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Abstract
Recurrent neural networks (RNNs) have achieved state-of-the-art performances on various applications. However, RNNs

are prone to be memory-bandwidth limited in practical applications and need both long periods of training and inference

time. The aforementioned problems are at odds with training and deploying RNNs on resource-limited devices where the

memory and floating-point operations (FLOPs) budget are strictly constrained. To address this problem, conventional

model compression techniques usually focus on reducing inference costs, operating on a costly pre-trained model.

Recently, dynamic sparse training has been proposed to accelerate the training process by directly training sparse neural

networks from scratch. However, previous sparse training techniques are mainly designed for convolutional neural net-

works and multi-layer perceptron. In this paper, we introduce a method to train intrinsically sparse RNN models with a

fixed number of parameters and floating-point operations (FLOPs) during training. We demonstrate state-of-the-art sparse

performance with long short-term memory and recurrent highway networks on widely used tasks, language modeling, and

text classification. We simply use the results to advocate that, contrary to the general belief that training a sparse neural

network from scratch leads to worse performance than dense networks, sparse training with adaptive connectivity can

usually achieve better performance than dense models for RNNs.

Keywords Dynamic sparse training � Sparse recurrent neural networks � Long short-term memory � Recurrent highway
networks

1 Introduction

Recurrent neural networks (RNNs), as one of the most

widespread neural network architectures, mainly focus on a

wide variety of applications where data is sequential, such

as text classification [38], language modeling [60], speech

recognition [64], machine translation [56]. On the other

hand, RNNs have also shown their notable success in

image processing [17], including but not limited to text

recognition in scenes [55], facial expression recognition

[6], visual question answering [4], handwriting recognition

[52]. As a well-known architecture of RNNs, LSTM [27]

has been widely utilized to encode various input (e.g.,

image, text, audio and video) to improve the recognition

performance [60]. LSTM’s success is due to its twofold

properties. The first one is its natural ability to memorize

long-term information, like being deep in time, which fits

very well with sequential data [61]. This ability is its main

advantage compared with other mainstream networks such

as Multilayer Perceptron (MLP), CNNs. Second, the

exploding and vanishing gradient problems are mitigated

by the multiplicative gates regularizing the information

over different time steps.

Recently, ensemble models, obtained by stacking RNN

layers together with other types of neural network archi-

tectures (MLP and CNN), have been shown to further

improve the prediction accuracy

[5, 8, 11, 13, 14, 16, 26, 41]. CNN is usually used as the

feature extractor to encode spatial data and RNN is used to

handle the temporal correlation of the encoded features.

However, while these RNN-based models keep refreshing

the records of various competitions, the cost required to

train and deploy them is also increasing. Their success is

& Shiwei Liu

s.liu3@tue.nl

1 Department of Mathematics and Computer Science,

Eindhoven University of Technology, 5600 MB Eindhoven,

The Netherlands

2 Faculty of Electrical Engineering, Mathematics and

Computer Science, University of Twente, Twente, The

Netherlands

123

Neural Computing and Applications (2021) 33:9625–9636
https://doi.org/10.1007/s00521-021-05727-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-6195-771X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-05727-y&amp;domain=pdf
https://doi.org/10.1007/s00521-021-05727-y


often associated with expensive computations, large

memory requests and slow processes in both phases,

training and inference. For example, around 30% of the

Tensor Processing Unit (TPU) workload in the Google

cloud is caused by LSTMs [29]. The computation-intensive

and memory-intensive make it very difficult to train and

deploy these models on resource-limited devices. Different

from other neural networks, RNNs are relatively more

challenging to be compressed [18, 57]. To tackle this

problem, many researchers have already proposed various

methods, such as Sparse Variational Dropout (Sparse VD)

[48], sparse regularization [57], distillation [10] and prun-

ing [24, 50]. While all of them can achieve promising

compression rates with negligible performance loss, effi-

ciency can only be obtained for inference because very

expensive dense networks are still required in the

beginning.

Only very recently, dynamic sparse training (DST) was

begun to be studied to enable training sparse neural net-

works from scratch, with a few approaches including

Sparse Evolutionary Training (SET) [47], Dynamic Sparse

Reparameterization (DSR) [49], Sparse Networks from

Scratch (SNFS) [15], Rigged Lottery (RigL) [18]. Due to

the limited support for sparse operations in the existing

frameworks [1, 51], the sparse structures were enforced

with binary masks in the above-mentioned works. Liu et al.

[36] developed a truly sparse implementation of SET,

which demonstrates practical values of DST by being able

to train a sparse MLP model with more than one million

neurons on commodity hardware. However, these methods

mainly focus on feedforward networks (e.g., convolutional

neural networks (CNNs), multi-layer perceptrons (MLPs)).

The performance of DST in RNNs is still unclear.

In this paper, we propose sparse training of recurrent

neural networks (ST-RNNs) to gain effectiveness and

efficiency both on training and inference. Concretely, we

initialize the network with a sparse topology and then apply

an adaptive sparse connectivity technique to optimize the

sparse topology during the training phase. In comparison

with all conventional compression techniques discussed

above, our method is sparse from the design phase, before

training. Evaluated on both language modeling and text

classification, our proposed method can achieve good

performance under a strict parameter budget. The major

contributions of this paper are:

• Training and inference efficiency We propose an

algorithm to enable training intrinsically sparse RNNs

with a fixed number of parameters without involving

any dense pre-training steps. The training floating-point

operations (FLOPs) and the parameter count are strictly

proportional to the dense model throughout training.

• Better performance We empirically demonstrate that

even with much smaller training FLOPs and inference

FLOPs, the sparse RNN models yielded by our method

are able to achieve state-of-the-art sparse training

performance, even better than the dense models.

2 Related work

2.1 Text classification and language modeling

In this paper, we evaluate our method on two widely used

tasks, text classification and language modeling. Text

classification is a well-known topic for natural language

processing to classify free-text documents into categories

by detecting and extracting information in the text. Viewed

as a classification problem, text classification can be dealt

with by various machine learning techniques such as Naive

Bayes [20], support vector machine [9] and neural net-

works [38]. Language modeling is also a well-explored

evaluation of the model’s ability to estimate the probability

distribution of various linguistic units based on the previ-

ous sequence of input [30]. The conventional technique to

solve this application is the n-gram, a model that assigns

probabilities to sentences and sequences of words.

Recently, recurrent neural networks have been applied to

language modeling with surprising performance [60].

2.2 Sparse neural networks

There are various effective techniques to yield sparse

neural networks, while preserving competitive perfor-

mance. Here, we briefly discuss some of them below.

2.2.1 Pruning methods

Pruning as a classical model compression method has been

widely used to produce different types of sparse neural

networks such as restricted Boltzmann machines (RBMs)

[45], MLPs, CNNs, and RNNs. By zeroing out the unim-

portant weights to the function computed by the neural

network, pruning is able to achieve a proper compression

ratio without substantial loss in performance. LeCun et al.

[33] used second-derivative information to prune the

unimportant weight whose deletion has the lowest damage

to the model performance. Giles et al. [22] proposed a

simple pruning and retraining strategy to get sparse

recurrent neural networks (RNNs). However, prohibitive

computation and many training iterations are the main

disadvantages of these methods. Han et al. [25] enabled

high compression ratios via a simple heuristic based on a

magnitude pruning and retraining strategy. Based on the
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pruning approach of [25], an efficient compression method

focusing on LSTMs was introduced [24]. It can compress

the LSTM model size by 20 � (10 � from pruning and

2 � from quantization) with negligible loss of the predic-

tion accuracy. Moreover, Narang et al. [50] shrunk the

post-pruning sparse LTSM size by 90% through a mono-

tonically increasing threshold. Using a set of hyperpa-

rameters can determine the specific pruning thresholds for

different layers. Besides, large-sparse models were

demonstrated to outperform comparably sized small-dense

models on deep CNNs and LSTM-based models [43],

which empirically shows the benefits of sparse neural

networks. There are also some works trying to analyze

sparse neural networks [21, 65]. Frankle et al. [21] pro-

posed the ‘‘lottery ticket hypothesis’’, claiming that pruning

makes it possible to find the ‘‘winning tickets’’ that can

reach the same or even better performance as the dense

networks from randomly initialized, dense neural networks.

And the initialization of the ‘‘winning tickets’’ contributes

mainly to its success. Zhou et al. [65] further found that the

sign of the initialization of ‘‘winning tickets’’ actually

results in a good performance, not the corresponding

weight values.

2.2.2 Sparse neural networks throughout training

Recently, some works of dynamic sparse training have

emerged, allowing train sparse neural networks from the

beginning. Mocanu et al. [46] introduced restricted Boltz-

mann machines with a fixed sparse scale-free and small-

world connectivity to obtain sparse models. However, the

connectivity graph does not evolve towards the optimal one

without a topology optimization method. Based on Baye-

sian sampling, DeepR [7] can optimize both the training

weights and the connectivity topology simultaneously. The

convergence of the connectivity topology is guaranteed

theoretically. Simple but effective magnitude-based

weights pruning and random-based weights growing were

proposed in SET [47]. In addition to the proper classifi-

cation performance, it also helps to detect important input

features. Cross-layer reallocation of weights was intro-

duced in DSR [49]. Dynamic parameter reallocation is able

to break the limit of the parameter budget of each layer and

allocate more parameters to layers where the training loss

is more quickly decreased. Proposed by Dettmers et al.

[15], SNFS obtains consistent improvement in various

CNN models by using the momentum information of zero-

valued weights. However, calculating and storing the

momentum of all weights result in extra computation and

memory requests. More recently, RigL [18] introduced

gradient-based regrowing to get rid of the extra computa-

tion and storage caused by SNFS. It demonstrates state-of-

the-art sparse training performance in various CNNs.

Reference [35] proposed a method to measure the distance

between sparse connectivities obtained with dynamic

sparse training from the perspective of graph theory. They

empirically show that there are many different sparse

connectivities achieving equally good performance.

Unfortunately, RNNs are out of the consideration of the

approaches above-mentioned.

2.2.3 Other methods

Many other approaches also make significant contribution

to sparse neural networks, including group Lasso regular-

ization [57], L0 Regularization [37], Variational Dropout

[48] etc.

3 ST-RNNs

In this section, we introduce sparse training of recurrent

neural networks (ST-RNNs), the new class of sparse

recurrent neural network models which we are proposing in

this paper. Without loss of generality, we choose ST-LSTM

as a specific case to discuss here. Please note that our

method can also be easily generalized to other RNNs

variants.

The general architecture of ST-LSTM is the same as the

one of the dense LSTM. The only difference is that we

replace the dense weights of the gates with sparse ones.

The gates (ft, it and ot) are the keys to optimally regulate

the flow of information insides LSTM cells which can be

formulated by Eq. 1.

it ¼ rðxt �Wxi þ ht�1 �Whi þ biÞ

ft ¼ rðxt �Wxf þ ht�1 �Whf þ bf Þ

ot ¼ rðxt �Wxo þ ht�1 �Who þ boÞ

gt ¼ tanhðxt �Wxg þ ht�1 �Whg þ bgÞ

ct ¼ ft � ct�1 þ it � gt

ht ¼ ot � tanhðctÞ

ð1Þ

whereWxi,Wxf ,Wxo,Whi,Whf andWho are weight matrices;

bi; bf ; bo and bg are bias weights; xt, ht, gt refer to the input,

hidden state, memory cell state at step t; ht�1, gt�1 refer to

the hidden state, memory cell state at step t � 1; � is

element-wise multiplication and � is matrix multiplication;

rð�Þ is the sigmoid function and tanhð�Þ is the hyperbolic

tangent function.

We illustrate the ST-LSTM cell in Fig. 1. The connec-

tions within the LSTM cell are initialized to be sparse with

a certain sparsity level under the parameters budget. Then,

the sparse structure is optimized gradually during the

training, since not every naively initialized sparse topology
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is capable of reaching the competitive performance to the

dense network [21]. In this paper, we apply a two-step

strategy: weight pruning and weight regrowing, to optimize

the sparse structure during the training. The cross-layer

weights redistribution proposed in [49] is not applied in

ST-RNNs, since it focuses on a fixed number of parameters

rather than a fixed number of FLOPs. The full ST-RNNs

pseudocode is shown in Algorithm 1. Every part of our

algorithm is explained below.

3.1 Sparse topology initialization

A network can be denoted by:

y ¼ f ðx; hÞ ð2Þ

where h 2 R is the dense parameter of the network. Instead

of starting with dense parameters, our method enables the

network starting with sparse parameters hs. In this paper,

we use masks to enforce the sparse structure due to the

limited support for sparse operations in the existing

frameworks [1, 51]. Formally, the network is initialized by:

hs ¼ h �M ð3Þ

where M is the binary mask where the nonzero elements

are initialized by a random distribution or the Erd}os–Rényi

distribution. Erd}os–Rényi is introduced in [47] where the

connection (Mk
ij) between neuron hk�1

j and hki exists with

the probability:

pðMk
ijÞ ¼

�ðnk þ nk�1Þ
nknk�1

ð4Þ

where nk; nk�1 are the number of neurons of layer hk and

hk�1, respectively; � is a parameter determining the sparsity

level s. The smaller � is, the more sparse the topology is.

Initialized by Erd}os–Rényi topology, layers with larger

weights matrices will have higher sparsity than the smaller

ones. Another approach is uniform sparse initialization

which initializes every layer with the same sparsity as the

total sparsity s.

3.2 Pruning strategy

Different from the magnitude-based pruning used in SET

which removes a fraction f of the smallest positive weights

and of the largest negative weights of each layer after each

training epoch, we choose another variant, pruning weights

with the smallest absolute values. The effectiveness of such

magnitude-based pruning has been shown in many works

Fig. 1 Schematic diagram of the ST-LSTM (sparse training RNN)

cell
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[23, 25]. For each individual weight his in every layer, we

define its importance as its absolute values:

SðhisÞ ¼ jhisj ð5Þ

Given a certain pruning rate p, we find the pth percentile of

SðhsÞ with an ascending order as c. Then the new mask is

given by:

M ¼ SðhsÞ[ c ð6Þ

Additionally, we decay the pruning rate p iteratively to

zero during training, so that the sparse topology would

converge to the optimal one. This is another difference

between ST-RNNs and SET.

3.3 Regrowing strategy

To keep a pure sparse structure both for the forward and the

backward process, we randomly regrow new weights rather

than utilizing any information of nonzero parameters. This

is the main difference between ST-RNNs with gradient-

based sparse training techniques such as RigL and SNFS.

Gradient-based regrowing heavily depends on the gradient

of every parameter and they still require a dense forward

pass at least once per DT iterations, whereas our method

keeps a clearly sparse backward pass and requires smaller

FLOPs. The random regrow is given by:

M ¼ M þ R ð7Þ

R is a binary tensor in which the nonzero elements are

randomly distributed. The total number of newly activated

connections is the same as the number of removed con-

nections to maintain the same sparsity level. As we keep

the sparsity level of each layer strictly fixed, the FLOPs

needed for training a model are proportional to their dense

counterpart.

3.4 Computational complexity reduction

In the standard architecture of LSTM networks, there are

an input layer, a recurrent LSTM layer and an output layer.

Therefore, the learning computational complexity per time

step is O(W), where W is the total number of parameters,

which can be calculated as: W ¼ 4� ðni þ nhÞ � nh þ
nh � no ¼ 4� ðn2h þ ni � nhÞ þ nh � no whereas the num-

ber of ST-LSTM is W ¼ 4� �� ðni þ nh þ nhÞ þ ��
ðnh þ noÞ where nh is the number of hidden units; ni and no
are the number of input and the number of output,

respectively. � is the hyperparameter to control the sparsity

level, which usually is a small integer. Approximately, we

reduce the complexity of LSTM from Oðn2h þ nh � nkÞ to

Oð�� ðnh þ noÞÞ.

Our method differs from SET in several important

aspects. (1) We use uniform sparse initialization instead of

Erd}os–Rényi. The former consistently achieves better

performance with various RNN models than Erd}os–Rényi.

(2) Instead of pruning a fraction f of the smallest positive

weights and of the largest negative weights, we prune the

weights with the least absolute values. (3) We apply a

cosine decay schedule to decay the pruning rate gradually

to zero. As demonstrated in Table 2, these components

help ST-LSTM outperform SET by a large margin.

4 Experimental results

To evaluate the effectiveness of our approach, we perform

language modeling with stacked LSTM and recurrent

highway networks (RHN) on the Penn Treebank (PTB)

dataset [40, 44] and also perform text classification with

one layer LSTM on six large-scale datasets.

Penn Treebank A corpus consisting of over 4.5 million

words of American English, is one of the most frequently

used data in language modeling. The number of unique

tokens in the vocabulary is 10,000.

Text classification datasets For text classification, we

evaluate ST-LSTM on AG’s News [63], Yelp Review

Polarity [63], IMDB [39], Sanders Corpus Twitter,1 Yelp

2018,2 Amazon Fine Food Reviews,3 as shown in Table 1.

4.1 Language modeling

For the language modeling task, we choose two RNN

models: stacked LSTM [61] and recurrent highway net-

works (RHN) [66]. For the language modeling task, we

implement ST-RNNs on PyTorch. We compare ST-RNNs

with strong state-of-the-art DST baselines including SET,

SNFS, and RigL and a dense-to-sparse method, ISS.

4.1.1 Stacked LSTMs

The stacked LSTM is a standard RNN with two stacked

LSTM layers with 1500 hidden units per layer. The size of

each minibatch is 20 and the unrolled step is 35. We

evaluate two sparse initialization methods, Erd}os–Rényi
and uniform. We train all models with momentum SGD for

100 epochs and evaluate the best model on the test set. We

set the dropout rate to 0.65, the learning rate to 2 and decay

it by a factor of 1.33 once the validation loss stops

decreasing. We empirically find that a high clip norm of 10

brings large benefits to stacked LSTM over a small clip

1 http://www.sananalytics.com/lab/twitter-sentiment/.
2 https://www.yelp.com/dataset/challenge.
3 https://snap.stanford.edu/data/web-FineFoods.html.
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norm of 0.25 as used in [3, 42, 53, 59]. Our method is

evaluated at two sparsity levels, 0.67 and 0.80. Results are

shown in Table 2.

We can see that, with 33% parameters, all gradient-

based methods (SNFS and RigL) fail to match the perfor-

mance of the dense-to-sparse method (ISS), whereas ran-

dom-based methods (SET, ST-LSTM) can all outperform

ISS and the dense model. This observation contradicts the

common belief that gradient-based weight regrowth

achieves better performance than random-based regrowth

[15, 18]. ST-LSTM initialized by Erd}os–Rényi and uni-

form distribution all outperform ISS and also dense model

by around 2 and 3 perplexity, respectively. Even with 80%

parameters, ST-LSTM can still outperform its dense

counterpart. Moreover, the uniform distribution consis-

tently achieves slightly better performance than the Erd}os–

Rényi redistribution in the RNN settings.

It is interesting to evaluate if the dense LSTM trained

from scratch with the same number of parameters can reach

the performance of ST-LSTM or not. To make a fair

comparison, the number of hidden units is set to be 700 and

490, respectively. We name this small dense LSTM as

Small Dense. The result shows that directly training a small

dense model cannot reach the same perplexity achieved by

our method. This highlights the effectiveness of our

method as neither the large dense LSTM nor the small

dense LSTM can achieve the same performance as ST-

LSTM.

We also report the FLOPs required to train one stacked

LSTMs by different methods. As we mentioned, one

advantage of our method is the training FLOPs is strictly

constrained throughout the training, which allows us to

choose suitable sparsity levels for different applications.

Although the dense-to-sparse methods like ISS can dis-

cover sparse neural networks with smaller inference

FLOPs, it starts from a highly over-parameterized dense

model which is not memory efficient. Different from sparse

training methods, ISS doesn’t sparsify the embedding layer

of stacked LSTMs, leading to a lower number of FLOPs.

4.1.2 Recurrent highway networks

Highway layers [54] are able to build very deep feedfor-

ward networks easily via a transform gate and a carry gate,

which carries the original input directly to the next layer.

Inspired by highway layers, Zilly et al. [66] introduced

Recurrent Highway Networks (RHN) in which one or

multiple Highway layers are stacked together to increase

the recurrence depth. It allows each time step inside RNN

layers to have deeper architecture.

We choose the same RHN variant used in ISS [57], that

is, ‘‘Variational RHN ? WT’’, which refers to a dropout

regularization approximating variational Bayesian infer-

ence and weight-tying. And the carry gate is also coupled

with the transform gate to reduce the number of parame-

ters. Each time step stacks 10 Highway layers together with

830 hidden units for each. The total number of parameters

is 23.5 M.

Similar to LSTM, inside the RHN layer, there are

matrices W and R represent the weights matrices of the

transform gate T and the H nonlinear transform. We first

initialize the gate weights with Erd}os–Rényi topology or

uniform Sparsity and then apply prune-and-grow strategy

to optimize the sparse topology towards an optimal one.

We set the batch size to 20 and the sequence length to 35.

We also use momentum SGD for ST-RHN with a learning

rate of 2. Additionally, the learning rate will be decayed by

1.11 when the validation loss fails to decrease. Dropout

rates are set to be 0.20 for the embedding layer, 0.65 for the

input layer, 0.25 for the hidden units and 0.65 for the

output layer. We train the model for 200 epochs.

The RHN experimental results are shown in Table 3.

ST-RHN outperforms the dense model by about 2 test

perplexity points with only 50% training FLOPs. Besides,

like stacked LSTM, the small dense RHN trained from

scratch fails to match the performance of ST-RHN. This

stands as empirical evidence regarding the benefit of ST-

RNNs. Furthermore, similar to stacked LSTM, uniform

Sparsity also has slightly better performance than Erd}os–
Rényi for RHN.

4.2 Text classification

For text classification, we provide another implementation

of ST-RNNs based on Keras with Tensorflow backend. We

choose Erd}os–Rényi topology to initialize sparse layers.

We compare ST-LSTM to the one layer standard dense

LSTM on four public datasets, Sanders Corpus Twitter,

IMDB, Yelp 2018 and Amazon Fine Food Reviews. We

choose the first 150,000 samples from Yelp 2018 and split

them into training data and test data. To offer fair com-

parisons, all the hyperparameters of these two models are

the same except the sparse connectivity. For the sake of

Table 1 Datasets for sentiment analysis experiments

Dataset Classes Train samples Test samples

Sanders Corpus Twitter 4 4410 1103

IMDB 2 25,000 25,000

Yelp 2018 5 120,000 30,000

AG’s news 4 120,000 7600

Amazon fine food reviews 5 454,763 113,691

Yelp review polarity 2 560,000 70,000
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convenience, on all datasets, we set the sparsity hyperpa-

rameter to be � ¼ 10, with a sparsity level of 95.69%. The

dimension of word embedding and the hidden state of

LSTM unit are both 256. The number of words in each

sentence is 100, and the total number of words in the

embedding vector is 20,000. The rewire rate f ¼ 0:2 for

Yelp 2018 and Amazon, f ¼ 0:6 for Twitter and f ¼ 0:4

for IMDB; Additionally, the mini-batch size is 64 for

Twitter, Yelp and Amazon, and 256 for IMDB. We train

the models using Adam optimizer with the learning rate of

0.001 for Twitter and Amazon, 0.01 for Yelp 2018, and

0.0005 for IMDB.

Table 4 is the test accuracy for the four datasets on

which ST-LSTM is compared with dense LSTM. We can

see that ST-LSTM can outperform dense LSTM on three

datasets, while decreases the number of parameters from

5.6M to 0.2M. The only dataset that ST-LSTM does not

increase the accuracy is Amazon, with a 1.36% loss of

accuracy. We mention here that the accuracy on Amazon

can be improved by searching for the best hyperparameters,

but it is out of the goal of this paper.

Moreover, to sanity check the effectiveness of ST-RNNs

and to provide a comparison with existing traditional

classifiers, we choose two datasets AG’s News and Yelp

Review Polarity from published literature [28, 63]. For

these two experiments, the sparsity level � is 20 with cor-

responding sparsity level 92.2%. The optimizer we use is

Adam with learning rates 0.01 and 0.001 for AG’s News

and Yelp Review Polarity, respectively. As shown in

Table 5, our method is still competitive among the state-of-

the-art methods on AG’s News and Yelp Review Polarity.

Note that outperforming every other model reported in the

Table 2 Single model

perplexity on validation and test

sets in stacked LSTM on the

Penn Treebank dataset

Method Initialization FLOPs (train) FLOPs (test) #Param (M) Val Test

Dense [61] Dense 1 � (3.1e16) 1 � (7.2e10) 66.0 82.57 78.57

Small dense Dense 0.330 � 0.330 � 21.8 84.39 81.12

SNFS Uniform 0.614 � 0.363 � 21.8 84.05 80.60

RigL Erd}os–Rényi 0.333 � 0.333 � 21.8 82.24 79.06

ISS [57] Dense 0.280 � 0.200 � 21.8 82.59 78.65

SET Erd}os–Rényi 0.333 � 0.333 � 21.8 80.67 77.83

ST-LSTM Erd}os–Rényi 0.333 � 0.333 � 21.8 79.10 76.13

ST-LSTM Uniform 0.330 � 0.330 � 21.8 78.77 75.84

SNFS Uniform 0.529 � 0.223 � 13.2 90.73 87.07

RigL Erd}os–Rényi 0.202 � 0.202 � 13.2 86.79 82.66

Small dense Dense 0.200 � 0.200 � 13.2 85.22 82.00

SET Erd}os–Rényi 0.202 � 0.202 � 13.2 84.16 81.31

ST-LSTM Erd}os–Rényi 0.202 � 0.202 � 13.2 80.11 76.95

ST-LSTM Uniform 0.200 � 0.200 � 13.2 80.82 76.74

The best performance shown in bold

Flops required to train a network and Flops required to inference on a single data are reported by nor-

malizing with the FLOPs of a dense model

‘‘Small Dense’’ represents a small dense LSTM trained from scratch with the same number of parameters as

ST-LSTM

Table 3 Single model

perplexity on validation and test

sets of RHN on the Penn

Treebank dataset

Method Initialization FLOPs Train FLOPs Test #Param (M) Val Test

Dense [66] Dense 1 � (6.5e16) 1 � (3.3e10) 23.5 67.9 65.4

Small dense Dense 0.472 � 0.472 � 11.1 70.1 68.4

ISS [57] Dense 0.503 � 0.472 � 11.1 68.1 65.4

ST-RHN Erd}os–Rényi 0.474 � 0.474 � 11.1 66.51 63.55

ST-RHN Uniform 0.472 � 0.472 � 11.1 66.08 63.19

The best performance shown in bold

Flops required to train a network and Flops required to inference on a single data are reported by nor-

malizing with the FLOPs of a dense model

‘‘Small Dense’’ represents a small dense RHN trained from scratch with the same number of parameters as

ST-LSTM
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literature on these datasets is outside the scope of this

paper, as our aim is to demonstrate the ability of sparse

recurrent neural networks to reach (and most of the times to

outperform) the performance of their dense counterparts.

Besides this, we are also interested in if ST-LSTM is

still trainable under the extreme sparsity. To do this, we set

the sparsity to an extreme level (99.1%), and we compare

our algorithm with the dense LSTM. We test our approach

on five datasets. The results are shown in Table 6. With

only 0.04M parameters, our method is still able to find a

good sparse topology with competitive performance.

5 Analysis

5.1 Sensitivity analysis

To understand better how the two hyperparameters, prun-

ing rate and sparsity, influence the performance of ST-

RNNs, we make extra analysis on Sanders Corpus Twitter

dataset and Penn Treebank dataset.

5.1.1 Pruning rate

As a hyperparameter of ST-RNNs, the pruning rate deter-

mines how many connections should be removed after each

epoch. We conduct experiments with various pruning rates

from 0.1 to 0.9 to study the influence of different pruning

rates. The test accuracy is reported in Fig. 2. We can see

that the ST-RNNs have better performance with relatively

higher pruning rates between 0.5 and 0.9 than the lower

options. This is held for both two datasets. Note that, while

varying the pruning rate results in the different perfor-

mance of ST-RNNs, the difference is very small when the

pruning rate locates in a proper interval, especially for

Twitter.

5.1.2 Sparsity

For sparse training networks, there is a trade-off between

the sparsity level and the performance of sparse neural

networks. If the network is too sparse, it will not have

sufficient capacity to learn the dataset, whereas if the net-

work is too dense, the benefits provided by sparse neural

networks will be too subtle. In order to analyze the sensi-

tivity between model performance and sparsity, we per-

form an experiment with different sparsity levels. The

results are reported in Fig. 3. We can see that the one-layer

ST-LSTM can outperform the dense counterpart with

sparsity in an interval between 52.5% to 99.1%. It is worth

noting that, for Twitter with extreme sparsity, when � ¼ 2

(sparsity is equal to 99.1%), the accuracy of ST-LSTM

Table 4 Test accuracy ð%Þ on
sentiment classification

compared with dense LSTM

Methods Twitter IMDB Yelp Amazon

Dense 77.8 85.3 63.4 81.9

ST-LSTM 79.2 ð� 0:03) 86.0 (� 0:02) 68.0 (� 0:03) 80.5 (� 0:01)

The sparsity level is 95.69% for all datasets

The number of parameters is 0.2M for ST-LSTM, while the dense LSTM contains 5.6M parameters

Each accuracy is collected and averaged from five different ST-LSTM runnings

We mark the best performance in bold

Table 5 Test accuracy ð%Þ on AG’s news and Yelp review polarity

Methods AG Yelp P.

BoW [63] 88.8 92.2

ngrams [63] 92.0 95.6

char-CNN [62] 87.2 94.7

char-CRNN [58] 91.4 94.5

VDCNN [12] 91.3 95.7

fastText, bigram [28] 92.5 95.7

Dense-LSTM 88.4 94.8

ST-LSTM 90.9 (� 0:20) 95.3 (� 0:13)

The sparsity level is 92.2%

Each accuracy is collected and averaged from five different ST-

LSTM trials, as the topology and weights are initialized randomly

We mark the best performance in bold

Table 6 Sentiment analysis test accuracy (%) of ST-LSTM under

extreme sparsity (99.1%) on IMDB, Twitter, Yelp 2018, AG’s news

and Yelp. P

Methods IMDB Twitter Yelp AG’s news Yelp. P

Dense 85.26 77.79 63.36 87.50 94.80

ST-LSTM 85.05 78.85 67.82 90.00 94.22

The number of parameters of ST-LSTM is 0.04M and the dense

LSTM counterpart is 5.6M
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(78.75%) is still higher than the accuracy of Dense-LSTM

(77.19%). Moreover, it is interesting to see that when the

sparsity level goes down under 90% the accuracy is also

going down, this being in line with our observation that

usually sparse networks with adaptive sparse connectivity

perform better than fully connected networks. For Penn

Treebank, as long as the sparsity is below 80%, ST-LSTM

can reach the dense performance.

5.2 Analyze the effect of cross-layer parameter
reallocation

Cross-layer parameter reallocation has shown impressive

improvement in convolutional neural networks [15, 49]. To

verify the effect of parameter reallocation on RNNs, we

compare the perplexity between stacked ST-LSTM and

ST-RHN on Penn Treebank with and without parameter

reallocation, respectively. The parameter reallocation

method we choose is Sparse Momentum proposed in [15],

which redistributes weights according to the mean of

momentum magnitude mi of all nonzero weights in each

layer i. More specifically, first, the momentum contribution

of layer i is obtained by normalizing mi through all layers
Pk

i¼0 mi after each epoch. Then, the number of parameters

to be regrown in each layer is the multiplication of the total

number of regrow weights with the momentum contribu-

tion of each layer.

The results can be seen in Table 7. Parameter realloca-

tion among layers results in performance improvement for

ST-LSTM steadily for both initialization, whereas the

performance degrades dramatically if cross-layer parame-

ter reallocation is used for RHN. These results suggest

parameter reallocation is not pivotal for RNNs. At least,

proper reallocation strategies are needed to design for

sparse RNNs.

6 Conclusions and future work

In this paper, we propose ST-RNNs to train intrinsically

sparse recurrent neural networks efficiently under the sit-

uation where the training FLOP budget is strictly limited.

Fig. 2 Performance of ST-RNNs with various pruning rates on Sanders Corpus Twitter and Penn Treebank datasets. The performance of the

dense model is indicated with a dashed orange line (colour figure online)

Fig. 3 Performance of ST-RNNs with various sparsity levels on Sanders Corpus Twitter and Penn Treebank. The performance of the standard

dense model is indicated with a dashed orange line (colour figure online)
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The advantages of our method are threefold. (1) Training

efficiency: ST-RNN trains a sparse RNN from scratch and

maintains a fixed number of training FLOPs throughout

training, getting rid of training a dense model in the

beginning; (2) inference efficiently: our method yields

sparse RNNs that can achieve better performance than their

dense counterpart with much fewer FLOPs; (3) state-of-

the-art sparse RNN performance: with the same number of

parameters, ST-RNNs achieves state-of-the-art perfor-

mance with LSTMs and RHN on language modeling and

text classification.

One possible direction to improve the performance of

sparse training is to apply the advanced activation function

e.g., SPOCU [31] and SELU [32], to increase the gradient

flow. As noted by [2, 19, 34], sparse neural networks suffer

from a poor gradient flow which limits the learning capa-

bility of the sparse networks. Compared with ReLU which

has zero derivatives for all negative inputs, activation

functions such as SPOCU and SELU might help to increase

the gradient flow of sparse training. Additionally, the

ability of SPOCU to alleviate the vanishing gradient

problem can also improve the performance of sparse

LSTMs.

Besides, the results demonstrated in this paper are

achieved by masked weights, since GPU-accelerated

libraries have limited support for sparse operations. Our

paper provides motivation for new types of hardware

accelerators and libraries with better support for sparse

neural networks. In future work, we intend to develop more

efficient methods to achieve sparse neural networks that

can be optimized by contemporary hardware. We are also

interested to modify modern libraries so that the advan-

tages of sparse networks can be made full use of. Fur-

thermore, the explanation underlying the observation that

sparse networks with adaptive sparse connectivity can

generalize better than their dense counterpart has not been

fully studied yet. Our work points out important directions

for future research.
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