every solution
sj . In (b), the value of |Sλ| as a function of λ is shown. In (c), the three solutions from set
Sλ=0.6 and the reference solution s∗ are depicted.

4.3 Example C: many objectives problem

The proposed approach is next applied to a real data case taken from [5]. The
Pareto Front consists of 100070 non-dominated solutions from a 9 objectives radar
waveform design problem originally published in [13].

Following the same steps as before, the intervals, the reference interval I∗ =
I93085 = [0.45, 0.69] and the possibility degrees P (Ij ≥ I∗) are calculated (elements
depicted in Fig. 5(a)). In order to facilitate the visualization, solutions are ordered
by their possibility degree value.

The relation between |Sλ| and λ is shown in Fig. 5(b). Departing from a set
of 100070 solutions, and considering the following sets of SOI: |Sλ=0| = 61271,
|Sλ=0.2| = 46949, |Sλ=0.4| = 25983 and |Sλ=0.6| = 3, reductions of 39%, 54%, 74%
and 99.9% are obtained, respectively.

The solutions in Sλ=0.6 are displayed in Fig. 5(c). Although s∗ 6∈ Sλ=0.6, it
is included in the plot for visualization purposes. It can be observed how such
solutions are better in terms of objective 1 (the most preferred one) and worse in
objectives 7,8 and 9 (the lesser preferred).
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4.4 Discussion

The key aspect of the proposal is to assign to every solution an interval representing
the potential scores it can achieve if a weighted aggregation of the objectives is
made. So interval construction and interval comparison are essential features.

Intervals construction relies on how the DM’ preferences are managed and how
the solution’s information is aggregated. Here preferences are given as a linear
ordering of the objectives. In this situation, upper and lower bounds for the solu-
tion’s interval can be efficiently calculated when the potential scores are obtained
through a weighted aggregation. This decision allows for a fast exploration of dif-
ferent objectives’ ordering, thus allowing the DM to explore different areas of the
Pareto Front.

Of course other aggregation functions may be used, but at the cost of poten-
tially increasing the computational complexity of the interval calculation step. In
other words, upper and lower bounds for the potential scores of the solutions could
be hard to calculate under other aggregation functions.

The intervals comparison is made using a possibility distribution. Instead of
doing a fully pairwise comparison among the solutions, we select a reference solu-
tion (the one with the highest lower bound) and just m− 1 comparisons are then
needed to rank the solutions in terms of the reference.

The use of such possibility distributions allow to include some DM’s charac-
teristics in the process. Considering a neutral attitude as an initial step allows
for a fast computation of the results. Again, other ways are possible to compare
intervals and may deserve further research.

The previous examples showed the role of the parameter λ as a filtering degree.
The ability to reduce the set of solutions in Sλ can be further analyzed exploring
the relation |Sλ|/|S| where |S| is the number of initial solutions on the Pareto
Front. The first element to highlight is that, by setting λ = 0, the SOI sets exclude
only those solutions that would never be interesting for the DM because they will
never attain a score better than that of the reference solution. Such solutions can
be readily discarded with no “risk”. For the examples A, B and C, Sλ=0 sets are
considerably reduced: |Sλ=0|/|S| = 0.63, |Sλ=0|/|S| = 0.55 and |Sλ=0|/|S| = 0.61,
respectively. This means that even when just those solutions sj with P (Ij ≥ I∗) = 0
are eliminated, the reductions are around 40% of the initial Pareto Front sets.
Smaller sets of SOI can be obtained with higher λ values, like |Sλ=0.8|/|S| = 0.07,
|Sλ=0.7|/|S| = 0.01 and |Sλ=0.6|/|S| = 0.01 for examples A, B and C, respectively.

So, a DM may start inspecting just a few solutions corresponding to some λ
values (like Sλ=0.6 in example C) and progressively reducing such λ for obtaining
more solutions. If DM wants a different kind of solutions, then a new preference
order should be defined and the calculations should be repeated. As we stated in
the proposal description, the computational complexity can be considered linear
in the number of solutions. For the biggest example (with 100070 solutions), the
whole process takes much less than a minute.

It is important to highlight that the number of objectives of the MOP is some-
how irrelevant as the comparison of solutions is done over the corresponding in-
tervals and, once the reference solution is identified, just m− 1 (with m being the
size of the Pareto Front) intervals comparisons are needed in order to obtain the
initial set of SOI.
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5 Conclusions

In the context of multi or many objective optimization problems (MOP), an a

posteriori approach is proposed to help the DM to obtain a reduced set of Solutions
of Interest (SOI) after the MOP solving process is completed.

This approach, in contrast with others based on geometrical features, associates
the concept of “interest” in terms of the DM’s preferences. Moreover, the DM’s
attitude can be incorporated into the possibility distribution function used to
compare intervals and a filtering degree (parameter λ) can be adjusted to control
the size of SOI’s set.

Overall, the proposal is a) simple to understand and implement, b) it has a low
computational complexity, and c) the examples clearly illustrate how a reduced
set of SOI can be obtained for multi and many objectives optimization problems.

Several lines of research arise at this point.

Once a smaller set of SOI is obtained, it could be interesting to apply a multi-
criteria decision making methods to rank the solutions using a more sophisticated
modeling of the DM’s preferences (like using pairwise comparison among solu-
tions). Also, the impact of using different aggregation functions for the intervals’
calculation needs to be assessed. Finally, the implementation of a visualization
tool, linking the solutions at the Potential Scores space with the Pareto Front and
the set of SOI may also help to better understand the relation among these spaces.
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