Skip to main content
Log in

An iterative gradient convolutional neural network and its application in endoscopic photoacoustic image formation from incomplete acoustic measurement

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Endoscopic photoacoustic tomography (EPAT) is a rapidly developing catheter-based imaging technique to provide cross-sectional images of anatomical, functional and molecular data of tubular objects. The scanning geometry of the ultrasonic detector is enclosed in the cavity resulting in highly restricted acquisition of photoacoustically induced acoustic pressures. Thus, data-incompleteness is an important factor that causes degradation of the image quality. This work presents a method to solve the acoustic inverse problem of EPAT from incomplete measurements associated with the image formation process. This method combines the traditional variational iteration with convolutional neural network (CNN), in which the forward operator and adjoint operator of imaging are excluded from the network training and are embedded into each layer of the structural unit. The gradient information is utilized to reduce the influence of incomplete measurements on the image quality. The network is trained unit by unit in an adaptive way to achieve fast convergence. Our numerical results conducted on various data sets showed that the trained network is robust to the sampling rate of the measured data. Also, it is able to provide a generalization that can work across various noise levels in the data. In addition, a robust peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) improvement obtained in the reconstructed images has been demonstrated in comparison with conventional TR reconstruction, CS reconstruction and post-processing by U-net.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Miranda C, Marschall E, Browning B, Smith BS (2020) Side-viewing photoacoustic waveguide endoscopy. Photoacoustics 19(9):100167

    Article  Google Scholar 

  2. Poudel J, Yang L, Anastasio MA (2019) A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography. Phys Med Biol 64(14):14TR01

    Article  Google Scholar 

  3. Javaherian A, Holman S (2019) Direct quantitative photoacoustic tomography for realistic acoustic media. Inverse Prob 35:084004

    Article  MathSciNet  Google Scholar 

  4. Sheu YL, Chou CY, Hsieh BY (2011) Image reconstruction in intravascular photoacoustic imaging. IEEE Trans Ultrason Ferroelectr Freq Control 58(10):2067–2077

    Article  Google Scholar 

  5. Ambartsoumian G, Kunyansky L (2014) Exterior/interior problem for the circular means transform with applications to intravascular imaging. Inverse Probl Imaging 8(2):339–359

    Article  MathSciNet  Google Scholar 

  6. Sun Z, Han D, Yuan Y (2016) 2-D image reconstruction of photoacoustic endoscopic imaging based on time-reversal. Comput Biol Med 76:60–68

    Article  Google Scholar 

  7. Sheu YL, Chou CY, Hsieh BY et al (2010) Application of limited-view image reconstruction method to intravascular photoacoustic tomography. Proc SPIE Int Conf Photons Plus Ultrasound Imaging And Sens 7564:75640B

    Google Scholar 

  8. Bu S, Yamakaway M, Shiina T (2010) Interpolation method for model-based 3-D planar photoacoustic tomography reconstruction. Proc 3rd Biomed Eng Int Conf 129–132.

  9. Javaherian A, Holman S (2017) A multi-grid iterative method for photoacoustic tomography. IEEE Trans Med Imaging 36(3):696–706

    Article  Google Scholar 

  10. Liu X, Peng D (2016) Regularized iterative weighted filtered back-projection for few-view data photoacoustic imaging. Comput Math Methods Med 2016:9732142

    MATH  Google Scholar 

  11. Syed TA, Krishnan VP, Sivaswamy J (2016) Numerical inversion of circular arc radon transform. IEEE Trans Comput Imaging 2(4):540–549

    MathSciNet  Google Scholar 

  12. Jin W, Yuanyuan W (2017) An efficient compensation method for limited-view photoacoustic imaging reconstruction based on gerchberg–papoulis extrapolation. Appl Sci 7(5):505

    Article  Google Scholar 

  13. Arridge S, Beard P, Betcke M et al (2016) Accelerated high-resolution photoacoustic tomography via compressed sensing. Phys Med Biol 61(24):8908

    Article  Google Scholar 

  14. Haltmeiera M, Sandbichler M, Berer T et al (2018) A sparsification and reconstruction strategy for compressed sensing photoacoustic tomography. J Acoust Soc Am 143:3838–3848

    Article  Google Scholar 

  15. Antholzer S, Schwab J, Bauer-Marschallinger J et al (2019) (2019) NETT regularization for compressed sensing photoacoustic tomography. Proc SPIE Int Conf Photons Plus Ultrasound Imaging Sens 10878:108783

    Google Scholar 

  16. Gao M, Si G, Bai Y et al (2020) Graphics processing unit accelerating compressed sensing photoacoustic computed tomography with total variation. Appl Opt 59(3):712–719

    Article  Google Scholar 

  17. Sun Z, Yan X (2020) Image reconstruction based on compressed sensing for sparse-data endoscopic photoacoustic tomography. Comput Biol Med 116:103587

    Article  Google Scholar 

  18. Ji Y, Zhang H, Zhang Z, Liu M (2021) CNN-based encoder-decoder networks for salient object detection: a comprehensive review and recent advances. Inf Sci 546:835–857

    Article  MathSciNet  Google Scholar 

  19. Połap D, Woźniak M (2019) Bacteria shape classification by the use of region covariance and convolutional neural network. Proceedings of 2019 International Joint Conference on Neural Networks (IJCNN). Budapest, Hungary, N-19459, 14–19 July 2019

  20. Woźniak M, Wieczorek M, Siłka J, Połap D (2020) Body pose prediction based on motion sensor data and recurrent neural network. IEEE Trans Ind Inf. https://doi.org/10.1109/TII.2020.3015934

    Article  Google Scholar 

  21. Wang G, Ye JC, Mueller K, Fessler JA (2018) Image reconstruction is a new frontier of machine learning. IEEE Trans Med Imaging 37(6):1289–1296

    Article  Google Scholar 

  22. Wei W, Zhou B, Połap D, Woźniak M (2019) A regional adaptive variational PDE model for computed tomography image reconstruction. Pattern Recogn 92:64–81

    Article  Google Scholar 

  23. Lucas A, Iliadis M, Molina R, Katsaggelos AK (2018) Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Signal Process Mag 35(1):20–36

    Article  Google Scholar 

  24. Kelly B, Matthews TP, Anastasio MA (2017) Deep learning-guided image reconstruction from incomplete data. Proceedings of 31st Annual Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA

  25. Waibel DJE (2018) Photoacoustic image reconstruction to solve the acoustic inverse problem with deep learning. Master's thesis, University of Heidelberg

  26. Haltmeier M, Antholzer S, Schwab J et al (2018) (2018) Photoacoustic image reconstruction via deep learning. Proc SPIE Int Conf Photons Plus Ultrasound Imaging Sens 10494:104944U

    Google Scholar 

  27. Antholzer S, Haltmeier M, Schwab J et al (2019) Deep learning for photoacoustic tomography from sparse data. Inverse Probl Sci Eng 27(7):987–1005

    Article  MathSciNet  Google Scholar 

  28. Schwab J, Antholzer S, Haltmeier M (2019) Learned backprojection for sparse and limited view photoacoustic tomography. Proc SPIE Int Conf on Photons Plus Ultrasound Imaging Sens 10878:1087837

    Google Scholar 

  29. Sun Z, Yan X (2020) A deep learning method for limited-view intravascular photoacoustic image reconstruction. J Med Imaging Health Inform 10(11):2707–2713

    Article  Google Scholar 

  30. Farnia P, Mohammadi M, Najafzadeh E et al (2020) High-quality photoacoustic image reconstruction based on deep convolutional neural network: towards intra-operative photoacoustic imaging. Biomed Phys Eng Express 6(4):045019

    Article  Google Scholar 

  31. Antholzer S, Schwab J, Haltmeier M (2018) Deep learning versus l1-minimization for compressed sensing photoacoustic tomography. Proceedings of 2018 IEEE International Ultrasonics Symposium (IUS). Kobe, Japan, 22–25 Oct 2018

  32. Awasthi N, Prabhakar KR, Kalva SK et al (2019) PA-Fuse: deep supervised approach for the fusion of photoacoustic images with distinct reconstruction characteristics. Biomed Opt Express 10(5):2227–2243

    Article  Google Scholar 

  33. Oktem O, Adler J (2017) Solving ill-posed inverse problems using iterative deep neural networks. Inverse Prob 33(12):124007

    Article  MathSciNet  Google Scholar 

  34. Hauptmann A, Lucka F, Betcke M et al (2018) Model based learning for accelerated, limited-view 3D photoacoustic tomography. IEEE Trans Med Imaging 37(6):1382–1393

    Article  Google Scholar 

  35. Jonas A, Ozan O (2018) Learned primal-dual reconstruction. IEEE Trans Med Imaging 37(6):1322–1332

    Article  Google Scholar 

  36. Boink YE, Manohar S, Brune C (2020) A partially-learned algorithm for joint photo-acoustic reconstruction and segmentation. IEEE Trans Med Imaging 39(1):129–139

    Article  Google Scholar 

  37. Li H, Schwab J, Antholzer S et al (2020) NETT: solving inverse problems with deep neural networks. Inverse Prob 36(6):065005

    Article  MathSciNet  Google Scholar 

  38. Guan S, Khan AA, Sikdar S et al (2020) Limited-view and sparse photoacoustic tomography for neuroimaging with deep learning. Sci Rep 10:8510

    Article  Google Scholar 

  39. Davoudi N, Deán-Ben XL, Razansky D (2019) Deep learning optoacoustic tomography with sparse data. Nature Mach Intell 1(10):453–460

    Article  Google Scholar 

  40. McCann MT, Jin KH, Unser M (2017) Convolutional neural networks for inverse problems in imaging: a review. IEEE Signal Process Mag 34(6):85–95

    Article  Google Scholar 

  41. Treeby BE, Cox BT (2010) K-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J Biomed Opt 15(2):1–12

    Article  Google Scholar 

  42. Jacques SL (2014) Coupling 3D monte carlo light transport in optically heterogeneous tissues to photoacoustic signal generation. Photoacoustics 2(4):137–142

    Article  Google Scholar 

  43. Sun Z, Yuan Y, Han D (2017) A computer-based simulator for intravascular photoacoustic images. Comput Biol Med 81:176–187

    Article  Google Scholar 

  44. Sun Z, Zheng L (2018) Reconstruction of optical absorption coefficient distribution in intravascular photoacoustic imaging. Comput Biol Med 97:37–49

    Article  Google Scholar 

  45. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  46. Ravishankar S, Ye JC, Fessler JA (2020) Image reconstruction: from sparsity to data-adaptive methods and machine learning. Proc IEEE 108(1):86–109

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Nature Science Foundations of China (no. 62071181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Sun.

Ethics declarations

Conflict of interest

None conflicts of interest declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Wang, X. & Yan, X. An iterative gradient convolutional neural network and its application in endoscopic photoacoustic image formation from incomplete acoustic measurement. Neural Comput & Applic 33, 8555–8574 (2021). https://doi.org/10.1007/s00521-020-05607-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05607-x

Keywords

Navigation