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Abstract
Concept drift is a change of the underlying data distribution which occurs especially with streaming data. Besides other

challenges in the field of streaming data classification, concept drift has to be addressed to obtain reliable predictions.

Robust Soft Learning Vector Quantization as well as Generalized Learning Vector Quantization has already shown good

performance in traditional settings and is modified in this work to handle streaming data. Further, momentum-based

stochastic gradient descent techniques are applied to tackle concept drift passively due to increased learning capabilities.

The proposed work is tested against common benchmark algorithms and streaming data in the field and achieved promising

results.

Keywords Stream classification � Concept drift � Robust Soft Learning Vector Quantization � Generalized Learning Vector

Quantization

1 Introduction

A key concept in machine learning is to separate the

training step of the model and the evaluation phase.

However, this is not applicable in the domain of stream

classification. In this field, it is assumed that data arrive

continuously, making the storage of data in memory

unfeasible. Further, not all training data are available at

training time, raising the need for constantly updating the

model, e.g., online or incremental. Stream classification

algorithms [1] tackle these requirements.

However, stream classifiers are prone to concept drift of

streaming data, which is a change of underlying distribu-

tion and could lead to a collapse in prediction performance.

There are various types of concept drift, i.e., incremental,

abrupt, gradual and reoccurring, and as a consequence, a

variety of approaches addressing these issues have been

proposed [13]. In general, these strategies are separated

into active and passive [22]. Active adaptation changes a

model noticeable. The passive ones use no explicit detec-

tion strategy, but are continually updating the model,

without awareness of concept drift.

The family of prototype-based classification algorithms,

the Learning Vector Quantization (LVQ) [19], receives

much attention as a potential stream classification algo-

rithm due to its online learning capabilities [30]. In [30], it

was also shown that the usage of weight decay has the

potential to improve the generalization error of the LVQ in

non-stationary environments. Other LVQ variants have not

been considered as stream classifiers yet, except from our

adaptive Robust Soft Learning Vector Quantization

(RSLVQ) in [16]. Therefore, we propose adaptive versions

of RSLVQ and Generalized Learning Vector Quantization

(GLVQ) which maximize the objective function with

momentum-based gradient descent/ascent in Sect. 4.1. This

is applied to increase learning speed and rapid adaptation to

occurring concept drifts. As we show in the experiments,

the LVQ variants with constant learning rate perform

considerably worse than with weight decay or momentum-

based gradient descent.
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In summary, we provide the following contributions in

this article:

1. we apply momentum-based gradient techniques known

from deep learning to prototype-based stream learning

2. we provide two adaptive RSLVQ versions using

Adadelta and Adamax

3. we provide two adaptive GLVQ versions using

Adadelta and Adamax

4. we provide experiments comparing our proposed

methods against state-of-the-art classifiers without

hyperparameter optimization to get a realistic compar-

ison in non-stationary environments

The paper is structured as follows: Sect. 2 presents related

work on stream classification and adaptive gradient opti-

mization. In Sect. 3, the fundamentals and particularities of

streaming data and concept drift are shown. In Sect. 4, we

modify RSLVQ and GLVQ by replacing the gradient

optimization technique by adaptive optimization algo-

rithms. The comparison of our proposed methods to base-

line RSLVQ/GLVQ and standard algorithms on common

data streams in the field is presented in Sect. 5. Section 6

summarizes up the results of this work.

2 Related work

In the field of streaming data, different kinds of algorithms

successfully apply passive drift handling to evolving data

streams, which is often done by using a fixed size window

of recent samples.

In [22], a modern approach of a self-adjusting memory

version of the K-Nearest Neighbor (KNN) which is called

SAM–KNN is proposed. SAM–KNN is developed to

handle various types of concept drift, using biologically

inspired memory models and their coordination. The basic

idea is to store dedicated models for current and former

concepts, used according to the demands of the given sit-

uation [22].

The Adaptive Windowing algorithm (ADWIN) [2] is a

drift detector and works by keeping updated statistics of a

variable sized window, such that changes can be detected.

It performs cuts in its window to better adapt to the

learning algorithms. Kolmogorv–Smirnov Windowing

(KSWIN) [25] follows a similar concept, but uses a more

sensitive statistical test.

For evolving data stream, classification tree-based

algorithms, like the famous Hoeffding Tree (HT) [9], are

common [6]. To address the problem of concept drift, an

adaptive HT with ADWIN as drift detector was published

in [3] and showed better prediction performance on

evolving data streams as the classical HT.

Also, ensemble models are used to combine multiple

classifiers [14] in the streaming domain. The OzaBagging

(OB) [23] algorithm is an online ensemble model that uses

different base classifiers. For the use of concept drift

detection, this ensemble model can be again combined with

the ADWIN algorithm to the OzaBagging ADWIN (OBA)

algorithm. For a comprehensive data stream description,

see [21].

Also, LVQ algorithms first introduced by [19] have

received attention as potential stream classification algo-

rithms [30]. The Robust Soft Learning Vector Quantization

(RSLVQ) [29] is a promising probabilistic classifier, which

assumes class distributions as Gaussian mixture models

learned via Stochastic Gradient Ascent (SGA) and has only

been evaluated as a stream classifier in a previous version

of this article [16] so far. Also, Generalized Learning

Vector Quantization has not been considered as a stream

classifier yet.

In the advent of deep learning, variations in SGD

algorithms receive more and more attention. A comparison

is given in [27]. It has been shown that momentum-based

gradient descent algorithms like Adadelta [34] and

RMSprop [33] converge faster to better optimums as tra-

ditional approaches. Both of these algorithms are exten-

sions of the Adagrad [10] algorithm. Note that momentum-

based gradient descents have been applied to a prototype-

based learner for stationary environments in [20], showing

Adam gradient update technique as well working algo-

rithm. Furthermore, there is a proposed extension of Adam

which is called AdaMax [18], which has not been consid-

ered as update technique of a LVQ algorithm yet.

In this work, we reformulate Adadelta and AdaMax as

SGA optimizer and apply it to RSLVQ and to GLVQ as a

gradient descent optimizer.

3 Streaming data and concept drift

3.1 Streaming data

In the context of supervised learning, a data stream is given

as a sequence S ¼ fs1; . . .; st; . . .g of tuples si ¼ fxi; yig,
with potentially infinite length. A tuple si ¼ fxi; yig con-

tains the data point xi 2 Rd and the respective label yi ¼
f1; . . .;Cg whereby st arrives at time t. A classifier predicts

labels ŷt of unseen data xt 2 R employing a prior model

ht�1, i.e., ŷt ¼ ht�1ðxtÞ. The prior model and st are subse-

quently included into the new model ht ¼ learnðht�1; stÞ.
This behavior is called immediate or test-then-train eval-

uation. It also means that the learning algorithm trains for

an infinite time and that at time t the classifier is (re-)-

trained on the just arrived tuple.
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3.2 Concept drift

Concept drift is the change of joint distributions of a set of

samples X and corresponding labels y between two points

in time:

9X : pðX; yÞt 6¼ pðX; yÞt�1 ð1Þ

The term virtual drift refers to a change in distribution pðXÞ
for two points in time, without affecting pðyjXÞ. Note that

we can rewrite Eq.(1) to

9X : pðXÞtpðyjXÞt 6¼ pðXÞt�1pðyjXÞt�1; ð2Þ

A virtual concept drift may appear in conjunction with a

real concept drift.

Figure 1 shows the four common drift types. For a

comprehensive study of these concept drift types, see [13].

The stability–plasticity dilemma [13] defines the trade-off

between incorporating new knowledge into models (plas-

ticity) and preserves prior knowledge (stability). This

prevents stable performance over time because on the edge

of a drift, significant efforts go into learning and testing

against new distributions.

4 Adaptive learning vector quantization

4.1 Robust Soft Learning Vector Quantization

The Robust Soft Learning Vector Quantization (RSLVQ)

[29] is a probabilistic prototype-based classification algo-

rithm. Given a labeled dataset X ¼ fðxi; yiÞ 2 Rd�
f1; . . .;Cggni¼1, with data points xi, labels yi, C as the

number of classes, d the number of features and n as the

number of samples, the RSLVQ algorithm trains a

(a) Incremental Drift (b) Abrupt Drift

(c) Reoccurring Drift
(d) Gradual Drift

Fig. 1 Different types of drifts, one per sub-figure and illustrated as

data mean. The colors mark the dominant concept at a given time

step. The vertical axis shows the data mean and the transition from

one to another concept. Given the time axis, the speed of the transition

is given. The figures are inspired by [13]
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prototype model such that the error on the classification

task is minimized. The RSLVQ model consists of a set of

m prototypes H ¼ fðhj; yjÞ 2 Rd � f1; . . .;Cggmj¼1. Each

prototype represents a multi-variate Gaussian model, i.e.,

Nðhj; rÞ, approximating an assumed class dependent

Gaussian mixture of X. The goal of RSLVQ algorithms is

to learn prototypes, representing the class dependent dis-

tribution, i.e., corresponding class samples xi should be

mapped to the correct class or Gaussian mixture based on

the highest probability. The RSLVQ algorithms maximize

the maximum likelihood ratio as objective function:

EðX; yjHÞR ¼
Xn

i¼1

pðxi; ykjHÞ
pðxijHÞ ð3Þ

where pðxi; ykjHÞ is the probability density function that x

is generated by the mixture model of the same class and

pðxijHÞ is the overall probability density function of x

given H. Equation (3) will be optimized with SGA, i.e.,

hlðtþ 1Þ ¼ hlðtÞ � a�
ðPyðljxÞ � PðljxÞÞðx� hlÞ; cl ¼ y;

�PðljxÞðx� hlÞ; cl 6¼ y:

�

ð4Þ

where PyðljxÞ is the assignment probability that x is

assigned to the component l of the mixture model of same

class prototype hy and PðljxÞ is the probability that x is

assigned to the component l of the mixture using all clas-

ses. The parameter a� ¼ a
r2 is the learning rate. For a more

comprehensive derivation, see [29].

4.2 Generalized Learning Vector Quantization

GLVQ is a prototype-based classifier and has many things

in common with RSLVQ. However, in GLVQ prototypes

are not representing a Gaussian model and prototypes are

updated using the winner-takes-all rule. Assume hþ rep-

resents the nearest prototype of the same class as x and h�
represents the nearest prototype belonging to a different

class than x. Consider the relative distance difference:

lðxÞ ¼ dþ � d�
dþ þ d�

; ð5Þ

where dþ is the distance between hþ and x and d� is the

distance between h� and x. lðxÞ is in ½�1;þ1�, and if l is

negative, x is classified correct, else it is classified incorrect.

To reduce error rates, lðxÞ should be minimized for all input

vectors. Hence, the goal is to minimize a cost function S:

S ¼
Xn

i¼1

f ðlðxÞÞ; ð6Þ

where n is the number of input vectors for training and f ðlÞ
is a monotonically increasing function [28]. To minimize

the cost function, the prototypes hþ and h� are updated by

gradient descent, using a learning rate a:

hlðt þ 1Þ ¼ hlðtÞ � a
oS

ohl
; l 2 fþ;�g ð7Þ

Using squared euclidean distance dl ¼ kx� hlk2, we can

obtain the following learning rule

[28]:

hlðt þ 1Þ ¼ hlðtÞ þ
a
of

ol
d�

ðdþd�Þ2
ðx� hþÞ; l ¼ þ;

�a
of

ol
dþ

ðdþ þ d�Þ2
ðx� h�Þ; l ¼ �:

8
>>><

>>>:

ð8Þ
of
ol is a kind of update weight depending on x. To decrease

the error rate, it is effective to update the prototypes mainly

by the input vectors near the class boundaries, so that

decision boundaries are shifted toward Bayes limits.

Hence, f ðlÞ should be a nonlinear monotonically increas-

ing function and it is considered that the classification

ability depends on the definition of f ðlÞ. We choose
of
ol ¼ f ðl; tÞð1� f ðl; tÞÞ, where t is the time step and f ðl; tÞ
is a sigmoid function with 1

1þe�lt as proposed in [28].

4.3 Momentum-based optimization

One of the most common algorithms to optimize error

functions is the gradient descent/ascent algorithm, and in

particular the stochastic formulations SGD and SGA [27].

In the field of Deep Learning, the classic SGA has been

further modified to reduce common problems, like sensi-

tivity to steep imbalanced valleys, i.e., areas where the cost

surface curves are much more steep in one dimension than

in another [32], which are common around local optima.

Momentum [24] is a method that helps accelerate SGA

in the relevant direction and dampens oscillations. It does

this by adding a fraction c of the update vector v of the

previous time step to the current update vector:

vt ¼ cvt�1 þ grhJðhÞ

h ¼ h� vt
ð9Þ

The momentum term c is usually set to 0.9 or a similar

value [18, 27, 33] but can be seen as a hyperparameter

which can be optimized, e.g., via grid search. A common

range for optimizing c is [0.9, 0.99] [34], while lower

decay rates like c ¼ 0:5 are appropriate when having larger

gradients, e.g., at the first iterations of optimization [33].

Effective momentum-based techniques are Adagrad,

Adadelta, Adam, AdaMax, and RMSprop [27]. While

Adagrad was the first publication of these three algorithms,

RMSprop and Adadelta are further developments of
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Adagrad, which both try to reduce its aggressive, mono-

tonically decreasing learning rate [34]. These momentum-

based algorithms diverge to a local optima much faster and

sometimes reach better optima than SGA [27].

Due to the fact that momentum-based algorithms make

larger steps per iteration, it should adapt faster to new

concepts. Thus, we implemented this idea into the RSLVQ

and GLVQ and replaced the gradient update rule by Ada-

delta and AdaMax.

4.4 Adadelta

Instead of accumulating all past squared gradients, like in

the Adagrads momentum approach, Adadelta restricts the

window of accumulated past gradients to some fixed size

w.

While it could inefficiently store all w squared gradients,

the sum of gradients is recursively defined as a decaying

average of all past squared gradients instead. The running

average E½g2�t at time step t of the squared gradient g2 then

depends (as a fraction c similarly to the Momentum term)

only on the previous average and the current gradient:

E½g2�t ¼ cE½g2�t�1 þ ð1� cÞg2t ð10Þ

The decay rate c should be set to a value of around 0.9 [10].
Hence, in [10] another exponentially decaying average

is introduced, this time not of squared gradients but squared

parameter updates:

E½Dh2�t ¼ cE½Dh2�t�1 þ ð1� cÞDh2t ð11Þ

Thus, the update of the root mean squared (RMS) error of

parameters is:

RMS½Dh�t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½Dh2�t þ �

q
ð12Þ

Because of the reason that RMS½Dh�t is not known, it is

approximated by the RMS of parameter updates until the

previous time step RMS½Dh�t�1. Finally, the learning rate g
of the previous update rule is replaced with RMS½Dh�t�1,

and we receive the following equation for updating

Adadelta:

Dht ¼ �RMS½Dh�t�1

RMS½g�t
gt

htþ1 ¼ ht þ Dht

ð13Þ

Due to the fact that the learning rate g has been eliminated,

it does not have to be optimized when using Adadelta,

which keeps the number of hyperparameters small [27].

4.4.1 Robust Soft Learning Vector Quantization

To exchange the SGA learning of the RSLVQ with the

Adedelta algorithm, the learning rule of the RSLVQ is

replaced by the update rule provided in Eq. (13).

The prior and posterior probabilities are calculated the

same way as in the RSLVQSGA. Based on the posterior and

prior, the gradient is calculated over the objective function

of the RSLVQ:

gt ¼
PyðljxÞ � PðljxÞÞðx� hlÞ; cl ¼ y;

�PðljxÞðx� hlÞ; cl 6¼ y:

�
ð14Þ

In the next step, the running average of past squared gra-

dients E½g2� is updated by Eq. (10). Now the gradient

update at time step t can be calculated:

Dht ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½Dh2�t�1 þ �

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½g2�t þ �

p gt
ð15Þ

Afterward, the prototype update Dht has to be applied as

gradient ascent:

htþ1 ¼ ht � Dht ð16Þ

Finally, the squared parameter updates E½Dh2� are stored by
Eq. (11).

4.4.2 Generalized Learning Vector Quantization

Exchanging the gradient descent technique of GLVQ is

done by replacing the update of Eq. (8) by a gradient

calculation:

gt ¼
a
of

ol
d�

ðdþd�Þ2
ðx� hþÞ; l ¼ þ;

�a
of

ol
dþ

ðdþ þ d�Þ2
ðx� h�Þ; l ¼ �:

8
>>><

>>>:
ð17Þ

The other steps are the same as for introducing Adadelta

into RSLVQ. Only Eq. (14) is replaced by Eq. (17) and the

prototype update is a gradient descent instead of ascent:

htþ1 ¼ ht þ Dht ð18Þ

4.5 AdaMax

AdaMax is an extension of Adam algorithm [18]; thus, we

will introduce Adam first. Adam stores an exponentially

decaying average of past squared gradients vt like Ada-

delta. Additionally, it keeps an exponentially decaying

average of past gradients mt. It also has two separate decay

factors: b1 decays mt and b2 decays vt. The decaying

average of past gradients is computed as follows:
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mt ¼ b1mt�1 þ ð1� b1Þgt ð19Þ

The corresponding decaying average of past squared

gradients:

vt ¼ b2vt�1 þ ð1� b2Þg2t ð20Þ

As mt and vt are initialized as vectors of zeros, Adam is

biased to 0, especially during the initial time steps and

especially when the decay rates are small (i.e. b1 and b2 are
close to 1).

Thus, the authors of [18] introduce a bias correction for

the first and second moment estimates:

m̂t ¼
mt

1� bt1

v̂t ¼
vt

1� bt2

ð21Þ

Finally, these parameters are used to update h:

htþ1 ¼ ht �
gffiffiffiffi

v̂t
p

þ �
m̂t ð22Þ

Here g is a learning rate like in vanilla gradient descent.

Recommended default values for Adam, as well as Ada-

Max, are b1 ¼ 0:9, b2 ¼ 0:999 and � ¼ 10�8.

In Adam, vt scales the gradient inversely proportional to

the L2 norm of the past gradients and current gradients

kgtk2:

vt ¼ b2vt�1 þ ð1� b2Þkgtk2 ð23Þ

This update can be generalized to the Lp norm:

vt ¼ b2vt�1 þ ð1� b2Þkgtkp ð24Þ

Norms for large p values become numerically unstable;

thus, L1 and L2 norm are most common in practice.

However, L1 also exhibits stable behavior [27]. Hence, in

[18] AdaMax is proposed and shown that vt with L1
converges to the following more stable value. We denote

the infinity constrained vt of Adam as ut:

ut ¼ b12 ut�1 þ ð1� b12 Þkgtk1

¼ maxðb2ut�1; kgtkÞ
ð25Þ

Now Eq. (22) is transformed into:

htþ1 ¼ ht �
g
ut
m̂t ð26Þ

Due to the fact that ut relies on a max operation, it is not

suggestible to bias toward zero as in Adam. Hence, a bias

correction for ut is not necessary. In this paper, we use a

learning rate g of 0.001.

4.5.1 Robust Soft Learning Vector Quantization

To transform the update rule of RSLVQ to AdaMax, we

start by calculating gt by Eq. (14). Then, mt is calculated

via Eq. (19). We then do the bias correction of mt, fol-

lowing Eq. (21) to obtain m̂t. Afterward, we obtain ut by

using Eq. (25) and calculating the prototype update by an

ascending version of Eq. (26):

htþ1 ¼ ht þ
g
ut
m̂t ð27Þ

Note that u0 and m0 are vectors of zeros.

4.5.2 Generalized Learning Vector Quantization

To change the gradient descent technique of GLVQ to

AdaMax, we also start by calculating gt via Eq. (14).

Furthermore, we can again calculate mt by Eq. (19) and its

bias corrected version m̂t via Eq. (21). Afterward, we

obtain ut via Eq. (25) and perform the final prototype

update by Eq. (26). As we can see, it is the same procedure

for exchanging prototypes for both LVQ versions expect

for the gradient calculation and final update calculation.

Note that we can now address the stability plasticity

dilemma [13] of all presented algorithms by our decay

factors c; b1; b2.

5 Experiments

5.1 Setup

We compared our classifiers against other state-of-the-art

stream classifiers. Evaluation is done using the test-then-

train method as described in Sect. 3. Since accuracy can be

misleading on datasets with class imbalances, we also

report Kappa statistics j. Kappa is a statistic for imbal-

anced classes, which compares the classifiers performance

with those of a chance classifier. If the classifier is always

correct, then j ¼ 1. If its predictions coincide with the

correct ones as often as those of a chance classifier, then

j ¼ 0 [4].

To test if there are significant differences between the

performance of the algorithms, the Friedman [11] test with

a 95 % significance level is performed followed by the

Bonferroni–Dunn [8] post hoc test.

Nine synthetic and three real data streams are used in the

experiments. The synthetic data streams include abrupt,

gradual, incremental drifts and one stationary data stream.

The real-world data streams have been thoroughly used in

the literature [15, 22] to evaluate the classification perfor-

mance of data stream classifiers and exhibit multi-class,

temporal dependencies and imbalanced data streams with
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different drift characteristics. Note that the gradual and

abrupt drifts are generated by a concept drift generator

which switches the class data generator functions as

described below.

LED The LED data set simulates both abrupt and gradual

drifts based on the used generator. The generator was first

introduced in [7]. This data set yields instances with 24

Boolean features, 17 of which are irrelevant. The remain-

ing 7 features correspond to each segment of a seven-

segment LED display. The goal is to predict the digit

displayed on the LED display, where each feature has a 10

% chance of being inverted. To simulate drifts in this data

set, the relevant features are swapped with irrelevant fea-

tures. The gradual drift, as well as the abrupt drift, happens

at the 250,000th instance of the stream. The first drift

swaps three features and is replaced with a drift that swaps

seven features. LEDg simulates one gradual drift, while

LEDa simulates three abrupt drifts.

SEA The SEA generator is an implementation of the data

stream with abrupt concept drift, first described by Street

and Kim in [31]. It produces data streams with three

continuous attributes ðf1; f2; f3Þ. The range of values that

each attribute can assume lies between 0 and 10. Only the

first two attributes ðf1; f2Þ are relevant, i.e., f3 does not

influence the class value determination. New instances are

obtained through randomly setting a point in a two-di-

mensional space, such that these dimensions correspond

to f1 and f2. This two-dimensional space is split into four

blocks, each of which corresponds to one of the four

different functions. In each block, a point belongs to class

1 if f1 þ f2 � h and to class 0 otherwise. The threshold h
is used to split instances between class 0 and 1, assumes

values 8 (block 1), 9 (block 2), 7 (block 3), and 9.5 (block

4). Two important features are the possibility to balance

classes, which means the class distribution will tend to a

uniform one, and the possibility to add noise, which will,

according to some probability, change the chosen label

for an instance. In this experiment, the SEA generator is

used with 10 % noise in the data stream. SEAg simulates

one gradual drift, while SEAa simulates an abrupt drift.

Both drifts happen at the 250,000th instance. Figure 2

shows the sliding mean per class of one run of the SEAa

generator.

RBF This generator produces data sets utilizing the Radial

Basis Function (RBF). This generator creates several cen-

troids, having a random central position and associates

them with a standard deviation value, a weight, and a class

label. To create new instances, one centroid is selected at

random, where centroids with higher weights have more

chances to be selected. The new instance input values are

set according to a random direction chosen to offset the

centroid. The extent of the displacement is randomly drawn

from a Gaussian distribution according to the standard

deviation associated with the given centroid. Incremental

drift is introduced by moving centroids at a continuous

rate, effectively causing new instances that ought to belong

to one centroid to another with (maybe) a different class.

Both RBFm and RBFf were parametrized with 50 centroids,

and all of them drift. RBFm simulates a moderate incre-

mental drift (speed of change set to 0.0001) while RBFf
simulates a faster incremental drift (speed of change set to

0.001).

Sine The Sine generator [12] creates 4 numerical attributes

that vary from 0 to 1, where only 2 of them are relevant to

the classification task. A classification function is chosen

among four possible ones:

1. SINE1: Abrupt concept drift, noise-free examples. It

has two relevant attributes. Each of the attributes

values is uniformly distributed in [0; 1]. In the first

context, all points below the curve y ¼ sinðxÞ are

classified as positive.

2. SINE2: Consisting of the same attributes as SINE1.

The classification function is given by

y\0:5þ 0:3 sinð3pxÞ.
3. Reversed classification of SINE1.

4. Reversed classification of SINE2.

The abrupt drift is generated by changing the classification

function, thus changing the threshold. In our experiments,

we switch the classification function between SINE1 and

SINE2.

HYPER The HYPER data set simulates an incremental drift

and it was generated based on the hyperplane generator

[17]. A hyperplane is a flat, n� 1-dimensional subset of

that space that divides it into two disconnected parts. It is

possible to change a hyperplane orientation and position by

slightly changing its relative size of the weights wi. This

generator can be used to simulate time-changing concepts,

by varying the values of its weights as the stream pro-

gresses [4]. HYPER was parametrized with ten attributes

and a magnitude of change of 0.001. Also, 10 % noise was

added.

GMSC The Give Me Some Credit (GMSC) data set1 is a

credit scoring data set where the objective is to decide

whether a loan should be allowed or not. This decision is

important for banks since erroneous loans lead to the risk

of default and unnecessary expenses on future lawsuits.

The data set contains historical data on 150,000 borrowers,

each described by ten attributes.

1 https://www.kaggle.com/c/GiveMeSomeCredit.
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Electricity The Electricity data set2 was collected from

the Australian New South Wales Electricity Market, where

prices are not fixed. These prices are affected by the

demand and supply of the market itself and set every five

minutes. The Electricity data set contains 45, 312 instan-

ces, where class labels identify the changes in the price (2

possible classes: up or down) relative to a moving average

of the last 24 hours. An important aspect of this data set is

that it exhibits temporal dependencies [12].

Poker Hand The Poker Hand data set consists of 1,000,000

instances and eleven attributes. Each record of the Poker

Hand data set is an example of a hand consisting of five

playing cards drawn from a standard deck of 52. Each card

is described using two attributes (suit and rank), for a total

of ten predictive attributes. There is one class attribute that

describes the ‘‘Poker Hand’’ .

This data set has no drift in its original form since the

poker hand definitions do not change and the instances are

randomly generated. Thus, the version presented in [5] is

used, in which virtual drift is introduced via sorting the

instances by rank and suit. Duplicate hands were also

removed.

For comparison purposes, the configuration of synthetic

stream generators is taken from [15]. In most real-world

stream scenarios, we only have limited information about

our data at the beginning. Thus, hyperparameter opti-

mization cannot be done before creating the model. Hence,

we do not optimize hyperparameters in our experiments.

Note that in [16] hyperparameters of all classifiers were

tuned, which lead to different results.

As a rule of thumb, we use 2 prototypes per class for

RSLVQ classifiers; we use the default decay values for

Adadelta [34] and Adamax [18]. For HAT, OBA, and

SAMKNN, we used the default parameters as provided by

the scikit-multiflow framework.

Table 1 presents the data streams which are used in our

experiment, as well as their configuration by the drift types.

For a detailed description of the used data streams, see [15]

and [21]. The tests of RSLVQ and GLVQ are performed

with two prototypes per class.

Table 1 Configuration of the data streams (A: Abrupt Drift, G:

Gradual Drift, Im: Moderate Incremental Drift, If : Fast Incremental

Drift and N: No Drift)

Dataset #Instances #Features Type Drift #Classes

LEDA 1,000,000 24 Synthetic A 10

LEDG 1,000,000 24 Synthetic G 10

SEAA 1,000,000 3 Synthetic A 2

SEAG 1,000,000 3 Synthetic G 2

SineA 1,000,000 4 Synthetic A 2

SineG 1,000,000 4 Synthetic G 2

RBFM 1,000,000 10 Synthetic Im 5

RBFF 1,000,000 10 Synthetic If 5

HYPER 1,000,000 10 Synthetic If 2

POKR 829,201 11 Real – 10

GMSC 120,269 11 Real – 2

ELEC 45,312 8 Real – 2

(a) Sliding mean of datapoints w.r.t. class 0 (b) Sliding mean of datapoints w.r.t. class 1

Fig. 2 Sliding mean per class of the last 10,000 samples on data generated by one run of SEAa. Abrupt drift is introduced at time step 250,000

2 https://www.openml.org/d/151.
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5.2 Results

In the following, we present the experimental results.

Please note that in all tables, the values are represented in

percent, which means a Kappa score of 1 equals 100 % in

the table. At the beginning, we only compare different

LVQ versions against each other, to see which performs

best.

Table 2 shows the performance of the LVQ variants

based on their accuracy. Based on the overall average,

RSLVQAdamax performs best. Also, the Adadelta version of

RSLVQ performs significantly better than the vanilla ver-

sion. The improvements are statistically significant based

on a Friedman and Bonferroni–Dunn test. The better per-

formance does not seem to be related to a specific drift type

and can be seen on nearly every stream. However, the

vanilla RSLVQ performs better than the adaptive versions

on ELEC and POKR. Note that this was not the case when

hyperparameters were tuned as in [16]. The results for

GLVQ are very similar—the Adamax version is superior to

Adadelta and vanilla GLVQ. However, the improvements

are not significant here.

Table 3 shows the results of the LVQ variants according

to Kappa statistics. Again, RSLVQAdamax performs best

overall and on the synthetic streams. On the real-world

streams, the vanilla RSLVQ has superior results to every

other LVQ version and also to all other tested classifiers

(Table 5). This is due to its good performance on ELEC

and POKR, while the performance on the very imbalanced

GMSC dataset is near 0. In summary, RSLVQAdamax

performed statistically significant better than the vanilla

RSLVQ. Once again, the GLVQ behaves very similar,

which means overall the adaptive versions achieve a better

Kappa score, while being worse than its vanilla version on

ELEC and POKR. Also, the improvements between

GLVQAdamax and GLVQ are not significant here.

Both tables show that the adaptive versions lack accu-

racy and Kappa on ELEC and POKR streams. This is

probably caused by the fact that the decay does not make

sense on a dataset which is not time dependent and thus not

change over time like the cards of POKR. On all other

datasets, the adaptive versions are superior; in particular,

Adamax leads to remarkable improvements compared to

the both vanilla LVQ variants.

In the next experiment, we compare our LVQ versions

to other state-of-the-art streaming classifiers. We only use

GLVQ and RSLVQ based on Adamax, due to its perfor-

mance in the previous experiment. As non-LVQ classifiers,

we use OzaBaggingAdwin (OBA), Hoeffding Adaptive

Tree (HAT), and Self-Adjusting Memory K-Nearest

Neighbor (SAMKNN), which are common stream classi-

fiers [13, 14].

Table 4 shows the results comparing our LVQ variants

against state-of-the-art classifiers. SAMKNN is the best

performing classifier, followed by OBA and GLVQAdamax.

On the synthetic data, RSLVQAdamax is close above HAT

but still behind OBA and SAMKNN. However, overall

HAT and RSLVQAdamax are very similar according to their

accuracy. Also, GLVQAdamax is only close behind its

RSLVQ implementation. Note that while the results tend to

Table 2 Accuracy of the LVQ algorithms on synthetic and real-world streams

Dataset GLVQ GLVQ Adadelta GLVQ Adamax RSLVQ RSLVQ Adadelta RSLVQ Adamax

SEAA 84:64� 0:0 83:77� 0:03 84:86� 0:0 67:42� 0:00 89:49� 0:43 89:72� 0:04

SEAG 86:9� 0:01 87:33� 0:03 87:85� 0:01 63:66� 0:02 89:3� 0:26 89:41� 0:02

LEDA 100:0� 0:00 99:83� 0:08 99:95� 0:01 67:15� 0:02 99:8� 0:11 99:99� 0:01

LEDG 100:0� 0:0 99:78� 0:13 99:98� 0:01 67:15� 0:02 99:77� 0:11 99:98� 0:01

SineA 65:86� 0:0 96:09� 0:14 96:24� 0:07 66:44� 0:00 92:39� 0:15 95:67� 0:01

SineA 65:08� 0:02 93:77� 0:51 94:91� 0:04 65:82� 0:02 91:31� 0:17 95:34� 0:01

HYPER 60:52� 0:14 87:58� 0:39 86:2� 0:27 56:98� 0:16 82:41� 1:54 87:4� 0:72

RBFIF 57:31� 1:4 53:45� 1:8 54:7� 2:91 55:16� 1:37 56:99� 2:61 60:74� 4:47

RBFIM 58:02� 2:34 60:9� 3:34 65:17� 2:93 56:0� 1:94 61:05� 1:05 66:77� 0:44

Synthetic average 75:37� 0:43 84:72� 0:72 85:54� 0:69 62:86� 0:39 84:72� 0:71 87:22� 0:64

ELEC 62:99� 0:01 61:16� 0:85 62:98� 0:07 83:61� 0:00 62:51� 0:97 66:68� 0:40

POKR 61:98� 0:03 54:53� 0:12 56:94� 0:08 76:95� 0:01 59:82� 0:39 71:66� 0:04

GMSC 56:59� 0:50 56:82� 0:66 88:66� 0:01 51:79� 0:00 71:17� 0:29 84:42� 0:03

Real-world average 60:52� 0:18 57:5� 0:54 69:53� 0:05 70:78� 0:00 64:5� 0:55 74:25� 0:16

Overall Average 71:66� 0:37 77:92� 0:67 81:54� 0:53 64:84� 0:30 79:67� 0:67 83:98� 0:52

Winner marked bold. Tests summarize five runs of cross-validation on one million samples or complete real-world streams per run
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give the impression that SAMKNN and OBA are superior

to the LVQ variants, there are several advantages of the

LVQ techniques. The experiments of [26] gives detailed

comparison of the time and memory complexity of stream

classifiers, clearly showing that RSLVQ is superior

regarding time and memory complexity to SAMKNN and

OBA. This makes the LVQ techniques more interesting for

the real-time analysis of higher-dimensional data and

analysis with less powerful devices like single-board

computers.

Finally, Table 5 shows the performance of the classifiers

w.r.t. Kappa statistics. The results are as we would expect

them from the accuracy. SAMKNN is the leading classifier

with an overall Kappa of 0.76, followed by OBA and

Table 3 Kappa statistic of the algorithms on synthetic and real-world streams

Dataset GLVQ GLVQ Adadelta GLVQ Adamax RSLVQ RSLVQ Adadelta RSLVQ Adamax

SEAA 59:35� 0:0 56:62� 0:08 60:0� 0:01 19:99� 0:0 74:56� 0:89 74:79� 0:08

SEAG 72:16� 0:01 73:01� 0:07 74:16� 0:01 21:97� 0:05 77:53� 0:5 77:8� 0:04

LEDA 100:0� 0:0 99:82� 0:09 99:95� 0:01 63:5� 0:02 99:78� 0:12 99:98� 0:01

LEDG 100:0� 0:0 99:75� 0:14 99:97� 0:02 63:5� 0:02 99:75� 0:12 99:98� 0:01

SineA 31:49� 0:0 92:18� 0:28 92:47� 0:13 32:86� 0:0 84:76� 0:3 91:33� 0:02

SineA 29:95� 0:03 87:54� 1:02 89:8� 0:08 31:61� 0:03 82:58� 0:34 90:67� 0:03

HYPER 21:04� 0:29 75:16� 0:78 72:4� 0:53 13:96� 0:33 64:82� 3:07 74:81� 1:44

RBFIF 0:07� 0:08 0:0� 0:03 2:41� 4:53 6:34� 0:85 3:02� 2:74 13:65� 6:06

RBFIM 6:62� 4:78 5:74� 11:48 20:6� 16:38 6:41� 0:43 16:68� 2:65 29:86� 2:53

Synthetic average 46:74� 0:58 65:54� 1:55 67:97� 2:41 28:9� 0:19 67:05� 1:19 72:54� 1:14

ELEC 20:48� 0:02 13:43� 3:29 21:08� 0:21 66:48� 0:0 19:54� 2:29 30:4� 0:71

POKR 27:45� 0:06 13:9� 0:18 17:99� 0:13 59:65� 0:01 29:05� 0:68 48:45� 0:07

GMSC 3:44� 0:02 3:45� 0:03 1:34� 0:03 0:45� 0:0 2:98� 0:03 1:24� 0:01

Real-world average 17:12� 0:03 10:26� 1:17 13:47� 0:12 42:19� 0:00 17:19� 1:00 26:7� 0:26

Overall average 39:34� 0:44 51:72� 1:46 54:35� 1:84 32:23� 0:15 54:59� 1:14 61:08� 0:92

Winner marked bold. Tests summarize five runs of cross-validation on one million samples or complete real-world streams per run

Table 4 Accuracy of the

algorithms on synthetic and

real-world streams

Dataset GLVQ Adamax RSLVQ Adamax HAT OBA SAMKNN

SEAA 84:86� 0:0 89:72� 0:04 82:7� 0:0 88:03� 0:0 88:98� 0:0

SEAG 87:85� 0:01 89:41� 0:02 81:44� 0:02 87:4� 0:01 88:67� 0:01

LEDA 99:95� 0:01 99:99� 0:01 99:93� 0:0 99:99� 0:0 100:0� 0:0

LEDG 99:98� 0:01 99:98� 0:01 99:93� 0:0 99:99� 0:0 100:0� 0:0

SineA 96:24� 0:07 95:67� 0:01 88:96� 0:01 98:52� 0:0 99:28� 0:0

SineA 94:91� 0:04 95:34� 0:01 87:7� 0:03 96:63� 0:01 97:39� 0:02

HYPER 86:2� 0:27 87:4� 0:72 83:22� 0:42 78:34� 0:11 83:95� 0:33

RBFIF 54:7� 2:91 60:74� 4:47 67:5� 2:87 91:85� 0:58 90:42� 0:75

RBFIM 65:17� 2:93 66:77� 0:44 74:56� 1:59 92:49� 0:39 95:02� 0:64

Synthetic average 85:54� 0:69 87:22� 0:64 85:1� 0:55 92:58� 0:12 93:75� 0:19

ELEC 62:98� 0:07 66:68� 0:4 81:7� 0:0 77:95� 0:0 79:93� 0:0

POKR 56:94� 0:08 71:66� 0:04 65:99� 0:0 82:0� 0:0 81:81� 0:0

GMSC 88:66� 0:01 84:42� 0:03 92:74� 0:0 92:74� 0:0 92:74� 0:0

Real-world average 69:53� 0:05 74:25� 0:16 80:14� 0:00 84:23� 0:00 84:83� 0:00

Overall average 81:54� 0:53 83:98� 0:52 83:86� 0:41 90:49� 0:09 91:52� 0:15

Winner marked bold. Tests summarize five runs of cross-validation on one million samples or complete

real-world streams per run
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RSLVQAdamax. The GLVQ variant stays 	 7 % behind the

RSLVQAdamax. Again HAT is only close behind our adap-

tive RSLVQ and nearly achieved a nearly similar Kappa

score.

6 Conclusion

In summary, the integration of Adadelta and Adamax into

RSLVQ and GLVQ leads to improvements in prediction

performance over their vanilla versions. In particular,

RSLVQAdamax performed best of all LVQ variants and is

statistically significant better than RSLVQ. RSLVQAdamax

achieved a better performance than HAT, which is a very

widely used stream classifier. Furthermore, the complexity

of the RSLVQ variants is much lower than those of HAT.

Hence, our adaptive RSLVQ variant is a suitable stream

classifier which can be easily interpreted by its prototype-

based characteristic. In further work, the performance is

verified by using an ensemble of RSLVQAdamax and a

concept drift detector like done by other famous stream

classifiers (e.g., Hoeffding Adaptive Tree). Additionally,

momentum-based gradient descent should handle different

drift types more explicitly, which should be addressed in

subsequent work.

Acknowledgements Open Access funding provided by Projekt

DEAL. We are thankful for support in the FuE program Informations-

und Kommunikationstechnik of the StMWi, project OBerA, Grant
Number IUK-1709-0011// IUK530/010 and ESF program WiT-HuB/

2014-2020.

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Augenstein C, Spangenberg N, Franczyk B (2017) Applying

machine learning to big data streams: an overview of challenges.

In: 2017 IEEE 4th international conference on soft computing

machine intelligence (ISCMI). pp 25–29
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