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Abstract
Prototype-based models like the Generalized Learning Vector Quantization (GLVQ) belong to the class of inter-

pretable classifiers. Moreover, quantum-inspired methods get more and more into focus in machine learning due to its

potential efficient computing. Further, its interesting mathematical perspectives offer new ideas for alternative learning

scenarios. This paper proposes a quantum computing-inspired variant of the prototype-based GLVQ for classification

learning. We start considering kernelized GLVQ with real- and complex-valued kernels and their respective feature

mapping. Thereafter, we explain how quantum space ideas could be integrated into a GLVQ using quantum bit vector

space in the quantum state space Hn and show the relations to kernelized GLVQ. In particular, we explain the related

feature mapping of data into the quantum state space Hn. A key feature for this approach is thatHn is an Hilbert space with

particular inner product properties, which finally restrict the prototype adaptations to be unitary transformations. The

resulting approach is denoted as Qu-GLVQ. We provide the mathematical framework and give exemplary numerical

results.

Keywords Quantum machine learning � Learning vector quantization � Classification � Interpretable models �
Prototype base models

1 Introduction

Classification learning still belongs to the main tasks in

machine learning [5]. Although powerful methods are

available, still there is need for improvements and search

for alternatives to the existing strategies. A huge progress

was achieved by the realization of deep networks [15, 28].

These networks overcame the hitherto dominating support

vector machines (SVM) in classification learning [11, 51].

However, deep architectures have the disadvantage that the

interpretability is at least difficult. Therefore, great effort is

currently spent to explain deep models, see [40] and ref-

erences therein. However, due to the complexity of deep

networks this is quite often impossible [70]. Thus, alter-

natives are required for many applications like in medicine

[39]. A promising alternative is the concept of distance-

based methods like in learning vector quantizations [57],
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where prototypes play the role to be references for data

[25, 34, 37]. Further, prototype layers in deep networks

also seem to stabilize the behavior deep models [29].

Learning vector quantizers (LVQ) are sparse models for

prototype-based classification learning, which were

heuristically introduced by T. Kohonen [23, 24]. LVQ is a

competitive learning algorithm relying on an attraction and

repulsion scheme (ARS) for prototype adaptation, which

can be described geometrically in case of the Euclidean

setting. Keeping the idea of ARS but take the LVQ to the

next level is the generalized LVQ (GLVQ), which opti-

mizes a loss function approximating the classification error

[42]. Standard training is stochastic gradient descent

learning (SGDL) based on the local losses.

Of particular interest for potential users is the advantage

of easy interpretability of LVQ networks according to the

prototype principle [63]. Further, LVQ networks belong to

the class of classification margin optimizers like SVM [10]

and are proven to be robust against adversarial attacks [41].

In standard LVQ networks, the distance measure is set

to be the squared Euclidean one, yet other proximities can

be applied [4]. For example, in case of spectral data or

histograms, divergences are beneficial [21, 31, 58],

whereas functional data may benefit from similarities

including aspects of the slope like Sobolev distances [60].

Even the kernel trick successfully applied in SVM can be

adopted to the GLVQ, denoted as kernelized GLVQ

(KGLVQ [59], i.e., the data and prototypes are implicitly

mapped into a potentially infinite-dimensional Hilbert

space but compared by means of the kernel-based distance

calculated in the low-dimensional data space [45]. For

reproducing kernel Hilbert spaces, the respective mapping

is unique [52, 53]. This so-called feature mapping fre-

quently is nonlinear depending on the kernel in use [17].

However, SGDL training for KGLVQ requires differ-

entiability of the kernel. Otherwise, median variants of

GLVQ have to be considered, i.e., the prototype is

restricted to be data points and the optimization goes back

to likelihood optimization [32]. Replacing the standard

Euclidean distance by nonlinear kernel distances can

improve the performance of the GLVQ model as it is

known for the SVM. Yet, the maybe improved perfor-

mance of KGLVQ comes with a weaker interpretability,

because the implicit kernel mapping does not allow to

observe the mapped data directly in the feature space.

Another way to accelerate the usually time-consuming

training process in machine learning models is to make use

of efficient quantum computing algorithms [9, 12, 33]. For

supervised and unsupervised problems, several approaches

are developed [3, 46, 49, 50, 64]. A recent overview for

recently developed quantum-inspired approaches can be

found in [26].

Quantum support vector machines are studied in [36],

Hopfield networks are investigated in [35]. A quantum

perceptron algorithm is proposed in [66]. Particularly,

nearest neighbor approaches are studied in [19, 65]. Rela-

ted to vector quantization, the c-means algorithm is con-

sidered in [22, 69], which can be also seen in connection to

quantum classification algorithms based on competitive

learning [71].

In this contribution, we propose an alternative nonlinear

data processing but somewhat related to kernel GLVQ

keeping the idea to map the data nonlinearly into a par-

ticular Hilbert space. In particular, we transform the data

vectors nonlinearly into quantum state vectors and require

at the same time that the prototypes are always quantum

state vectors, too [48, 61]. The respective quantum space

also is a Hilbert space, and hence, we can take the data

mapping as some kind of feature mapping like for kernels

[16, 56]. The adaptation has to ensure the attraction and

repulsing strategy known to be the essential ingredients of

LVQ algorithms, but has to be adapted here to quantum

state space properties. The latter restriction requires the

adaptations to be unitary transformations. The resulting

algorithm is denoted as Quantum-inspired GLVQ (Qu-

GLVQ).

In fact, quantum-inspired machine learning algorithms

seem to be a promising approach to improve effectiveness

of algorithms with respect to time complexity [55]. Yet,

here the benefit would be twice because we also emphasize

the mathematical similarity to kernel-based learning, which

still is one of the most successful strategies in machine

learning [53, 59]. However, a realization on a real quantum

system is not in the focus of this paper and, hence, left for

future work. The focus of this paper is clearly to show the

mathematical similarities between kernel and quantum

approaches.

The paper is structured as follows: Starting with a short

introduction of standard GLVQ for real and complex data

[14], we briefly explain the use of real and complex kernels

in context of GLVQ. Again, we consider both the real and

the complex case. After these preliminaries, we give the

basic mathematical properties of quantum state spaces and

incorporating these concepts into GLVQ. We show that

this approach is mathematically consistent with the kernel

GLVQ. Numerical simulations exemplary show the suc-

cessful application of the introduced Qu-GLVQ.

Further, we emphasize that the aim of the paper is not to

show any improvement in quantum-inspired GLVQ com-

pared to kernel approaches or standard GLVQ. Instead, one

goal is to show that both the quantum and the kernel

approach are mathematically more or less equivalent while

kernel approaches apply implicit mapping and the quantum

approach does the mapping explicitly.
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2 The general GLVQ approach

2.1 GLVQ for real valued data

Standard GLVQ as introduced in [42] assumes data vectors

v 2 V � Rn with class labels c vð Þ 2 C ¼ 1; . . .;Cf g for

training. It is a cost function-based variant of standard LVQ

as introduced by T. Kohonen [23, 24] keeping the ARS.

Further, a set P ¼ pkf gKk¼1� Rn of prototypes with class

labels ck ¼ c pkð Þ is supposed together with a differentiable

dissimilarity measure d v; pkð Þ frequently chosen as the

(squared) Euclidean distance. Classification of an unknown

data sample takes place as a nearest prototype decision

with the class label of the winning prototype as response.

GLVQ considers the cost function

EGLVQ V ;Pð Þ ¼
X

v2V
L v;Pð Þ

for optimization of the prototypes. Here

L v;Pð Þ ¼ f l vð Þð Þ ð1Þ

is the local loss and f is the transfer function frequently

chosen as sigmoid. The classifier function

l vð Þ ¼ dþ vð Þ � d� vð Þ
dþ vð Þ þ d� vð Þ ð2Þ

takes value in the interval �1; 1½ �, where d� vð Þ ¼ d v; p�ð Þ
is the dissimilarity of a given input to the best matching

correct/incorrect prototype p� regarding the class labels.

The classifier function l vð Þ delivers negative values for

correct classification. Thus, EGLVQ V;Pð Þ approximates the

classification error an is optimized by stochastic gradient

descent learning (SGDL, [38]) regarding the prototypes

according to

Dp� / � oL v;Pð Þ
op�

¼ � of l vð Þð Þ
ol

ol vð Þ
od�

od� vð Þ
op�

ð3Þ

as local derivatives. In fact, this learning rule realizes the

ARS in case of the squared Euclidean distance, because of
od� vð Þ
op� ¼ �2 v� p�ð Þ. As mentioned before, this standard

GLVQ constitutes a margin classifier and is robust against

adversarial attacks [10, 41].

If the expression

dX v; pð Þ ¼ X v� pð Þð Þ2 ð4Þ

describes a standard quadratic form with X 2 Rm�n, we

can calculate the derivative accordingly by

odX v; pð Þ
op

¼ �2XTX v� pð Þ ð5Þ

whereas

odX v; pð Þ
oX

¼ X v� pð Þ v� pð ÞT ð6Þ

yields an adaptation DX of the matrix X [8, 43]. The

adaptation of the X-matrix realizes an classification task-

specific metric adaptation for optimum class separation

[44]. This matrix learning variant of GLVQ is denoted as

GMLVQ.

For the (real-valued) kernel GLVQ (KGLVQ) discussed

in [59], the dissimilarity measure d v; pð Þ is set to be the

(squared) kernel distance

dj v; pð Þ ¼ j v; vð Þ � 2j v; pð Þ þ j p; pð Þ ð7Þ

with the differentiable kernel j and the respective (im-

plicit) real kernel feature mapping Uj : R
n ! H into the

(real) reproducing kernel Hilbert space H [53]. As men-

tioned in the introduction, the implicitly mapped data

Uj vð Þ form a low-dimensional manifold DU Vð Þ in the

feature mapping space H whereas the prototypes Uj pð Þ are
allowed to move freely in H and, hence may leave DU Vð Þ.
In this case, the prototypes recognize the data from outside,

which could be a disadvantage for particular applications.

2.2 Complex variants of GLVQ

So far we assumed both v 2 V � Rn and P ¼ pkf g � Rn

for data and prototypes as well as X 2 Rm�n. In complex

GLVQ, all these quantities are assumed to be complex

valued. The squared distance (4) reads as

dX v; pð Þ ¼ v� pð Þ	X	X v� pð Þ

where v� pð Þ	X	 ¼ X v� pð Þð Þ	 is the Hermitian conju-

gate of X v� pð Þ. Following [14, 54], the derivatives

according to (5) and (6) are obtained by the Wirtinger

calculus (see ‘‘Appendix 6’’) applying the conjugate

derivatives as

oWdX v; pð Þ
op	

¼ �2X	X v� pð Þ ð8Þ

whereas

oWdX v; pð Þ
oX	 ¼ X v� pð Þ v� pð Þ	 ð9Þ

,respectively, which have to be plugged into (3).

For complex kernels j : Cn � Cn ! C we get

dj v; pð Þ ¼ j v; vð Þ � 2Re j v; pð Þð Þ þ j p; pð Þ ð10Þ

instead of (7) using the identity

Re j v; pð Þð Þ ¼j v; pð Þ þ j p; vð Þ. Provided that the kernel j
is differentiable in the sense of Wirtinger [6, 7], the

derivative of the kernel distance becomes
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oWdj v; pð Þ
op	

¼ � 2
oWRe j v; pð Þð Þ

op	

¼ � oWj v; pð Þ
op	

� oWj p; vð Þ
op	

paying attention to
oWj v;vð Þ

op	 ¼ oWj p;pð Þ
op	 ¼ 0. This derivative

has to be taken into account to calculate the prototype

update (3).

3 Quantum-inspired GLVQ

In the following we explain our idea of a quantum-inspired

GLVQ. For this purpose, first we briefly introduce quantum

state vectors and consider their transformations. Subse-

quently, we describe the proposed network architecture for

both the real and the complex case. Finally, we explain,

how to map real or complex data into a quantum state

space by application of nonlinear mappings. This nonlinear

mappings play the role of kernel feature maps as known

from kernel methods.

3.1 Quantum bits, quantum state vectors
and transformations

3.1.1 The real case

Quantum-inspired machine learning gains more and more

attention [9, 33, 49]. Following the usual notations, the data

are required to be quantum bits (qubits)

xj i ¼ a xj ið Þ � 0j i þ b xj ið Þ � 1j i ð11Þ

¼
a xj ið Þ
b xj ið Þ

� �
ð12Þ

with the normalization condition

a xj ið Þj j2þ b xj ið Þj j2¼ 1 ð13Þ

defining the Bloch-sphere [68]. In this real case, we sup-

pose both a xj ið Þ; b xj ið Þ 2 R.1 The normalization condition

is equivalent to

a xj ið Þ ¼ cos nð Þ and b xj ið Þ ¼ sin nð Þ ð14Þ

for an angle n 2 0; 2p½ � paying attention to the periodicity

of the cosinus function.

Consequently, we get the inner product for the quantum

states xj i and wj i as

xjwh i ¼ a xj ið Þa wj ið Þ þ b xj ið Þb wj ið Þ ð15Þ

as the Euclidean inner product of the amplitude vectors

a xj ið Þ
b xj ið Þ

� �
¼ cos nð Þ

sin nð Þ

� �
and

a wj ið Þ
b wj ið Þ

� �
¼ cos xð Þ

sin xð Þ

� �
.

Hence, we have xjxh i ¼ 1 such that the (squared) qubit

distance d can be calculated as

d xj i; wj ið Þ ¼ 2 � 1� xjwh ið Þ : ð16Þ

Transformations U
a xj ið Þ
b xj ið Þ

� �
¼ U xj i of qubits are realized

by orthonormal matrices U 2 R2�2, i.e., U � UT ¼ E with

UT is the transpose. Note that the application of

orthonormal matrices remains the inner product invariant,

i.e., UxjUyh i ¼ xjyh i and form the orthonormal group with

matrix multiplication as group operation [13].

Now, we define qubit data vectors as xj i ¼
x1j i; . . .; xnj ið ÞT with qubits xkj i and the vector wj i ¼
w1j i; . . .; wnj ið ÞT for prototypes. For the inner product, we

get xjwh iHn¼
Pn

k¼1 xkjwkh i with
wkj i ¼ cos xkð Þ � 0j i þ sin xkð Þ � 1j i

and xjxh i ¼ wjwh i ¼ n. Thus, we get

d xj i; wj ið Þ ¼ 2 n� xjwh iHn

� �
ð17Þ

as the squared distance between qubit vectors. Using (15),

we obtain

d xj i; wj ið Þ ¼ 2 n�
Xn

k¼1

cos nkð Þ cos xkð Þ þ sin nkð Þ sin xkð Þ
 !

ð18Þ

in terms of the amplitude values.

Orthogonal transformations of qubit vectors are realized

by block-diagonal matrices according to

U nð Þ xj i ¼ diag U1; . . .;Unð Þ � xj i. Obviously, the quantum

spaceHn of n-dimensional qubit vectors is an Hilbert space

with the inner product xjwh iHn as also recognized in

[46, 48].

3.1.2 The complex case

In the complex-valued case, the data are required to be

quantum bits (qubits), too but now taken as

xj i ¼ a xj ið Þ � 0j i þ b xj ið Þ � ei/ � 1j i ð19Þ

¼
a xj ið Þ

b xj ið Þ � ei/

� �
ð20Þ

with coefficients a xj ið Þ; b xj ið Þ 2 R and the complex phase

information ei/. The normalization condition for the Bloch

sphere becomes
1 This assumption reduces the Bloch-sphere to a circle. With other

words, here the phase information is set to ei/ with / ¼ 0.
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1 ¼ a xj ið Þj j2þ b xj ið Þ � ei/
�� ��2

¼ a xj ið Þj j2þ b xj ið Þj j2� ei/
�� ��2
|ffl{zffl}
¼1

ð21Þ

and, hence, the amplitudes are again as in (14). The com-

plex-valued inner product xjwh i for wlj i ¼ cos xlð Þ � 0j i þ
sin xlð Þ � eiw � 1j i is calculated as

xjwh i ¼a xj ið Þ � a wj ið Þ þ b xj ið Þ � ei/ � b wj ið Þ � eiw

¼ cos nð Þ cos xð Þ þ sin nð Þ sin xð Þ � ei /�wð Þ

¼ cos nð Þ cos xð Þ þ sin nð Þ sin xð Þ � cos /� wð Þð
þ i � sin /� wð ÞÞ

ð22Þ

now depending on both phase information w and /.
Accordingly, the qubit distance d xj i; wj ið Þ is calculated as

d xj i; wj ið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xjxh i � xjwh i � wjxh i þ wjwh i

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� xjwh i � xjwh i

q

¼
ffiffiffi
2

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Re xjwh ið Þ

p

ð23Þ

paying attention to the properties of the complex inner

product. Particularly, we have

Re xjyh ið Þ ¼ cos nð Þ cos xð Þ þ sin nð Þ sin xð Þ � cos /� wð Þ
ð24Þ

for the real part of xjyh i.

Transformations U
a xj ið Þ
b xj ið Þ

� �
¼ U xj i of complex qubits

are realized by unitary matrices U 2 C2�2, i.e., U � U	 ¼ E

with U	 is the Hermitian transpose, where unitary matrices

remain the inner product invariant, i.e., UxjUyh i ¼ xjyh i.
As for orthonormal matrices, the unitary matrices form a

group with matrix multiplication as group operation [13].

Using again the normalization condition (13), we obtain

d xj i; wj ið Þ ¼ 2 n�Re xjwh iHn

� �� �
ð25Þ

as the squared quantum distance between the qubit vectors.

This can be calculated as

d xj i; wj ið Þ ¼ 2 n�
Xn

k¼1

cos nkð Þ cos xkð Þ
 

þ sin nkð Þ sin xkð Þ � cos /k � wkð ÞÞ
ð26Þ

using (24).

Analogously to the real case, unitary transformations of

qubit vectors are realized by block-diagonal matrices

according to U nð Þ xj i ¼ diag U1; . . .;Unð Þ � xj i and the

quantum space Hn of n-dimensional complex qubit vectors

is an Hilbert space with the inner product xjwh iHn .

3.2 The quantum-inspired GLVQ algorithm

3.2.1 The real case

For the real case, we assume a vanishing complex phase

information [30], i.e., we require / ¼ 0 yielding ei/ ¼ 1.

Thus, the Qu-GLVQ approach takes real-valued qubit

vectors xj i and wj i as elements of the data and the proto-

type sets X and W, respectively. Hence, the complex phase

information yields ei/ ¼ 1 assuming / ¼ 0 [30]. Thus, the

dissimilarity measure d� vð Þ ¼ d v; p�ð Þ in (2) for GLVQ

has to be replaced by the squared qubit vector distance

d xj i; wj ið Þ from (17). All angles xl from wj i form the

angle vector x ¼ x1; . . .;xnð ÞT . The prototype update can

be realized adapting the angle vectors in complete analogy

to (3) according to

Dx� / � oL xj i;Wð Þ
ox� ¼ � of l xj ið Þð Þ

ol
ol xj ið Þ
od�

od� xj ið Þ
o wj i

ð27Þ

where

d� xj ið Þ ¼ d xj i; w��� 	� �
ð28Þ

is the squared distance to the best matching correct and

incorrect prototype. Using the relation (18), we easily

obtain

od� xj ið Þ
ox�

k

¼ � cos nkð Þ � sin x�
k

� �
þ sin nkð Þ � cos x�

k

� �

ð29Þ

delivering the gradient vector
od� xj ið Þ
ox� where

od� xj ið Þ
ox�

k

¼ od� xj ið Þ
o w�j i

o w��� 	

ox� ð30Þ

is used. We further remark that (27) together with (29)

ensures the prototypes to remain quantum state vectors.

Thus, this update corresponds to an orthogonal (unitary)

transformations Uk Dxkð Þ � wkj i realizing the update D w��� 	

directly in the quantum space Hn. Further, we can collect

all transformations by UR
k ¼ PN

t¼1Uk Dxk tð Þð Þ where

Dxk tð Þ is angle change at time step t. Due to the group

property of orthogonal transformations the matrix UR
k is

also orthogonal and allows to re-calculate the initial state

wkj i from the final.
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3.2.2 The complex case

The complex variant of Qu-GLVQ depends on both x�

and w� according to (26) and, therefore, the angle vector

update (27) for x� is accompanied by the respective

update

Dw� / � oL xj i;Wð Þ
ow� ¼ � of l xj ið Þð Þ

ol
ol xj ið Þ
od�

od� xj ið Þ
ow� ;

ð31Þ

for the phase vectors. Again we used the convention

od� xj ið Þ
ow� ¼ od�W xj ið Þ

o w�j i
o w��� 	

ow�

similar as before but taking the Wirtinger derivative, see

‘‘Appendix 6’’. However, we can avoid the explicit appli-

cation of the Wirtinger calculus: Using (24), we obtain now

for (30)

od� xj ið Þ
ox�

k

¼ od� xj ið Þ
ox�

k

cos nkð Þ � cos x�
k

� ��

þ sin nkð Þ � sin x�
k

� �
� cos /k � w�

k

� ��

¼� cos nkð Þ � sin x�
k

� �

þ sin nkð Þ � cos x�
k

� �
� cos /k � w�

k

� �

determining Dx� via (27) and again avoiding the explicit

application of the Wirtinger calculus. Further, we get

od� xj ið Þ
ow�

k

¼ od� xj ið Þ
ow�

k

cos nkð Þ � cos x�
k

� ��

þ sin nkð Þ � sin x�
k

� �
� cos /k � w�

k

� ��

¼ cos nkð Þ � cos x�
k

� �

þ sin nkð Þ � sin x�
k

� �
� sin /k � w�

k

� �

determining Dw� via (27).

Again, the prototype update ensures the quantum state

property for the adapted prototypes and, hence, could be

seen as transformations Uk Dxkð Þ � wkj i.

3.3 Data transformations and the relation of Qu-
GLVQ to kernel GLVQ

In the next step, we explain the mapping of the data into the

quantum state space Hn. For the prototypes, we always

assume that these are given in Hn.

Starting from usual real data vectors, we apply a non-

linear mapping

U : Rn 3 v ! xj i 2 Hn

to obtain qubit vectors. In context of quantum machine

learning, U is also denoted as quantum feature map playing

the role of a real kernel feature map [46, 48]. This mapping

can be realized taking

a xlj ið Þ ¼ cos nlð Þ and b xlj ið Þ ¼ sin nlð Þ

keeping in mind the normalization (13) and applying an

appropriate squashing function P : R ! 0; 2p½ � such that

nl ¼ P vlð Þ is valid. Possible choices are

P vlð Þ ¼ 2p
1þ exp �vlð Þ or P vlð Þ ¼ p � tanh vlð Þ þ 1ð Þ

as suggested in [18]. Finally we have

u vlð Þ ¼ u nlð Þ with xlj i ¼
cos nð Þ
sin nð Þ

� �

In case of complex data vectors, we realize the mapping

U : Cn 3 v ! xj i 2 Hn by the nonlinear mapping u vlð Þ ¼
W 
P vlð Þ where P zð Þ is the stereographic projection of the
complex number z

z�!P r ¼ r1; r2; r3ð Þ

¼ zþ z

1þ zj j ;
z� z

i � 1þ zj jð Þ ;
zj j � 1

1þ zj j


 �
2 R � R3

ð32Þ

onto the Riemann sphere R fulfilling the constraint rk k ¼
1 for all r 2 R, see Fig. 1.

The subsequent mapping W rð Þ delivers the spherical

coordinates

n ¼ arccos r3ð Þ

/ ¼ arctan2
r2
r1


 �

of r such that

u vlð Þ ¼ W
n

/


 �
with xlj i ¼

cos nð Þ
sin nð Þ � exp i � /ð Þ

� �

is obtained, see Fig. 2.

Note that the stereographic projection P zð Þ is unique

realizing a squashing effect. This effect becomes particu-

larly apparent if zj j ! 1 and hence is comparable the

squashing effect realized by P vlð Þ for the real case.

4 Numerical experiments

We tested the proposed Qu-GLVQ algorithm for several

datasets in comparison with established LVQ approaches

as well as SVM. Particularly, we compare Qu-GLVQ with

standard GLVQ, KGLVQ and SVM. For both SVM and

KGLVQ, the rbf-kernel was used with the same kernel

width obtained by a grid search. For all LVQ variants
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including Qu-GLVQ, we used only one prototype per class

for all experiments.

The datasets are a) WHISKY - a spectral dataset to

classify Scottish whisky described in [1, 2], WBCD - UCI

Wisconcin Breast Cancer Dataset, HEART - UCI Heart

disease dataset, PIMA - UCI diabetes dataset, and FLC1 -

satellite remote sensing LANDSAT TM dataset [27].2 The

averaged results reported are obtained by 10-fold cross-

validation. Only test accuracies are given.

We observe an overall good performance of QU-GLVQ

comparable to the other methods, see Table 1. Kernel

methods seem to be beneficial as indicated by KGLVQ and

SVM for HEART. Yet, Qu-GLVQ delivers similar results.

If SVM yields significant better performance than KLVQ

and Qu-GLVQ, then we have to take into account that here

the SVM complexity (number of support vectors) is much

higher than in LVQ-networks, where the number of pro-

totypes was chosen always to be only one per class.

Further, for WHISKY the KGLVQ was not able to achieve

a classification accuracy comparable to the other approa-

ches, whereas Qu-GLVQ performed well. This might be

addressed due to the crucial dependency of the rbf-kernel

on the kernel width. Further, Qu-GLVQ seems to be more

stable than KGLVQ and SVM considering the averaged

deviations.

5 Conclusion

In this contribution, we introduced an approach to incor-

porate quantum machine learning strategies into the GLVQ

framework. Usual data and prototype vectors are replaced

by respective quantum bit vectors. This replacement can be

seen as an explicit nonlinear mapping of the data into the

quantum Hilbert space which make the difference to the

implicit feature mapping in case of kernel methods like

kernelized GLVQ or SVM. Thus, one can visualize and

analyze the data as well as the prototypes in this space,

such that Qu-GLVQ becomes better interpretable than

KGLVQ or SVM without this possibility.

Otherwise, the QU-GLVQ approach shows mathemati-

cal equivalence to the kernel approaches in topological

sense: the distance calculations are carried out in the

mapping Hilbert space implicitly for usual kernels and

explicitly for Qu-GLVQ. The resulting adaptation dynamic

in Qu-GLVQ is consistent with the unitary transformations

required for quantum state changes, because the prototypes

remain quantum-state vectors.

Further investigations should include several modifica-

tions and extension of the proposed Qu-GLVQ. First,

matrix learning like for GMLVQ can easily be integrated.

Further, the influence of different transfer function as

proposed in [62] for standard GLVQ has to be considered

to improve learning speed and performance. A much more

challenging task will be to consider entanglements for

qubits and complex amplitudes b 2 C for qubits [20] in

context of Qu-GLVQ. This research also should continue

the approach in [71].

Finally, adaptation to a real quantum system is the final

goal as recently realized for other classifier systems [47].

Overall, Qu-GLVQ performs equivalently to KGLVQ

and SVM. However, due to its better interpretability it

could be an interesting alternative if interpretable models

are demanded.
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Fig. 1 Illustration of the stereographic projection P zð Þ of a complex

number z to a vector x ¼ x1; x2; x3ð ÞT onto a (Riemann-) sphere, i.e.,

x21 þ x22 þ x23 ¼ 1 is valid

Fig. 2 Illustration of the transformation of Bloch-sphere coordinates

into respective angle values applying spherical coordinates
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Appendix: Wirtinger calculus

In the following, we give a short introduction to the Wir-

tinger calculus [67]. We do not follow the complicate and

old-fashioned notations in this original paper but prefer a

more modern style. Thus, we follow [14].

We consider a real-valued function f of a complex

argument z ¼ xþ iy

f : C ! R with z ¼ xþ iy 7! f zð Þ ¼ u x; yð Þ

with x; y 2 R. Here, minimization of f is to be considered in

dependence of the two real arguments x and y. For a

complex-valued function g, we analogously have

g : C ! C with z ¼ xþ iy 7! g zð Þ ¼ u x; yð Þ þ iv x; yð Þ

where v x; yð Þ is also real-valued. The differential operators

of Wirtinger type are defined as

oW

oz
¼ 1

2

o

ox
� i

o

oy


 �
ð33Þ

and

oW

oz
¼ 1

2

o

ox
þ i

o

oy


 �
ð34Þ

where o
oz is denoted as conjugate differential operator [67].

The respective calculus assumes differentiability of the

functions f and g in the real-valued sense, i.e., the function

u x; yð Þ and v x; yð Þ are assumed to be differentiable with

respect to x and y. This Wirtinger-differentiability differs

from usual differentiability of complex function, which

requires the validity of the Cauchy-Riemann equation

which reads as

oWg

oz
¼ 0

in terms of the Wirtinger calculus, i.e., the complex func-

tion is differentiable in z if the partial derivative og
oz

vanishes.

Both, the product and the sum rule apply whereas the

chain rule for a function h : R ! R becomes

oWh g zð Þð Þ
oz

¼ oWh

og

oWg zð Þ
oz

þ oWh

og

oWg

oz

and likewise for the conjugate derivative for z. If a function

f is given in the form f z; zð Þ then in oWf
oz the variable z is

treated as constant and vice versa. For example, we have

for f zð Þ ¼ zj j2 the derivatives oWf
oz ¼ z and oWf

oz ¼ z because

of zj j2¼ z � z. Yet, oWz2

oz ¼ 2z is equivalent to the real case.

Next we consider complex vectors z 2 Cn. The squared

Euclidean norm is zk k22¼ z	z, where z	 denotes the Her-

mitian transpose. We immediately obtain

oW zk k22
oz

¼ z	 and
oW zk k22
oz	

¼ z

whereas for the quadratic form zk k2A;2¼ z	Az with A 2
Cn�n we obtain

oW zk k2A;2
oz

¼ A	z	 and
oW zk k2A;2

oz	
¼ Az

as Wirtinger derivatives.

Table 1 Classification

accuracies in % and standard

deviations for GLVQ, Qu-

GLVQ, KGLVQ, and SVM for

the considered datasets (10-fold

cross-validation)

Dataset N d #C GLVQ Qu-GLVQ KGLVQ SVM

WHISKY 1188 401 3 92.5 ± 1.9 92.6 ± 1.4 86.9 ± 2.8 99.3 ± 0.7 (|SV|:140)

WBCD 569 30 2 96.8 ± 2.7 96.1 ± 3.4 94.0 ± 3.4 96.5 ± 1.5 (|SV|: 43)

HEART 297 13 2 56.9 ± 4.0 81.8 ± 5.3 84.3 ± 5.4 80.4 ± 9.5 (|SV|: 97)

FLC1 82045 12 10 92.8 ± 0.3 92.0 ± 0.4 94.8 ± 0.4 97.4 ± 0.1 (|SV|: 2206)

PIMA 768 8 2 77.3 ± 2.3 75.4 ± 2.4 76.4 ± 4.6 75.5 ± 4.1 (|SV|: 311)

Average 83.3 ± 2.2 87.6 ± 2.6 87.3 ± 3.3 89.8 ± 3.2

For all LVQ-algorithms, only one prototype per class was used. The number of support vectors for SVM is

given by SVj j. N number of data samples, d data dimensionality, #C number of classes
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Merényi E, Mendenhall M, O’Driscoll P (eds) Advances in self-

organizing maps and learning vector quantization—Proceedings

of 11th international workshop WSOM 2016. Advances in

intelligent systems and computing, vol 428, pp 293–303.

Springer, Berlin

15. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT

Press, Cambridge

16. Havlicek V, Corcoles A, Temme K, Harrow A, Kandala A, Chow

J, Gambetta J (2019) Supervised learning with quantum-enhanced

feature spaces. Nature 567(3):209–212

17. Hoffmann T, Schölkopf B, Smola A (2008) Kernel methods in

machine learning. Ann Stat 36(3):1171–1220

18. Hou X (2011) Research of model of quantum learning vector

quantization neural network. In: Proceedings of the international

conference on electronic and mechanical engineering and infor-

mation technology, pp 3893–3896. IEEE Society, Los Alamitos

19. Hu W (2018) Comparison of two quantum nearest neighbor

classifiers on IBM’s quantum simulator. Nat Sci 10(3):87–98

20. Huusari R, Kadri H (2019) Entangled kernels. In: Kraus S (ed)

Proceedings of the 28th international joint conference on artificial

intelligence (IJCAI-19), Macao, pp 2578–2584. International

Joint Conferences on Artificial Intelligence

21. Kaden M, Bohnsack K, Weber M, Kudla M, Gutoska K, Blas-

ewicz J, Villmann T (2020) Analysis of SARS-CoV-2 RNA-se-

quences by interpretable machine learning models. Technical

Report, arXiv:1901.05995

22. Kerenidis I, Landman J, Luongo A, Prakash A (2019) q-means: a

quantum algorithm for unsupervised machine learning. In: Wal-

lach H, Larochelle H, Beygelzimer A, dAlché Buc F, Fox E,
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