Skip to main content
Log in

Emergent patterns in diffusive Turing-like systems with fractional-order operator

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Patterns obtained in abiotically homogeneous habitats are of specific interest due to the fact that they require an explanation based on the individual behavior of chemical or biological species. They are often referred to as ‘emergent patterns,’ which arise due to nonlinear interactions of species in spatial scales that are much more larger than the individuals characteristic scale. In this work, we examine the spatial pattern formation of diffusive fractional predator–prey models with different functional response. In the first model, we investigate the dynamics of the Riesz fractional predation of Holling type-II functional response with the prey Allee effects, while the second model describes prey-dependent functional response of Ivlev-case and fractional reaction–diffusion. In order to give good guidelines on the correct choice of parameters for numerical simulation experiment of full fractional-order reaction–diffusion systems, we discuss the dynamics of each system in the biologically meaningful region \(u\ge 0\) and \(v\ge 0\) and give conditions for the existence of Hopf bifurcation, and Turing instability with either homogeneous (zero-flux) boundary conditions which imply no external input or Dirichlet boundary conditions. A novel alternating direction implicit based on backward Euler scheme with either the homogeneous Neumann (zero-flux) or Dirichlet boundary is applied for the numerical solution. The performance of this method is compared with that of the shifted Grünwald formula in terms of accuracy and computational time. Numerical experiments which justify our theoretical findings exhibits some fractional-order controlled patterns of stripes, spots and chaotic spiral-like structures that are mostly found in animal coats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baleanu D, Caponetto R, Machado JT (2016) Challenges in fractional dynamics and control theory. J Vib Control 22:2151–2152

    Article  MathSciNet  Google Scholar 

  2. Berryman AA (1992) The origins and evolution of predator-prey theory. Ecology 73:1530–1535

    Article  Google Scholar 

  3. Bueno-Orovio A, Kay D, Burrage K (2014) Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer Mathe 54:937–954

    Article  MathSciNet  Google Scholar 

  4. Britton NF (1986) Reaction-diffusion Equations and their Applications to Biology. Academic Press, London

    MATH  Google Scholar 

  5. Britton NF (2003) Essential Mathematical Biology. Springer

    Book  Google Scholar 

  6. Buscarino A, Corradino C, Fortuna L, Frasca M, Chua LO (2016) Turing patterns in memristive cellular nonlinear networks. IEEE Trans Circuits Syst I: Regul Papers 63:1222–1230

    Article  MathSciNet  Google Scholar 

  7. Bucolo M, Buscarino A, Corradino C, Fortuna L, Frasca M (2019) Turing patterns in the simplest MCNN. Nonlinear Theory Its Appl, IEICE 10:390–398

    Article  Google Scholar 

  8. Cai Y, Banerjee M, Kang Y, Wang W (2014) Spatiotemporal complexity in a predatorprey model with weak allee effect. Math Biosci Eng 11:1247–1274

    Article  MathSciNet  Google Scholar 

  9. Garvie M (2007) Finite-difference schemes for reaction-diffusion equations modeling predator-pray interactions in MATLAB. Bull Math Biol 69:931–956

    Article  MathSciNet  Google Scholar 

  10. Garvie M, Trenchea C (2010) Spatiotemporal dynamics of two generic predator-prey models. J Biol Dynam 4:559–570

    Article  MathSciNet  Google Scholar 

  11. Ilic M, Liu F, Turner I, Anh V (2006) Numerical approximation of a fractional-in-space diffusion equation (II)-with nonhomogeneous boundary conditions. Fract Calculus Appl Anal 9:333–349

    MathSciNet  MATH  Google Scholar 

  12. Kang Y, Wedekin L (2013) Dynamics of a intraguild predation model with generalist or specialist predator. J Math Biol 67:1227–1259

    Article  MathSciNet  Google Scholar 

  13. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and Applications of Fractional Differential Equations, Elsevier, Netherlands

  14. Kiselak J, Lu Y, Svihra J, Szepe P, Stehlik M (2020) ‘SPOCU’: scaled polynomial constant unit activation function. Neural Computing and Applications. https://doi.org/10.1007/s00521-020-05182-1

  15. Koch AJ, Meinhardt H (1994) Biological pattern formation: From basic mechanisms to complex structures. Rev Modern Phys 66:1481–1507

    Article  Google Scholar 

  16. Liu F, Chen S, Turner I, Burrage K, Anh V (2013) Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term. Central Eur J Phys 11:1221–1232

    Google Scholar 

  17. Meerschaert MM, Tadjeran C (2006) Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math 56:80–90

    Article  MathSciNet  Google Scholar 

  18. Murray JD (1989) Mathematical Biology. Springer-Verlag, Berlin

    Book  Google Scholar 

  19. Murray JD (2002) Mathematical Biology I: An Introduction. Springer-Verlag, New York

    Book  Google Scholar 

  20. Murray JD (2003) Mathematical Biology II: Spatial Models and Biomedical Applications. Springer-Verlag, New York

    Book  Google Scholar 

  21. Oldham KB, Spanier J (2006) The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover Publication, New York

    MATH  Google Scholar 

  22. Owolabi KM (2016) Efficient Numerical Methods for Reaction-diffusion Problems. LAP LAMBERT Academic Publishing, Germany

    Google Scholar 

  23. Owolabi KM, Atangana A (2016) Numerical solution of fractional-in-space Schródinger equation with the Riesz fractional derivative. Eur Phys J Plus 131:335. https://doi.org/10.1140/epjp/i2016-16335-8

    Article  Google Scholar 

  24. Owolabi KM (2020) Numerical simulation of fractional-order reaction-diffusion equations with the Riesz and Caputo derivatives. Neural Comput Appl 32:4093–4104

    Article  Google Scholar 

  25. Owolabi KM, Atangana A (2019) Higher-order solvers for space-fractional differential equations with Riesz derivative. Discrete Continuous Dynam Syst Series S 12:567–590

    MATH  Google Scholar 

  26. Owolabi KM, Atangana A (2019) Numerical Methods for Fractional Differentiation. Springer, Singapore

    Book  Google Scholar 

  27. Ortigueira MD (2011) Fractional Calculus for Scientists and Engineers. Springer, New York

    Book  Google Scholar 

  28. Petrovskii S, Kawasaki K, Takasu F, Shigesada N (2001) Diffusive waves, dynamic stabilization and spatio-temporal chaos in a community of three competitive species. Japan J Ind Appl Math 18:459–481

    Article  Google Scholar 

  29. Petrovskii S, Malchow H (2001) Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. Theor Popul Biol 59:157–174

    Article  Google Scholar 

  30. Petrovskii S, Morozov AY, Venturino E (2002) Allee effect makes possible patchy invasion in a predator-prey system. Ecol Lett 5:345–352

    Article  Google Scholar 

  31. Petrovskii S, Li B, Malchow H (2003) Quantification of the spatial aspect of chaotic dynamics in biological and chemical systems. Bull Math Biol 65:425–446

    Article  Google Scholar 

  32. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  33. Samko SG, Kilbas AA, Maritchev OI (1993) Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam

    Google Scholar 

  34. Turing AM (1952) The chemical basis for morphogenesis. Philos Trans Royal Soc 237:37–72

    MathSciNet  MATH  Google Scholar 

  35. Uriu K, Iwasa Y (2007) Turing pattern formation with two kinds of cells and a diffusive chemical. Bull Math Biol 69:2515–2536

    Article  MathSciNet  Google Scholar 

  36. Wang H, Wang W (2007) The dynamical complexity of a Ivlev-type prey-predator system with impulsive effect. Chaos Sol Fractals 38:1168–1176

    Article  MathSciNet  Google Scholar 

  37. Wang W, Zhang L, Wang H, Li Z (2010) Pattern formation of a predator-prey system with Ivlev-type functional response. Ecol Modell 221:131–140

    Article  Google Scholar 

  38. Yang Q, Liu F, Turner I (2010) Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl Mathl Model 34:200–218

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolade M. Owolabi.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owolabi, K.M., Baleanu, D. Emergent patterns in diffusive Turing-like systems with fractional-order operator. Neural Comput & Applic 33, 12703–12720 (2021). https://doi.org/10.1007/s00521-021-05917-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-05917-8

Keywords

Navigation