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Abstract 

Smart healthcare systems for the Internet of Things (IoT) platform are cost-efficient and facilitate continuous remote 
monitoring of patients to avoid unnecessary hospital visits and long waiting times to see practitioners. Presenting a smart 
healthcare system for the detection of dysphonia can reduce the suffering and pain of patients by providing an initial 
evaluation of voice. This preliminary feedback of voice could minimize the burden on ENT specialists by referring only 
genuine cases to them as well as giving an early alarm of potential voice complications to patients. Any possible delay in 
the treatment and/or inaccurate diagnosis using the subjective nature of tools may lead to severe circumstances for an 
individual because some types of dysphonia are life-threatening. Therefore, an accurate and reliable smart healthcare 
system for IoT platform to detect dysphonia is proposed and implemented in this study. Higher-order directional derivatives 
are used to analyze the time-frequency spectrum of signals in the proposed system. The computed derivatives provide 
essential and vital information by analyzing the spectrum along different directions to capture the changes that appeared 
due to malfunctioning the vocal folds. The proposed system provides 99.1% accuracy, while the sensitivity and specificity 
are 99.4% and 98.1%, respectively. The experimental results showed that the proposed system could provide better 
classification accuracy than the traditional non-directional first-order derivatives. Hence, the system can be used as a 
reliable tool for detecting dysphonia and implemented in edge devices to avoid latency issues and protect privacy, unlike 
cloud processing. 
 
Keywords Edge analytics. higher-order local derivatives. vocal folds disorders. spectrum analysis. support vector machine 
(SVM). 
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1. Introduction 

 Recent developments in wireless communications and 
networking provide a solid platform for building smart homes 
and cities [1], where Smart health facilities will be one of the 
primary services for the quality and healthy life of residents 
[2,3]. Several smart health systems have been proposed to 
provide a higher standard of care by online monitoring of 
various diseases [4-7]. Different approaches and their benefits 
are summarized in a recent survey on online monitoring, 
detection, and support of the diagnosis of cardiovascular 
diseases [8]. In [9], a reliable smart healthcare system for the 
supervision of cardiomyopathy patients is presented to 
capture early symptoms of this disease. A recent study and a 
survey on brain tumor classification have highlighted the need 
for smart healthcare systems for remote monitoring of 
patients [10-12]. The Internet of Things (IoT) based smart 
healthcare systems efficiently collect and process patients' 
data [13,14] and automatically generate a diagnostic report. 
Such systems keep the patients and practitioners up-to-date 
about the health conditions to reduce the severe consequences 
of dysphonia delay/negligence [15,16].  

According to the medical dictionary [17], dysphonia refers 
to a difficulty in speaking, usually evidenced by hoarseness. 
Hoarseness represents any deviation of voice quality as 
perceived by self or others [18]. The normal vocal folds and 
the ones affected by dysphonia (also refer as vocal folds 
disorders) are shown in Fig. 1. A large population, 
approximately one-third of the world population, is suffering 
from voice-related complications [19,20]. According to 
National Institute on Deafness and Other Communication 
Disorders [21], approximately 17.5 million people around 
U.S. are affected by voice problems. Any person can be 
affected by a vocal folds disorder; however, professional 
users of voice such as teachers, lawyers, and singers have high 
risks of vocal folds disorders [20,22]. The screening of vocal 
folds disorders is a crucial step in clinical treatment [23]. The 
clinical appraisal, also known as a subjective assessment, can 
be carried out using an endoscopic examination of the vocal 
folds and various acoustic and perceptual measurements [24]. 
The clinicians frequently use these techniques in their 
practice, but there are some limitations due to the subjective 
assessment nature. The limitations may be practitioner's 
experience and area of expertise, dysphonia rating scale, and 
vocal folds disorder degree [25]. Besides, some visualization 
tools, such as video laryngostroboscopy (LSC), are also used 
to detect vocal folds disorders by inspecting the vibration of 
the vocal folds [26]. The subjective interpretation of the LSC 
examination results strongly depends on the area of 

specialization and professional expertise of an examiner, 
which presents the limitations of LSC examination. 
Therefore, some rating scales are introduced in literature 
[27,28]. However, there is no available standard approach for 
LSC examination due to the dependency on existing methods 
on pitch estimation, periodicity, sustained phonation 
frequency etc. [29,30]. 

Moreover, videoendoscopic high-speed imaging and 
videokymography have shown more accurate performance 
than video LSC [31], and they gained much interest recently 
[32-35]. Due to expensive equipment and intensive labor to 
analyze the data, practitioner and investigators are hesitant to 
adopt these new methods [36]. These limitations associated 
with the exiting subjective methods can be overcome through 
the automatic screening of vocal folds disorders.  

For automatic screening, a smart healthcare system capable 
of collecting the voice of an individual using IoT and process 
it with a reliable and accurate system is essential. Various 
acoustic measures, including shimmer, jitter, signal-to-noise 
ratio, noise measures, and several frequencies and amplitude 
perturbation measures, have been used to screen vocal folds 
disorder [38] automatically.  

 

  
(a) (b) 

Fig. 1 (a) Normal vocal folds (b) Vocal folds affected by a 
voice pathology called a cyst. Various vocal folds pathologies 
are defined in [37] 
 

The Multi-Dimensional Voice Program (MDVP) [38] is 
the most popular commercial software to perform the acoustic 
analysis of a speech signal to detect the disorders. other 
related programs, such as CSpeech [39] and PRAAT [40], are 
also available to compute perturbation and noise measures for 
vocal folds disorder screening. The MDVP could calculate 33 
different parameters for acoustic analysis, and the list of these 
parameters is provided in [41]. Arjmandi et al. [41] 
considered 22 MDVP parameters to conduct research for the 
differentiation of normal and disordered signals. The 
experiments were based on 100 subjects of Massachusetts 
Eye & Ear Infirmary (MEEI) vocal folds disorder database 
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[42] and contained 50 dysphonic patients and 50 normal 
subjects. The unselected parameters either do not reflect the 
voice quality or they are missing in the MEEI database. The 
same company distributes MDVP and MEEI database (Kay 
Elemetrics Corporation, Lincoln Park, NJ), and for some files 
in the MEEI database, all 33 parameters are not provided. As 
a result, authors used those 22 parameters that are relevant to 
voice quality and available for all files in the MEEI database. 
The parameters were given to six different classifiers to 
discriminate between normal and disordered subjects (i.e.,., 
quadratic discriminant classifier, nearest mean classifier, 
Parzen classifier, K-means nearest neighbor classifier, 
support vector machine (SVM), and multilayer perceptron 
(MLP)). The highest accuracy achieved was 89.29 for SVM, 
while the lowest accuracy was 78.90% and obtained with the 
quadratic discriminant classifier. Moreover, two feature 
reduction techniques and six feature selection methods were 
implemented to improve the accuracy of the method. The 
method became complicated when using many algorithms 
and classifiers, however, an enhanced accuracy could not be 
achieved. The accuracy was improved by 1.71% with feature 
selection methods and 4.97% with feature reduction methods. 

Among these long-term parameters, perturbation 
measures, jitter, and shimmer are used frequently. However, 
some studies have suggested that these measures are not 
consistent, and unreliable results could be obtained as a result 
Peppered et al. [43] reported that the measurement of jitter for 
nodules and normal subjects was significantly different; 
however, shimmer and normal subjects did not show 
significant differences when compared to nodule subjects. In 
a similar way, Lin et al. [44] concluded that the performance 
of percent jitter to differentiate between the group of vocal 
folds disorder subjects and normal subjects was good, while 
the ability of shimmer to discriminate between normal and 
disordered subjects was discouraging. On the contrary, Rosen 
et al. [45] found that the significance of shimmer to detect the 
nodules and normal subjects is higher than those of jitter. In a 
recent study [46], it was reported that when a speech signal is 
non-periodic, then it is not possible to extract the MDVP 
parameters accurately because shimmer and jitter are highly 
dependents on the fundamental frequency, which cannot be 
calculated precisely for non-periodic signals.  

It can be observed from the existing studies that 
perturbation and noise measures could not provide good 
results for the detection of vocal folds disorders. Therefore, 
nonlinear dynamic features are also used with perturbation 
and noise measures to enhance the performance of the vocal 
folds disorder detection methods. In [47], fractal dimensions 
are combined with the MDVP parameters to improve the 
accuracy of the disorder detection system. At the same time, 
a method based on Local Binary Pattern (LBP) operator is 
proposed to overcome the problem of non-periodicity [48]. 
One of the issues regarding this method is that it only works 
for non-periodic signals. Besides, the LBP codes [49] do not 
provide detailed information in a specific direction. 
Therefore, higher-order local derivatives are used in this study 
to develop a high-performance smart healthcare system to 
detect dysphonia.  

To the best of our knowledge, the higher-order local 
derivatives have never been used for the classification of 
normal and disordered speech signals. In this study, the 
higher-order derivatives analyze the time-frequency spectrum 
to determine the patterns along with various directions. 
Besides, The computed patterns provide distinctive and 
detailed information, unlike the traditional LBP codes. This 
information plays an important role in the classification of 
two types of signals. The experiments suggest that the 
information along different directions provides 
complementary information, and hence, the fusion at feature 
and decision level improved the classification results. In 
addition, the proposed system can detect vocal folds disorders 
in the presence of periodic as well as non-periodic signals.  

The remaining part of the paper is organized as follows: 
Section II describes the proposed system and elaborated steps 
to determine the time-frequency spectrum and higher-order 
local derivatives. Section III presents the detailed 
experimental setup and results for the classification of normal 
and disordered speech signals using the first and second-order 
derivatives. In addition, this section also presents the results 
obtained by applying feature level and decision level fusion. 
In section IV, a comparison of the proposed system with the 
existing approaches is reported. Finally, Section V draws 
some conclusions and suggests future recommendations. 
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Fig. 2 IoT framework for the proposed healthcare system to detect vocal folds disorders 

 

2. Proposed smart healthcare system for IoT platform 

One of the main challenges of IoT based healthcare system is 
the central processing of the collected data using cloud 
computing. It not only raises the privacy and security issues 
of patients’ data but also elevates the problem of latency [50]. 
These problems can be avoided by processing the data near 
the point of collection via moving the intelligence to local 
devices (edge devices) so that the data are not transmitted for 
central processing, and ultimately, there will be no issues of 
latency. These local devices can be laptops, smartphones, 
smartwatches, or tablets. The proposed smart healthcare 
system with IoT framework to detect dysphonia is presented 
in Fig. 2. 

As shown in Fig. 2, various devices such as smartphones, 
voice recorders, webcams, and microphones can be used to 
record a voice sample of a patient. Then, the recorded sample 
is transmitted to edge devices through Bluetooth or Wi-Fi for 
the detection of vocal folds disorders using the proposed 
healthcare system. The proposed system is embedded in the 
edge devices (capable of computing and storage). The system 
evaluates the voice sample and sends the generated report to 
healthcare staff at a medical center through Wi-Fi. In this way, 
a health practitioner can monitor the condition of patients 
remotely, which is very crucial, especially after surgery, to 
eliminate any risk of complications.  

To detect vocal folds disorders, the proposed system 

investigates recorded speech signals. The vocal folds 
disorders exhibit irregular patterns in speech signals. 
Consequently, the signals become more complex and 
transient as compared to those of normal persons. Time-
frequency analysis is performed using Mel-spaced bandpass 
filters to determine the trends in normal and disordered 
signals. This analysis provides a time-frequency spectrum 
that is further explored using higher-order local derivatives. 
The analysis of spectrum with higher-order derivatives 
highlights the changes in different directions and provides 
vital information to distinguish between normal and 
disordered signals. The computed information is passed to the 
SVM for automatic classification of both types of signals. The 
time-frequency spectrum of a speech signal is computed using 
the following steps: 

1) A speech signal is divided into overlapping frames. The 
current frame starts from the middle of the previous 
frame to avoid the loss of any information at the ends. 

2) Each frame is multiplied by a Hamming window to taper 
the frame ends close to zero. It causes continuity between 
successive frames and avoids spectral leakage during 
Fourier transformation (FT), which is an important 
component of time-frequency analysis. 

3) Subsequently, FT is implemented on each overlapped 
frame to determine the contribution of each frequency 
component using the fast Fourier algorithm due to its low 
computational cost.  
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Fig. 3 Time-frequency spectrum with a highlighted area to compute first and second-order derivatives 

 

4) The spectrum obtained after applying FT is further 
processed to simulate the human auditory perception by 
passing the spectrum through Mel-spaced bandpass 
filters. The bandwidth of these filters is linear for lower 
frequencies (up to 1000 Hz) and logarithmic for higher 
frequencies. As a result, a time-frequency spectrum is 
obtained, as shown in Fig. 3.  

5) Finally, the obtained time-frequency spectrum is divided 
into small blocks to analyze its texture using the first and 
second-order local derivatives. A block of dimension 5 × 
5 representing a portion of the spectrum is shown in Fig. 
3.  

To compute the first-order derivative, eight neighboring 
elements (taken anti-clockwise) of the center element are 
considered. In Fig. 4, the bold element B0 is a center of 5 × 5 
block B, while italic elements (B1, B2, B3, B4, B5, B6, B7, and 
B8, where 0.9 is B1) are its neighbors. The first-order 
derivative descriptor is also referred to as a Local Binary 
Pattern (LBP), and it provides a non-directional derivative 
pattern. The computation of the first-order derivative is shown 
in Fig. 4. The center element is compared with all neighbors; 
when a neighbor is greater than the center element, then it is 
replaced by 1; otherwise, 0. The criterion is given in Eq. 1, 
where Bi' represents the first-order derivative of the 
corresponding element. The computed first-order derivative 
in Fig. 4 is 11010000, where the element at the top-right 
corner indicates the most significant bit. A decimal number 
equivalent to the computed binary number is the required LBP 
code. Similarly, each element of the spectrum is replaced by 
the LBP code, and a histogram is obtained. The number of 

bins in computed histogram is 256, where a bin represents the 
frequency of an LBP code. 

 
 

 
Fig. 4 Computation of the first-order derivative in a 5 × 5 

block of the spectrum 
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B'(0,90°) = 0.5 − 1.4 = −0.9 

B'(1,90°) = 0.9 − 0.7 = +0.2 

B''(0,90°) = (−0.9) × (+0.2) ≤ 
0 

bit = 1  

 

B'(0,90°) = 0.5 − 1.4 = −0.9 

B'(2,90°) = 1.4–0.4 = +1.0 

B''(0,90°) = (− 0.9) × (+1.0) ≤ 
0 

bit = 1  

 

B'(0,90°) = 0.5 − 1.4 = −0.9 

B'(3,90°) = 0.0 − 0.7 = −0.7 

B''(0,90°) = (− 0.9) × (−0.7) > 
0 

bit = 0  

 

B'(0,90°) = 0.5 − 1.4 = −0.9 

B'(4,90°) = 1.1 − 0.0 = +1.1 

B''(0,90°) = (−0.9) × (+1.1) ≤ 
0 

bit = 1  

 

    
B'(0,90°) = 0.5 − 1.4 = −0.9 

B'(5,90°) = 0.1–1.1 = −1.0 

B''(0,90°) = (− 0.9) × (−1.0) > 
0 

bit = 0  

B'(0,90°) = 0.5 − 1.4 = −0.9 

B'(6,90°) = 0.4 − 0.5 = −0.1 

B''(0,90°) = (− 0.9) × (−0.1) > 
0 

bit = 0  

B'(0,90°) = 0.5 − 1.4 = −0.9 

B'(7,90°) = 0.1 − 0.4 = −0.3 

B''(0,90°) = (− 0.9) × (−0.3) > 
0 

bit = 0  

B'(0,90°) = 0.5 − 1.4 = −0.9 

B'(8,90°) = 0.4 − 0.9= −0.5 

B''(0,90°) = (− 0.9) × (−0.5) > 
0 

bit = 0 
 

Fig. 5 Process of computing second-order derivative for B0 along 90° 
 

computed for each element of 5 × 5 block B. It provides the 
change along with different directions, i.e., 0°, 45°, 90°, and 
135°. The calculation of the first-order derivative in all 
directions using the criteria mentioned in Eq. 2 was performed 
to compute the second-order derivative for a center element 
B0. 
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Then, computing the first derivative for all neighbors B1, B2, 
B3, B4, B5, B6, B7, and B8 in all directions. The pattern of 
second-order derivative for B0 in a direction γ is given by Eq. 
3. 

The complete process to determine the second-order 
derivative for B0 along 90° is illustrated in Fig. 5. For instance, 

to obtain the first bit of the second-order pattern, the first-
order derivative for B0 and B1 are computed by subtracting the 
respective neighbors along 90° from them. Next, multiplying 
the derivatives; when the product is zero or negative, the 
required bit is 1; otherwise 0. Similarly, the bits for other 
neighbors B2, B3, B4, B5, B6, B7, and B8 were also computed. 
The obtained 8-bits are 11010000. The second derivatives for 
B0 in the other three directions 0°, 45°, and 135°, are 
01010100, 00101111, and 11000110, respectively.  
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In this way, second derivative patterns are determined for 
each element of 5 × 5 block in the time-frequency spectrum. 
As a result, a histogram along each direction could be 
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obtained. These histograms are transferred to SVM for 
automatic classification of normal and disordered signals. 

3. Experimental setup and results 

To validate the proposed smart healthcare system, many 
experiments are performed for the classification of normal 
and disordered speech signals, which are recorded using a 
microphone. The proposed system processes a speech signal 
to compute the time-frequency spectrum. The speech signal is 
divided into frames of length 512 samples with overlapping 
of 256 samples with the previous frames to compute the 
spectrum. The hamming window and FT are implemented 
with 512 points using 26 Mel-spaced bandpass filters to 
obtain the spectrum. During the texture analysis of the 
computed time-frequency spectrum, zero-padding is 
performed at the boundaries of the spectrum to avoid any 
information loss. In this way, the first and second-order 
derivatives are calculated for every element of the spectrum.  

Four approaches are used to perform the classification of 
normal and disordered signals: Firstly, the first-order non- 
directional derivative (LBP codes) is transferred to SVM for 
automatic classification. Secondly, the second-order 
derivatives along each direction are given to SVM 
individually. Then, histograms of all directions are 
concatenated and given to SVM. This phenomenon is termed 
feature level fusion. Finally, the individual decisions of first- 
and second-order derivative (in all directions) are combined 
to reach the final consensus about the signal types. This 
approach is known as decision level fusion. The proposed 
system, with all approaches used for the experiments, is 
depicted in Fig. 6. 

In each approach, the binary classifier SVM is 
implemented using three kernels linear, quadratic (quad), and 
radial basis function (RBF). The feature level fusion increases 
the overall dimension of the feature vector in which SVM 
performs relatively well compared to other classifiers based 
on clustering algorithms.  

Various performance measures are used to examine the 
performance of the proposed system. These measures include 
sensitivity, specificity, and accuracy with the following 
definitions: sensitivity (SEN) provides the ratio of the truly 
detected disordered signals, specificity (SPE) gives the ratio 
of the correctly detected normal signal, and accuracy 
describes the truly detected disordered and normal signal in 
the complete dataset. SEN, SPE, and ACC are computed for 
each kernel of SVM in every experiment. All experiments are 
conducted using the speech signal of MEEI voice disorder 
database. 

3.1 MEEI voice disorder database 

MEEI database [42] is a collection of normal and voice 
disordered speech signals. It was recorded at MEEI laboratory 
and publicly available through PENTAX Medical, USA. A 
subset of MEEI database containing 173 disordered and 53 
normal signals is considered in this study to conduct all 
experiments. Among the 173 disordered subjects, 22 suffer 
from adductor, 20 from vocal nodules, 26 from keratosis, 20 
from vocal fold polyp, and 85 from paralysis. Among the 53 
normal subjects, 21 are males, and the remaining 32 are 
female. While 70 disordered subjects are males, and 103 are 
females. For pathological subjects, the ages of male patients 
are in the range of 26–58 years, while those for female 
patients are in the range of 21–51 years. The average age for 
men is 41.71 years, and for women, it is 37.58 years. Overall, 
the age range of patients is between 21 and 58 years, 
indicating that individuals of any age can be affected by vocal 
folds disorders [51]. 

This subset has been used in many studies [52,13,53]. The 
duration of each signal is three seconds and one second for 
normal and disordered signals, respectively. The possible 
reasons for the shorter duration of the disordered signals are 
the medical conditions of patients, including the severity of 
pain while speaking and the inability to hold breath for a long-
time during the recording. All signals contain sustained 
vowels/ah/. 

3.2 Classification with first-order non-directional 

derivative 

The non-directional first-order derivative compares the 
center element with all eight neighbors. Consequently, an 
eight-bit pattern of 0s and 1s is obtained, which describes the 
randomness in the time-frequency spectrum. The irregular 
vibration of the vocal folds due to voice disorders exhibits 
disruptions in the time-frequency spectrum. The first-order 
derivative captures such abnormalities in the spectrum. For 
instance, the spectrum of the disordered signal contains more 
1-to-0 or 0-to-1 transitions compared to the spectrum of 
normal signals. The SVM differentiates the signals based on 
the computed pattern. The classification results using the first-
order non-directional derivatives are provided in Table 1.  

 

Table 1  Classification Results using 1st order non-
directional derivative (LBP codes) 

Kernel SEN SPE ACC 
Linear 91.3 75.5 87.6 

Quad 93.1 81.1 90.3 
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RBF 94.8 86.8 92.9 

 

The experimental results show that the patterns are not 
linearly separable. Therefore, the highest accuracy  

 

 
 

Fig. 6 Proposed smart healthcare system for classification of normal and disordered signal with all approaches 
 

obtained was with RBF kernel, which is 92.9%. All measures 
are averaged over 5-folds. The standard deviation of the 
accuracy among 5-folds is 1.8. 
 

3.3 Classification with second-order directional 

derivative 

In contrast to the first-order non-directional derivatives 
determining the relationship between the neighbors and center 
element, the high order derivative captured the local 
information by highlighting the following distinctive 
information along with various directions. 

1) The second-order derivative along 0° provides the 
change in frequency with time (frames). 

2) The second-order derivative along 90° gives the variation 
in time (frames) with respect to frequency. 

3) The second-order derivatives along 45° and 135° 
describe the variation when time and frequency change 
together. Along 45°, both frame and filter numbers 
increase, while along 135°, the filter number increases 
and the frame number decreases. 

The classification results for second-order derivative along 
all directions are listed in Table 2. The results suggest that the 

proposed system provides better classification accuracy when 
both time and frequency are changed simultaneously in 
comparison to the change in either time or frequency. The 
maximum obtained accuracy is 94.7%, with a standard 
deviation of 1.4 over 5-folds. 

 
Table 2  Classification results using 2nd order directional 
derivatives along 0°, 45°, 90°, and 135° 

 

Direction Kernel SEN SPE ACC 

0° 

Linear 93.1 79.2 89.8 

Quad 94.2 84.9 92.0 
RBF 94.8 88.7 93.4 

45° 

Linear 91.9 77.4 88.5 

Quad 93.6 83.0 91.2 
RBF 96.0 90.6 94.7 

90° 
Linear 89.0 92.5 89.8 
Quad 92.5 94.3 92.9 
RBF 95.4 88.7 93.8 

135° 
Linear 91.3 77.4 88.1 
Quad 94.2 83.0 91.6 
RBF 95.4 90.6 94.2 
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In Table 2, the variation in accuracy supports that the 
derivative along different directions may provide 
complementary information in the classification of signals. 
For example, a signal detected as a false positive in a 
certain direction might be detected as a true positive in 
another direction. The fusion of information can verify 
such situations. 

3.4 Classification Results with Fusion  

The information can be fused in two different ways: i) feature 
level fusion, and ii) decision level fusion. The feature level 
fusion is achieved by concatenating the histogram of all 
directions, while the decision level fusion is done by 
following the majority voting criteria on the individual 
decisions of all computed derivatives. The majority voting is 
based on the decision of each direction (0°, 45°, 90°, and 
135°) and those obtained by the fusion of these four 
directions, as shown in Fig. 6. In other words, the number of 
inputs for the majority voting is five. 

The experimental results for both types of fusion are given 
in Table 3 and Table 4, respectively.  

 
Table 3 Classification results with feature level fusion 
(concatenation of directional derivatives of all directions)  
 

Kernel SEN SPE ACC 

Linear 88.4 90.6 88.9 

Quad 93.1 94.3 93.4 
RBF 96.5 96.2 96.5 

 
Table 4 Classification results with decision level fusion 
using majority voting  

  

Kernel SEN SPE ACC 
Linear 90.8 84.9 89.4 

Quad 95.4 92.5 94.7 
RBF 99.4 98.1 99.1 

4. Summary and comparison  

Four different approaches are used for the classification of 
normal and disordered speech signals to investigate the 
proposed healthcare system. In each approach, the highest 
accuracy is achieved with the RBF kernel. The reason is that 
the computed derivatives are not linearly separable, whereas 
the RBF kernel mapped the derivatives into high-dimensional 
space, which made the given data separable. The summary of 
the obtained results for all approaches is depicted in Fig. 7. 
The best obtained accuracy in a single direction is 94.7%, i.e., 
along 45°, when time and frequency change together in the 
time-frequency spectrum. In other approaches, feature level 
and decision level fusion achieved the highest accuracy of 
96.5% and 99.1%, respectively. The improved accuracies in 
case of  

 
 

Fig. 7 Summary of the results of all approaches of the proposed healthcare system 
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fusion shows that derivatives along different directions 
provide complementary information for the detection of 
vocal folds disorders. For all approaches, 95% confidence 
interval is computed to observe the reliability of the 
decision of the proposed system. The obtained p-value is 
less than 0.05 in all approaches, which rejects the null 
hypothesis that SVM's decision values to distinguish the 
normal and disordered signal are from continuous 
distributions with equal medians. Therefore, the proposed 
system is reliable in decision making, i.e., the detection of 
dysphonia.  

In a previous study [54], the LBP operator (non-
directional first-order derivative) is used to compute LBP 
codes. Then, the computed codes are directly given to 
GMM for the classification of normal and disordered 
speech signals. The obtained accuracy was 92.50%, while 
SEN and SPE are 95% and 90%, respectively. In another 
study [48], the LBP descriptor is used for the recursion plot 
[55]. According to their work, a significant difference in 
the computed histograms of normal and disordered signals 
has been found because histograms of disordered signals 
contain a high number of non-uniform LBP codes than the 
normal signals. The non-uniform codes consist of more 
than two transitions from 0-to-1 or 1-to-0, indicating that 
the signal is transient and irregular. Only Type 2 and Type 
3 signals are considered to perform the experiments in 
[48]. Consequently, the accuracy of the system is 
significantly improved. The system provided an accuracy 
of 97.73%. While, the achieved SEN and SPE are 98% and 
96%, respectively. The accuracy is improved due to the 
exclusion of Type 1 disordered signals, which are closed 
to the normal signals and create confusion for the 
classifier.  

Using the proposed system, an accuracy of 99.1% with 
SEN and SPE of 99.4% and 98.1%, respectively, have 
been obtained in this work. The results revealed that higher 
accuracy could be gained compared to existing systems 
[54]. Besides, an accuracy of 99.98% was achieved using 
MDVP parameters [46]. The obtained accuracy is high; 
however, MDVP parameters are not reliable for non-
periodic signals [56] due to the irregular behavior of the 
vocal folds because voice pathology makes the signal 
complex and transient. As a result, non-periodicity 
appeared in the signal, especially when the severity of the 
disorder is high. Therefore, the approach used 
previously[46] cannot be used for non-periodic signals, 
and it is one of the major issues of the study. Moreover, 
other researchers [48] provide the solution for non-

periodic signals, but they cannot detect dysphonia 
accurately when the disordered signal is periodic.  

However, the proposed system has the ability to detect 
dysphonia in the presence of all types of signals, i.e., 
periodic and non-periodic, which is a strong and 
significant aspect of the proposed system. 
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5. Conclusions 

An accurate and reliable healthcare system for IoT 
environment for the detection of vocal folds disorders is 
proposed and adopted in this study. The proposed system 
highlights the difference in the time-frequency spectrum 
of both normal and disordered signals using the higher-
order derivatives, which encode the distinctive spatial 
information in a local region. The system is implemented 
using a machine-learning algorithm to make an automatic 
decision. Hence, it can be embedded into the edge devices 
in IoT environments to monitor patients remotely. By 
detecting vocal folds disorders at an early stage, patients’ 
lives can be saved because some of the disorders are life-
threatening in case of delay and/or negligence. Moreover, 
the patients can be observed remotely after the surgery of 
vocal folds to be followed up. Such edge-centric 
healthcare system avoids latency as well as the breach of 
patients’ confidential health data as it processes the data 
near the collection point without transmission over a 
network. Therefore, no watermarking and cryptography 
solutions are required. Some suitable techniques, such as 
principal component analysis, will be implemented to 
determine the highly discriminant patterns in future work. 
Consequently, it will reduce the number of features, 
confirming the efficiency of the proposed system. 
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