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Abstract
A flag is a nested sequence of vector spaces. The type of the flag encodes the sequence of dimensions of the vector spaces

making up the flag. A flag manifold is a manifold whose points parameterize all flags of a fixed type in a fixed vector space.

This paper provides the mathematical framework necessary for implementing self-organizing mappings on flag manifolds.

Flags arise implicitly in many data analysis contexts including wavelet, Fourier, and singular value decompositions. The

proposed geometric framework in this paper enables the computation of distances between flags, the computation of

geodesics between flags, and the ability to move one flag a prescribed distance in the direction of another flag. Using these

operations as building blocks, we implement the SOM algorithm on a flag manifold. The basic algorithm is applied to the

problem of parameterizing a set of flags of a fixed type.

Keywords Self-organizing mappings � SOM � Flag manifolds � Geodesic � Visualization

1 Introduction

Self-Organizing Mappings (SOMs) were introduced as a

means to see data in high-dimensions [8–11]. This com-

petitive learning algorithm effectively transports the notion

of proximity in the data space to proximity in the index

space (which may in turn be endowed with its own

geometry). As a tool, SOMs have been widely applied and

extended [5]. The goal of the SOM algorithm is to produce

a topology preserving mapping from a high-dimensional

space to a low-dimensional space in the sense that points

that are neighbors in the high-dimensional space are also

represented as neighbors in the low-dimensional index

space.

The geometric framework of the vanilla version of the

SOM algorithm is Euclidean space. In this setting, the

distance between points is simply the standard 2-norm of

the vector difference. The movement of a center toward a

pattern takes place on a line segment in the ambient space.

The only additional ingredient to the algorithm is a metric

on the index space. Some additional treatments are needed

when data are living on a high-dimensional manifold rather

than Euclidean space. In [20], the author proposed a

modification of the Self-organizing map algorithm to learn

the manifold structure in the high-dimensional observation

coordinates. Motivated by the subspace approach to data

analytics we proposed a version of SOM using the geo-

metric framework of the Grassmannian [3, 17–19]. This

subspace approach has proven to be effective in settings

where you have a collection of subspaces built up from a

set of patterns drawn from a given family. Given that one

can compute distances between points on a Grassmann

manifold and that one can move one point in the direction

of another, it is possible to transport the SOM algorithm on

Euclidean space to an SOM algorithm on a Grassmannian

[7, 14].

An interesting structure that generalizes Grassmannians

and encodes additional geometry in data is known as the

flag manifold. The points of a flag manifold parameterize

the flags of a given type. Thus, a single point on a flag

manifold corresponds to a sequence of nested subspaces.
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As an example, the wavelet transform applied to a data

vector produces a sequence of approximations that live in

nested scaling subspaces [6]. The nested sequence of

scaling subspaces is a flag and corresponds to a single point

on an appropriate flag manifold. As a second example,

consider an ordered basis, v1; v2; . . .; vk for a set of data

produced, for instance, as the output of a principal com-

ponent analysis computation. The ordered basis induces the

flag S1 � S2 � . . . � Sk where Si is the span of v1; . . .; vi.

Again, this nested sequence of vector spaces is a flag thus

corresponds to a point on a flag manifold. In this paper we

extend SOM to perform a topology preserving mapping on

points that correspond to nested subspaces such as those

arising, for instance, from ordered bases or wavelet scaling

spaces. To accomplish this, we show how to compute the

distance between two points on a flag manifold and

demonstrate how to move a flag a prescribed distance in the

direction of another. Given these building blocks, we

illustrate how one may extend SOM to the geometric

framework of a flag manifold.

This paper provides an extension to [13]. The outline of

this paper is as follows: In Sect. 2, we provide a formal

definition of the flag manifold and illustrate with concrete

examples. In Sect. 3, we introduce the numerical repre-

sentation of flag manifolds. Here we indicate explicitly

how distances can be computed between flags, and further,

how a flag can be moved in the direction of another flag. In

Sect. 4 we put the pieces together to realize the SOM

algorithm on flag manifolds. We demonstrate the algorithm

with a preliminary computational example. Section 5

consists of a numerical example utilizing the algorithm.

Finally, in Sect. 6 we summarize the results of the paper

and point toward future directions of research.

2 Introduction to flag manifold with data
analysis examples

In this section, we introduce the basics of the flag manifold,

fix some terminology and notation, and provide examples

of its appearance in the context of data analysis.

A flag of subspaces in Rn is a nested sequence of sub-

spaces f0g � V1 � V2 � � � � � Vd ¼ Rn. The signature or

type of the flag refers to the dimensions of the Vi. There are

two standard ways to encode this dimension information.

One way is as the sequence ðdimV1; dimV2; . . .; dimVdÞ.
A second way to encode this dimension information is as

the sequence ðdimV1; dimV2 � dimV1; dimV3 � dimV2;

. . .; dimVd � dimVd�1Þ. In this paper, we will use this

second encoding for the type of flag. We let

FLðn1; n2; . . .; ndÞ denote the flag manifold whose points

parameterize all flags of type ðn1; n2; . . .; ndÞ. Thus, a point
on this flag manifold corresponds to a nested sequence of

subspaces f0g � V1 � V2 � � � � � Vd ¼ Rn with the

dimension of Vi equal to n1 þ . . .þ ni. As a special case, a

flag of type ð1; 1; . . .; 1Þ is referred to as a full flag and

FLð1; 1; . . .; 1Þ denotes the manifold whose points param-

eterize all full flags in Rn. Figure 1 illustrates the nested

structure of the first three low-dimensional elements com-

prising a full flag in Rn.

A flag of type ðk; n� kÞ is simply a k�dimensional

subspace of Rn (which can be considered as a point on the

Grassmann manifold Gr(k, n)). Hence

FLðk; n� kÞ ¼ Grðk; nÞ. The Grassmannian-SOM algo-

rithm is developed in [7, 14]. The idea that the flag man-

ifold is a generalization of the Grassmann manifold will be

utilized later to introduce the geodesic formula on the flag

manifold. The nested structure inherent in a flag shows up

naturally in the context of data analysis.

1. Wavelet analysis: Wavelet analysis and its associated

multiresolution representation produces a nested

sequence of vector spaces that approximate data with

increasing resolution [2, 15, 16]. Each scaling subspace

Vj is a dilation of its adjacent neighbor Vjþ1 in the

sense that if f ðxÞ 2 Vj then a reduced resolution copy

f ðx=2Þ 2 Vjþ1. The scaling subspaces are nested

� � � � V2 � V1 � V0 � V�1 � � � �

and in the finite-dimensional setting can be considered

as a point on a flag manifold. In Fig. 2, we visualize

points on the geodesic between the flags associated

with Daubechies2 (Haar) and Daubechies4 as they are

applied to a particular image of size 32� 32. To be

more specific, for each timestamp t (0� t� 1), we have

a flag corresponding to a point on the geodesic between

Daubechies2 and Daubechies4. Using the flag corre-

sponding to one of these time steps, we can transform

an MNIST image (considered as a 32� 32 matrix) by

multiplying on both the left and the right by the pro-

jection matrices associated to each subspace in the flag.

In this figure, each row is showing how this transfor-

mation affects the 32� 32 MNIST image while mor-

phing along this geodesic. Each column is a

visualization of the nested scaling subspaces, i.e., a

4-dimensional scaling subspace living in an 8-dimen-

sional scaling subspace living in a 16-dimensional

Fig. 1 Illustration of a nested sequence of subspaces corresponding to

a point on the flag manifold FLð1; 1; . . .; 1Þ
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scaling subspace living in a 32-dimensional ambient

space. Note that the last column remains constant for

all t since it recovers the original MNIST image.

2. SVD basis of a real data matrix: Let X 2 Rn�k be a real

data matrix consisting of k samples in Rn. Let URVT ¼
X be the thin SVD of X. The columns of the n-by-d

orthonormal matrix U is an ordered basis for the

column span of X. This basis is ordered by the

magnitude of the singular values of X. This order

provides a straightforward way to associate to U a

point on a flag manifold. If U ¼ ½u1ju2j. . .jud� then the

nested subspaces spanð½u1�Þ(spanð½u1ju2�Þ(
� � �(spanð½u1j � � � jud�Þ(Rn is a flag of type

ð1; 1; . . .; 1; n� dÞ in Rn. After we introduce the

distance metric on the flag manifold in Sect. 3.2, one

could consider computing the distance between two

flags, perhaps derived from a thin SVD of two different

data sets, which takes the order of the bases into

consideration.

3 Numerical representation and geodesics

A point in the vector space Rn can be naturally represented

by an n� 1 vector. For a more abstract object like a

Grassmann or flag manifold, we need a way to represent

points in such a way that we can do computations. In this

section, we describe how we can represent points and we

describe how to determine and express geodesic paths

between points. Note that in this paper we are using exp

and log to denote the matrix exponential and the matrix

logarithm.

3.1 Flag manifold

The flag manifold FLðn1; n2; . . .; ndÞ is a manifold whose

points parameterize the set of all flags of type

ðn1; n2; . . .; ndÞ. The presentation in [4] describes how to

view the Grassmann manifold Gr(k, n) as the quotient

Fig. 2 A visualization of the

geodesic between the flags

associated with Daubechies2

(Haar) and Daubechies4

transform matrix of size

32� 32
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manifold OðnÞ=OðkÞ � Oðn� kÞ where O(n) denotes the

orthogonal group and OðkÞ � Oðn� kÞ denotes the block

diagonal matrix with elements from O(k) in the first block

and elements from Oðn� kÞ in the second block. If we let

SO(n) denote the special orthogonal group and SðOðkÞ �
Oðn� kÞÞ denote the subgroup of OðkÞ � Oðn� kÞ con-

sisting of matrices having determinant 1, then an equiva-

lent description of Gr(k, n) is as the quotient manifold

SOðnÞ=SðOðkÞ � Oðn� kÞÞ. In the same way,

FLðn1; n2; . . .; ndÞ is the quotient manifold

SOðnÞ=SðOðn1Þ � Oðn2Þ � � � � � OðndÞÞ where

n1 þ n2 þ � � � þ nd ¼ n. Let P 2 SOðnÞ be an n-by-n spe-

cial orthogonal matrix, the equivalence class [P], repre-

senting a point on the flag manifold, is the set of special

orthogonal matrices

½P� ¼ P

P1 0 � � � 0

0 P2 � � � 0

..

. . .
. ..

.

0 � � � Pd

0
BBBB@

1
CCCCA

: Pi 2 OðniÞ ;
Y
i

detðPiÞ ¼ 1

8>>>><
>>>>:

9>>>>=
>>>>;
:

A manifold closely related to FLðn1; n2; . . .; ndÞ is the fully
oriented flag manifold FLOðn1; n2; . . .; ndÞ ¼
SOðnÞ=SOðn1Þ � SOðn2Þ � � � � � SOðndÞ. There is a natu-

ral map / : FLOðn1; n2; . . .; ndÞ ! FLðn1; n2; . . .; ndÞ. This
map is subjective and is a 2d�1 cover of FLðn1; n2; . . .; ndÞ.
Thus, the inverse image of a point in the flag manifold is a

collection of 2d�1 points in the fully oriented flag manifold.

It is well known that the geodesic paths on SO(n) are

given by exponential flows PðtÞ ¼ P expðtAÞ where A 2
Rn�n is any skew symmetric matrix and Pð0Þ ¼ P. The

geodesics on SO(n), i.e., PðtÞ ¼ P expðtAÞ, continue to be

geodesics on FLðn1; n2; . . .; ndÞ as long as they are per-

pendicular to the orbits generated by

SðOðn1Þ � Oðn2Þ � � � � � OðndÞÞ, which requires further

constraints on the tangent vector A. FLðn1; n2; . . .; ndÞ is a
quotient manifold of SO(n). Let ½P� 2 FLðn1; n2; . . .; ndÞ.
The tangent space to SO(n) at P, TPSOðnÞ, can be

decomposed into a vertical space VP and a horizontal space

HP. The vertical space is the set of vectors in the tangent

space corresponding to motions flowing along the equiva-

lence class [P] at P. The horizontal space is defined as the

orthogonal (with respect to the Euclidean metric) com-

plement of the vertical space in TPSOðnÞ. The Euclidean

metric is defined as a function d : TPSOðnÞ � TPSOðnÞ7!R:

dðU;VÞ ¼ TrðUTVÞ
¼ vecðUÞTvecðVÞ

Intuitively, the vectors in the vertical space can be thought

of as the set of velocity vectors which preserve the

equivalence class, while the vectors in the horizontal space

modify the equivalence class. Therefore, tangent vectors to

geodesics need to be further constrained to the horizontal

space. If V is a tangent vector to FLðn1; n2; . . .; ndÞ, then
there is a horizontal vector V 2 HP which represents

V uniquely, which gives a numerical/matrix representation

to the tangent vectors.

The vertical space at a point P is the set of matrices

VP ¼ P

A1 0 � � � 0

0 A2 � � � 0

..

. . .
. ..

.

0 � � � Ad

0
BBBB@

1
CCCCA

8>>>><
>>>>:

9>>>>=
>>>>;
;

where Ai is a ni-by-ni skew symmetric matrix. The hori-

zontal space HP is the set of matrices which are orthogonal

to the vertical space and living in TPSOðnÞ. Consider the
following set of equations

Tr DTP

A1 0 � � � 0

0 A2 � � � 0

..

. . .
. ..

.

0 � � � Ad

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

¼ 0

D ¼ PA

where A 2 Rn�n and Ai 2 Rni�ni are skew symmetric

matrices. By solving the above system of equations, we can

conclude that the horizontal space at P is the set of matrices

HP ¼ P

0n1 �
0n2

. .
.

��T 0nd

0
BBBB@

1
CCCCA

8>>>><
>>>>:

9>>>>=
>>>>;

where 0ni denotes an ni � ni matrix of zeros. This leads one

to conclude that the geodesic paths on FLðn1; n2; . . .; ndÞ
are exponential flows:

PðtÞ ¼ P expðt ~CÞ ð1Þ

where ~C is any skew symmetric matrix of the form
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~C ¼

0n1 �
0n2

. .
.

��T 0nd

0
BBBB@

1
CCCCA
; 0ni ¼ 0ni�ni :

3.2 Skew symmetric matrix determines
a geodesic between two points

By Eq. (1), one may trace out the geodesic path on a flag

manifold emanating from P in the direction of ~C. In this

section, we utilize Eq. (1) to solve the inverse problem:

Given two points Q1;Q2 2 SO(n), whose equivalence

classes ½Q1�; ½Q2� represent flags of type ðn1; n2; . . .; ndÞ, the
goal is to obtain a factorization

Q2 ¼ Q1 � expðHÞ �M ð2Þ

for H and M where H and M are constrained to be of the

form

H ¼

0n1 �
0n2

. .
.

��T 0nd

0
BBBB@

1
CCCCA

and M ¼

M1 0 � � � 0

0 M2 � � � 0

..

. . .
. ..

.

0 � � � Md

0
BBBB@

1
CCCCA

where H is skew symmetric, Mi 2 OðniÞ, and M 2 SOðnÞ.
However, related to the covering map mentioned above,

this factorization has multiple solutions. The expression

QðtÞ ¼ Q1 exp tH, as t varies from 0 to 1, traces out a

geodesic path between Q1 and Q1 expðHÞ. The length of

the geodesic path between Q1 and Q1 expðHÞ can be

computed as a function of the eigenvalues of H which can

be simplified to the expression

Length of Path ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
traceðHTHÞ

r
: ð3Þ

For additional details on this formula, see [4, 21]. If one

starts with two special orthogonal matrices Q1 and Q2, one

can consider their equivalence classes ½Q1�; ½Q2� as two

points on a flag manifold. In order to compute their dis-

tance apart on the flag manifold FLðn1; n2; . . .; ndÞ, we

consider the inverse image of ½Q1� and ½Q2� under the map

/. The inverse image of each determines 2d�1 points on

FLOðn1; n2; . . .; ndÞ. The algorithms that we propose in the

next section compute the shortest length of a geodesic

between a point in the inverse image of ½Q1� and a point in

the inverse image of ½Q2�. The length of this shortest

geodesic is the distance between ½Q1� and ½Q2� as points on
FLðn1; n2; . . .; ndÞ.

Equation (2) can be interpreted in the following way.

First, we map Q1 to a representative in ½Q2� via the geo-

desic determined by the velocity matrix H. Second, we map

this element in ½Q2� to Q2 via the matrix M. Figure 3 is a

pictorial illustration of the idea behind Eq. (2).

For FLðk; n� kÞ, i.e., the Grassmannian Gr(k, n), one

can solve for H analytically. See [4] for details.

For the more general case of computing the length of the

geodesic between ½Q1� and ½Q2� (as shown in Fig. 3), we

will present an iterative algorithm to obtain a numerical

approximation of H and M in Sect. 3.3. Before we proceed

to the algorithm, let us further simplify Eq. (2) by letting

Q ¼ QT
1Q2. This allows us to rewrite (1) as

Q ¼ expðHÞ �M ð4Þ

Here we define W as the vector space of all n-by-n skew

symmetric matrices. Let p ¼ ðn1; n2; . . .; ndÞ. We define

Wp to be the set of all block diagonal skew symmetric

matrices of type p and its orthogonal complement W?
p in

W , i.e.,

Wp ¼ G 2 W j G ¼
G1 � � � 0

..

. . .
. ..

.

0 � � � Gd

0
BB@

1
CCA

8>><
>>:

9>>=
>>;
; ð5Þ

W?
p ¼ H 2 W j H ¼

0n1 �
. .
.

��T 0nd

0
BB@

1
CCA

8>><
>>:

9>>=
>>;
: ð6Þ

where by definition, Gi 2 Rni�ni is skew symmetric for each

i. Instead of solving Eq. (4) directly, we propose to solve

the following alternative equation:
Fig. 3 Illustration of Eq. (2). The vertical lines represent the

equivalence classes ½Q1� and ½Q2�, respectively. Q1 is mapped to an

element in ½Q2� by right multiplication with expðHÞ which is then sent
to Q2 by multiplying with M
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Q ¼ expðHÞ � expðGÞ ð7Þ

where G 2 Wp and H 2 W?
p . However, it is important to

note that expðGÞ will produce an element in

SOðn1Þ � SOðn2Þ � � � � � SOðndÞ. As a consequence, in

these computations we implicitly work on the fully ori-

ented flag manifold SOðnÞ=SOðn1Þ � SOðn2Þ
� � � � � SOðndÞ. The fact that there is the natural 2d�1 to 1

map from the fully oriented flag manifold to the flag

manifold means we must compute values for H and G for

many different representatives. As the output of the algo-

rithm (Algorithm 2), we must pick the ‘‘optimal’’ H giving

the shortest distance arising from this map.

3.3 Iterative alternating algorithm

The idea of the Iterative Alternating algorithm is straight-

forward. Given an initial guess G½0� 2 Wp, since Q and G½0�

are known, we can solve for H numerically. Let

Ĥ ¼ logðQ � expðG½0�ÞTÞ. Since Ĥ is generally not of the

desired form (i.e., Ĥ 62 W?
p ), we project Ĥ onto W?

p to

obtain an update for H. This projection has the effect of

zeroing out entries in a certain pattern in Ĥ. We let

H½1� ¼ ProjW?
p
ðĤÞ. Then we start updating G. Let Ĝ ¼

logðexpðH½1�ÞTQÞ then project Ĝ onto Wp to obtain an

update for G. This projection has the effect of zeroing out

entries in a pattern complementary to what we did to obtain

an update for H. We let G½1� ¼ ProjGðĜÞ. Now iterate this

process obtaining H½2� then G½2� and continue until the

values stabilize. The pseudo code of our Iterative Alter-

nating algorithm is presented in Algorithm 1 and

Algorithm 2.

Algorithm 1: Iterative Alternating algorithm
Input Data: X1, X2 ∈ SO(n), p = (n1, n2, . . . , nd)
Output Data: H∗, G∗

Define: d(H) =
√

1
2
Tr(HT H)

1 Function FlagLog(X1, X2, p):
2 Q = XT

1 X2

3 {Qi}2d−1

i=1 = generateQi(Q,p)

4 for Q in {Qi}2(d−1)

i=1 do
5 for i = 1, · · · , m do
6 Generate random G[0]

7 k = 0
8 while k ≤ itermax and err < ε do
9 k = k + 1

10 H[k]) = PH(log(Q exp(−G[k−1])))
11 G[k] = PG(log(exp(−H[k])Q))
12 err = ‖Q − exp(H) exp(G)‖F
13 end
14 if d∗ > d(H[k]) then
15 d∗,H∗,G∗ = d(H[k]),H[k],G[k]

16 end
17 end
18 return H∗,G∗

Algorithm 2: Fully-oriented flag representations
1 Function generateQi(Q,p):
2 colHeader = [0,cumsum(n1, n2, · · · , nd−1)]+1
3 m = length(colHeader)
4 n = floor(d/2)
5 i = 1
6 Qi = Q
7 for j = 1 : n do
8 C = nchoosek(colHeader, 2*j)
9 for k = 1: size(C,1) do

10 i = i + 1
11 Qi = Q
12 Qi(:, C(k,:)) = -Qi(:, C(k,:))
13 end
14 end

15 return {Qi}(2
(d−1))

i=1

We walk through two examples as an illustration of the

numerical computation of the geodesic formula and dis-

tance between two points on a flag manifold. Here two

types of flag manifolds are utilized to illustrate how the

geometry of a Grassmann manifold differs from that of a

related flag manifold.
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Let

X ¼

1 0

0 1

0 0

0 0

0
BBB@

1
CCCA and let Y ¼

1ffiffiffi
2

p 1ffiffiffi
3

p

0
1ffiffiffi
3

p

0
1ffiffiffi
3

p

� 1ffiffiffi
2

p 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

be two data matrices. Let X ¼ Q1R1 and Y ¼ Q2R2 be the

full QR-decomposition of X and Y. Here we look at two

different flag structures:

1. Flag manifold of type p ¼ ð2; 2Þ: Let Q ¼ QT
1Q2. The

initial G0 (and any other Gi in the iterative procedure)

should be of the form

Gi ¼

0 g1 0 0

�g1 0 0 0

0 0 0 g2

0 0 � g2 0

0
BBB@

1
CCCA:

The output velocity matrix H (and any other Hi in the

iterative procedure) should be of the form

Hi ¼

0 0 h1 h2

0 0 h3 h4

�h1 � h3 0 0

�h2 � h4 0 0

0
BBB@

1
CCCA:

The unique singular values of output H are k1 = 1.0172

and k2 ¼ 0:5536. The geodesic distance is therefore

dð½Q1�; ½Q2�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

q
¼ 1:1581. One thing to note

is that FL(2, 2) is equivalent to Gr(2, 4). It is easy to

verify that k1; k2 are exactly the principal angles

between X and Y.

2. Flag manifold of type p ¼ ð1; 1; 2Þ: For this example,

the Gi’s and Hi’s should be of the form

Gi ¼

0 0 0 0

0 0 0 0

0 0 0 g1

0 0 � g1 0

0
BBB@

1
CCCA

and

Hi ¼

0 h1 h2 h4

�h1 0 h3 h5

�h2 � h3 0 0

�h4 � h5 0 0

0
BBB@

1
CCCA;

respectively. The unique singular values of output H

are k1 = 1.0469, k2 ¼ 0:5404 and the geodesic distance

Algorithm 3: Flag SOM algorithm

Input Data: {X(µ) ∈ SO(n)}Pµ=1,{C
[0]
i }i∈I , M ∈ N, p = (n1, n2, · · · , nd),

σ0 ∈ R, ε0 ∈ R

Output Data: Updated SOM network

Define: d(H) =
√

Σl
k=1λ2

k where ±iλk’s are eigenvalues of H.

1 Function flagSOM():
2 Q = XT

1 X2

3 {Qi}2d−1

i=1 = generateQi(Q,p)
4 for m = 1, 2, · · · , M do
5 μ = randi(P)
6 for i ∈ I do
7 Hm

i ,Gm
i = FlagLog(X(µ),Cm

i )
8 s = svd(Hm

i )
9 dmi =

√
(sT s)/2

10 end
11 i∗m = argmini{dmi }
12 for i ∈ I do
13 idxDist = ‖i − i∗m‖2
14 εm = ε0(1 − m/M)
15 σm = σ0(1 − m/M)
16 tm = εm · exp(−idxDist2/σ2

m)
17 Cm+1

i = Cm
i exp(tmHm

i ) exp(Gm
i )

18 end
19 end
20 return {CM

i }i∈I
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is therefore dð½Q1�; ½Q2�Þ ¼ 1:1782. The geodesic dis-

tance is larger than the previous example since we have

imposed more structure in this example.

4 SOM on flag manifolds

In this section we extend the SOM algorithm to the setting

of flag manifolds. The general setting of SOM starts with a

set of training data xðlÞ with l ¼ 1; . . .; p and an initial set

of randomized centers fCig where the subscript i is asso-

ciated to the label of the low-dimensional index ai. The

standard SOM center update equation is given by,

Cmþ1
i ¼ Cm

i þ �mhðdðai; ai� ÞÞðX � Cm
i Þ:

The superscript m is indicating the m-th iteration in the

SOM algorithm. Here i� is the winning center of data point

X, i.e.,

i� ¼ argmin kX � Cik2:

We also set the localization function as the standard

hðsÞ ¼ e�s2=r2

and d is the metric which induces the geometry on the

index set. Here we mainly focus on the simple one,

dðai; ajÞ ¼ kai � ajk2
where the indices are enumerated by subscript, i.e., the

index set contains a1; a2, . . .; aN . On the flag manifold,

points are no longer living in a Euclidean space thus cannot

be moved using the standard update equation. For a given

data point X from a flag manifold of type

p ¼ ðn1; n2; . . .; ndÞ, we identify the winning center, from

the set of all nested subspaces of type p which represent

centers fCig, that is closest via

i� ¼ arg min
i

dgðX;CiÞ

where dg is defined in Eq. (3). To move the centers toward

the nested subspace pattern X according to the SOM update
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Fig. 4 Flag-SOM visualization results of Corn-notill and Grass/Trees. Left: 5 pixels used to form the SVD basis. Middle: 10 pixels are used to

form the SVD basis. Right: 15 pixels are used to form the SVD basis
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Fig. 5 Flag-SOM visualization results of Corn-notill, corn and Grass/

Trees with only 5 bands selected (bands:100, 125, 149, 206, 207).

We used 15 pixels to form the SVD basis
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we compute the geodesic, using the Iterative Alternating

algorithm described in Algorithm 1 and 2, between each

center Ci and nested subspace pattern X.

Our localization term now becomes

tn ¼ �nhnðdðai; ai� ÞÞ:

We now take

hnðsÞ ¼ expð�s2=r2nÞ

where �n ¼ �0ð1� n=TÞ and rn ¼ r0ð1� n=TÞ. The cen-

ters thus change along the geodesic by moving from Cið0Þ
to CiðtÞ where t is adjusted for the step size. The algo-

rithm for SOM on a flag manifold is summarized in

Algorithm 3.

5 Numerical experiment

In this section, to illustrate the proposed method for visu-

alizing real world data, we implement it on the well known

Indian Pine hyper-spectral image data set [12]. This data

set was collected over an agricultural area in Northwestern

Indiana in 1992. It consists of 145� 145 pixels by 220

bands from 0:4lm to 2:4lm. This data set has been pre-

viously studied within the context of band selection [1],

which will be utilized here to show the advantage of the

flag manifold as a refined version of the Grassmann man-

ifold. For the illustration of the algorithm, we consider a

two-class problem and a three-class problem. We prepro-

cessed data via mean centering, i.e., each pixel is sub-

tracted by the mean value of the pixels for the whole scene

(spectrum). In this application we selected only 5 bands

(hence the ambient space is R5) to form 5� 5 ordered

orthogonal SVD basis matrices. Each SVD basis represents

a data point within a specific class. The number of pixels

(with the same class labels) required to form a robust SVD

basis is also explored in this experiment.

For the two class problem we initialized the centers for

flag-SOM by selecting 100 5� 5 orthogonal matrices at

random, corresponding to a 10� 10 integer lattice. This

was done by computing the singular value decomposition

of matrices of size 5� 5 from the uniform distribution. We

also assemble 15 5� k matrices Yi from both classes,

which results in constructing 30 data points Ui living on the

flag manifold Fl(1, 1, 3). Here Ui is the ordered set of left

singular vectors of the corresponding data matrix Yi, i.e.,

UiRiV
T
i ¼ SVDðYiÞ. In Fig. 4, we observe that as we

increase the number of pixels (k) used to form SVD bases,

more robust and clear separation is achieved via flag-SOM

between two classes, namely Corn-notill and Grass/Trees.

When k ¼ 15 pixels are used to construct SVD bases, there

is a linear separation between two classes. With smaller

values of k (e.g. k ¼ 5 or k ¼ 10), we observe a lack of

linear separability.

In Fig. 5, we see the results of flag-SOM on the three

class problem when the data points reside on Fl(1, 1, 3).

225 centers (5� 5 orthogonal matrices) are randomly

generated as the centers of the 15� 15 integer lattice. 15

SVD bases from each class is generated as described pre-

viously. We observe in Fig. 5 that with only 5 bands

selected from 220 bands, we still obtain an excellent

clustering with all three classes. Here we also measure the

quality of the flag-SOM by computing the topographic

error. First, we define two centers to be adjacent in their

index space if their indices has distance 1 (Note that indices

are defined on the integer grid). We obtain a topographical

error of 0.22. If we relax the definition of adjacency by

allowing the surrounding 8 nodes on the integer grid to be

considered as adjacent, the topographical error becomes

0.04.

For a numerical comparison of SOM visualizations, we

introduce a distortion error to measure the separation and

compactness for the class distributions on the SOM grid, in

our case, the integer grid. Let a 2 R2 be the coordinates of

the winning centers on the integer grid, which belong to

0 5 10 15
0

5

10

15

Corn Grass/Trees Corn-notill

Fig. 6 Grassmann-SOM visualization results of Corn-notill, corn and

Grass/Trees with only 5 bands selected (bands:100, 125, 149, 206,

207). We used 15 pixels to form the SVD basis
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one of the k classes fSigki¼1. Let ci be the mean coordinate

of winning center for each class, i.e.,

ci ¼
1

ni

X
a2Si

a:

The visualization distortion error is defined as

D ¼
Xk
i¼1

X
a2Si

ka� cik2:

In Fig. 6, we demonstrate the Grassmannian-SOM on the

same data set for the purpose of comparison. We observe

that with low ambient dimension, the Grassmannian-SOM

shows poor separation on the 2D grid with a distortion

error of 2023. The flag-SOM visualization obtains well

separated classes with a much lower distortion error of 981.

Note that the Grassmannian-SOM suffers from the low

ambient dimension while flag-SOM is still separating

classes well thanks to the refined structure of the flag

manifold.

6 Conclusions and future work

We have presented algorithms for Self-Organizing Map-

pings on flag manifolds. Techniques for computing the key

ingredients of the SOM on flags are determining distances

between flags and moving one flag a prescribed distance in

the direction of another flag. The algorithm was tested on a

sample problem that involves computing an ordering of

points on a flag manifold. The flag-SOM algorithm has

been demonstrated on hyper-spectral image data, in which

case the algorithm organizes the hyper-spectral image data

in the index space and separates 5� 5 SVD bases when

only 5 out of 220 bands are utilized.

Note that we have yet to explore the impact of the flag

structure for the flag-SOM algorithm. Searching for an

optimal flag structure has the potential to improve the

visualization results.
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