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Abstract
We present a modelling framework for the investigation of supervised learning in non-stationary environments. Specifi-

cally, we model two example types of learning systems: prototype-based learning vector quantization (LVQ) for classi-

fication and shallow, layered neural networks for regression tasks. We investigate so-called student–teacher scenarios in

which the systems are trained from a stream of high-dimensional, labeled data. Properties of the target task are considered

to be non-stationary due to drift processes while the training is performed. Different types of concept drift are studied,

which affect the density of example inputs only, the target rule itself, or both. By applying methods from statistical physics,

we develop a modelling framework for the mathematical analysis of the training dynamics in non-stationary environments.

Our results show that standard LVQ algorithms are already suitable for the training in non-stationary environments to a

certain extent. However, the application of weight decay as an explicit mechanism of forgetting does not improve the

performance under the considered drift processes. Furthermore, we investigate gradient-based training of layered neural

networks with sigmoidal activation functions and compare with the use of rectified linear units. Our findings show that the

sensitivity to concept drift and the effectiveness of weight decay differs significantly between the two types of activation

function.

Keywords Classification � Regression � Supervised learning � Drifting concepts � Learning vector quantization �
Layered neural networks

1 Introduction

The topic of efficiently learning from example data in the

presence of concept drift has attracted significant interest in

the machine learning community. Terms such as lifelong

learning or continual learning have become popular key-

words in this context [55].

Very often, machine learning processes [23] are realized

according to a standard setup which distinguishes two main

stages: In the first, the so-called training phase, parameters

of the learning system are adapted in an optimization

process which is guided by a given set of example data. In

the following working phase, the obtained hypothesis, e.g.,

a classifier or regression system, can be applied to novel

data. This workflow relies on the implicit assumption that

the training data is indeed representative for the target task

in the working phase. Statistical properties of the data and

the target itself should not change during or after training.

However, in many practical tasks and relevant real-

world scenarios, the assumed separation of training and

working phase appears artificial and cannot be justified.

Obviously, in most human or other biological learning

processes [3], the assumption is unrealistic. Similarly, in

many technical contexts, training data is available as a non-

stationary stream of observations. In such settings, the

separation of training and working phase is meaningless,

see [1, 17, 27, 32, 55] for reviews.
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In the literature, two major types of non-stationary

environments have been discussed: The term virtual drift

refers to situations in which statistical properties of the

training data are time-dependent, while the actual target

task remains unchanged. Scenarios where the target clas-

sification or regression scheme itself changes with time are

referred to as real drift processes. Frequently, both effects

coincide and a clear distinction of the two cases becomes

difficult.

The presence of drift requires some form of forgetting of

dated information while the system is adapted to more

recent observations. The design of useful, forgetful training

schemes hinges on an adequate theoretical understanding

of the relevant phenomena. To this end, the development of

a suitable modelling framework is instrumental. An over-

view of earlier work and more recent developments in the

context of non-stationary learning environments can be

found in references like [1, 17, 27, 32, 55].

Methods developed in statistical physics can be applied

in the mathematical description of the training dynamics to

obtain typical learning curves. The statistical mechanics of

on-line learning has helped to gain insights into the

behavior of various learning systems; see, e.g.,

[5, 19, 43, 53] and references therein. Here, we apply these

concepts to study the influence of concept drift and weight

decay in two exemplary model situations: prototype-based

binary classification and continuous regression with feed-

forward neural networks. We study standard training

algorithms under concept drift and address, both, virtual

and real drift processes.

This paper presents extensions of our contribution to the

Workshop on Self-Organizing Maps and Learning Vector

Quantization, Clustering, and Visualization (WSOM 2019)

[48]. Consequently, parts of the text resemble or have been

taken over literally from [14] without explicit notice. This

concerns, for instance, parts of the introduction and the

description of models and methodology in Sect. 2. Simi-

larly, some of the results have also been presented in [14],

which focused on the study of explicitly time-dependent

densities in a stream of clustered data for LVQ training.

We complement our conference contribution [14] sig-

nificantly by studying also the influence of drift on the

training of regression type layered neural networks. First

results concerning such systems with sigmoidal hidden unit

activation function under concept drift have been published

in [47], recently. Here, the scope of the analysis is extended

to layered networks of rectified linear units (ReLU). We

concentrate on the comparison of the latter, very popular

activation function and its classical, sigmoidal counterpart

with respect to the sensitivity to drift and the effect of

weight decay.

We have selected LVQ for classification and layered

neural networks for regression as representatives of

important paradigms in machine learning. These systems

provide a workshop in which to develop modelling tech-

niques and analytical approaches that will facilitate the

study of other setups in the future.

In the following section, we introduce the machine

learning systems, the model setup including the assumed

densities of data, the target rules as well as the mathe-

matical framework of the statistical physics-based analysis.

Our results concerning classification and regression sys-

tems in the presence of concept drift are presented and

discussed in Sect. 3 before we conclude with a summary

and outlook on forthcoming investigations.

2 Model and methods

In Sect. 2.1, we introduce learning vector quantization for

classification tasks with emphasis on the well established

LVQ1 training scheme. We also propose a model density

of data which was previously investigated in the mathe-

matical analysis of LVQ training in stationary and specific

non-stationary environments. Here, we extend the approach

to the presence of virtual concept drift and consider weight

decay as an explicit mechanism of forgetting.

Thereafter, Sect. 2.2 presents a student–teacher scenario

for the learning of a regression scheme with shallow, lay-

ered neural networks of the feedforward type. Emphasis is

on the comparison of two important types of hidden unit

activations; traditional sigmoidal transfer functions and the

popular rectified linear unit (ReLU) activation. We con-

sider gradient-based training in the presence of real concept

drift and also introduce weight decay as a mechanism of

forgetting.

A unified description of the theoretical approach to

analyse the training dynamics in classification and regres-

sion systems is given in Sect. 2.3.

2.1 Learning vector quantization

The family of LVQ algorithms is widely used for practical

classification problems [13, 29, 30, 39]. The popularity of

LVQ is due to a number of attractive features: It is

straightforward to implement, very flexible and intuitive.

Moreover, it constitutes a natural tool for multi-class

problems. The actual classification scheme is very often

based on Euclidean metrics or other simple measures,

which quantify the distance of inputs or feature vectors

from the class-specific prototypes. Unlike many other

methods, LVQ facilitates direct interpretation of the clas-

sifier because prototypes are defined in the same space as

the data [13, 39]. The approach is based on the idea of

representing classes by more or less typical representatives

of the training instances. This suggests that LVQ
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algorithms should also be capable of tracking changes in

the density of samples, a hypothesis that has been studied

for instance in [14, 25], recently.

2.1.1 Nearest prototype classifier

In general, several prototypes can be employed to represent

each class. However, we restrict the analysis to the simple

case of only one prototype per class in binary classification

problems. Hence we consider two prototypes wk 2 RN

each representing one of the classes k 2 f1; 2g: Together
with a distance measure dðw; nÞ; the system parameterizes

a Nearest Prototype Classification (NPC) scheme: Any

given input n 2 RN is assigned to the class k ¼ 1 if

dðw1; nÞ\dðw2; nÞ and to class 2, otherwise. In practice,

ties can be broken arbitrarily.

A variety of distance measures have been used in LVQ,

enhancing the flexibility of the approach even further

[13, 39]. This includes the conceptually interesting use of

adaptive metrics in relevance learning, see [13] and ref-

erences therein. Here, we restrict our analysis to the simple

(squared) Euclidean measure

dðw; nÞ ¼ ðw� nÞ2: ð1Þ

We assume that the training procedure provides a stream

of single examples [5]: At time step l ¼ 1; 2; . . .; the

vector n l is presented, together with its given class label

rl ¼ 1; 2. Iterative on-line LVQ updates are of the general

form [12, 20, 54]

wl
k ¼wl�1

k þ g
N

Dwl
k with

Dwl
k ¼fk dl1 ; d

l
2 ; r

l; . . .
� �

nl � wl�1
k

� � ð2Þ

where dli ¼ dðwl�1
i ; nlÞ and the learning rate g is scaled

with the input dimension N. The precise algorithm is

specified by choice of the modulation function fk½. . .�,
which depends typically on the Euclidean distances of the

data point from the current prototype positions and on the

labels k; rl ¼ 1; 2 of the prototype and training example,

respectively.

2.1.2 The LVQ1 training algorithm

A popular and intuitive LVQ training scheme was already

suggested by Kohonen and is known as LVQ1 [29, 30].

Following the NPC concept, it updates only the currently

closest prototype in a so-called Winner-Takes-All (WTA)

scheme. Formally, the LVQ1 prescription for a system with

two competing prototypes is given by Eq. (2) with

fk½dl1 ; d
l
2 ; r

l� ¼ H dlbk
� dlk

� �
Wðk; rlÞ; ð3Þ

where

bk ¼ 2 if k ¼ 1

1 if k ¼ 2;

�
and Wðk; rÞ ¼ þ1 if k ¼ r

�1 else.

�

Here, the Heaviside function Hð. . .Þ singles out the

winning prototype and the factor Wðk; rlÞ determines the

sign of the update: The WTA update according to Eq. (3)

moves the prototype towards the presented feature vector if

it carries the same class label k ¼ rl. On the contrary, if

the prototype is meant to present a different class, its dis-

tance from the data point is increased even further. Note

that LVQ1 cannot be interpreted as a gradient descent

procedure of a suitable cost function in a straightforward

way due to discontinuities at the class boundaries, see [12]

for a discussion and references.

Numerous variants and modifications of LVQ have been

presented in the literature, aiming at better convergence or

classification performance, see [12, 13, 29, 39]. Most of

these modifications, however, retain the basic idea of

attraction and repulsion of the winning prototypes.

2.1.3 Clustered model data

LVQ algorithms are most suitable for classification

schemes which reflect a given cluster structure in the data.

In the modelling, we therefore consider a stream of random

input vectors n 2 RN which are generated independently

according to a mixture of two Gaussians [12, 20, 54]:

PðnÞ ¼
P

m¼1;2 pmPðn j mÞ with contributions

Pðn j mÞ ¼ 1

ð2 p vmÞN=2
exp � 1

2 vm
n� kBmð Þ2

	 

:

ð4Þ

The target classification coincides with the cluster mem-

bership, i.e., r ¼ m in Eq. (3). The class-conditional den-

sities Pðn jm¼1; 2Þ correspond to isotropic, spherical

Gaussians with variance vm and mean kBm. Prior weights

of the clusters are denoted as pm and satisfy p1 þ p2 ¼ 1.

We assume that the vectors Bm are orthonormal with B 2
1 ¼

B 2
2 ¼ 1 and B1 � B2 ¼ 0. Obviously, the classes m ¼ 1; 2

are not perfectly separable due to the overlap of the

clusters.

We denote conditional averages over Pðn j mÞ by � � �h im,
whereas mean values h� � �i ¼

P
m¼1;2 pm � � �h im are defined

with respect to the full density (4). One obtains, for

instance, the conditional and full averages

nh im ¼ kBm; hn 2im ¼ vm N þ k2 and

hn 2i ¼ p1v1 þ p2v2ð ÞN þ k2:
ð5Þ
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Note that in the thermodynamic limit N ! 1 considered

later, k2 can be neglected in comparison to the terms of

OðNÞ in Eq. (5).

Similar clustered densities have been studied in the

context of unsupervised learning and supervised perceptron

training; see, e.g., [4, 10, 35]. Also, online LVQ in sta-

tionary situations was analysed in, e.g., [12].

Here we focus on the question whether LVQ learning

schemes are able to cope with drift in characteristic model

situations and whether extensions like weight decay can

improve the performance in such settings.

2.2 Layered neural networks

The term Soft Committee Machine (SCM) has been

established for shallow feedforward neural networks with a

single hidden layer and a linear output unit, see for instance

[2, 8, 9, 11, 26, 42, 44, 45, 49]. Its structure resembles that

of a (crisp) committee machine with binary threshold

hidden units, where the network output is given by their

majority vote, see [4, 19, 53] and references therein.

The output of an SCM with K hidden units and fixed

hidden-to-output weights is of the form

yðnÞ ¼
XK

k¼1

gðwk � nÞ where wk 2 RN ð6Þ

denotes the weight vector connecting the N-dimensional

input layer with the k-th hidden unit. A non-linear transfer

function gð� � �Þ defines the hidden unit states and the final

output is given as their sum.

As specific examples we consider the sigmoidal

gðxÞ ¼ erf x=
ffiffiffi
2

p� �
with g0ðxÞ ¼

ffiffiffiffiffiffiffiffi
2=p

p
e�x2=2 ð7Þ

and the popular rectified linear unit (ReLU):

gðxÞ ¼ xHðxÞ with g0ðxÞ ¼ HðxÞ: ð8Þ

The activation (7) resembles closely other sigmoidal

functions, e.g., the more popular tanhðxÞ, but it facilitates
the analytical treatment in the mathematical analysis as

exploited in [8], originally. In the following, we refer to an

SCM with the above sigmoidal activation as Erf-SCM, for

brevity.

Similarly, we use the term ReLU-SCM for networks

with hidden unit states given by Eq. (8). The ReLU acti-

vation has recently gained significant popularity in the

context of Deep Learning [22]. This is, among other rea-

sons, due to its simplicity which offers computational ease

and numerical stability. According to the literature, ReLU

networks have displayed favorable training and general-

ization behavior in several practical applications and

benchmark problems [18, 31, 34, 38, 40].

Note that an SCM, cf. Eq. (6), is not quite a universal

approximator. However, this property could be achieved

by introducing hidden-to-output weights and adaptive local

thresholds #i 2 R in hidden unit activations of the form

g wi � n� #ið Þ, see [16]. Adaptive hidden-to-output weights
have been studied in, for instance, [42] from a statistical

physics perspective. However, we restrict ourselves to the

simpler model defined above and focus on basic dynamical

effects and potential differences of ReLU- versus Erf-SCM

in the presence of concept drift.

2.2.1 Regression scheme and on-line learning

The training of a neural network with real-valued output

yðnÞ based on examples nl 2 RN ; sl 2 R
� 


for a regres-

sion problem is frequently guided by the quadratic devia-

tion of the network output from the target values

[15, 22, 23] . It serves as a cost function which evaluates

the network performance with respect to a single example

as

el fwkgKk¼1

� �
¼ 1

2

�
yl � sl

�2
with yl ¼ yðnlÞ: ð9Þ

In stochastic or on-line gradient descent, updates of the

weight vectors are based on the presentation of a single

example at time step l

wl
k ¼ wl�1

k þ g
N

Dwl
k with Dwl

k ¼ � oel

owk
ð10Þ

where the gradient is evaluated in wl�1
k . For the SCM

architecture specified in Eq. (6), oyl=owk ¼ g0 hlk
� �

nl; and

we obtain

Dwl
k ¼ �

XK

i¼1

g hlið Þ � sl
 !

g0 hlk
� �

nl ð11Þ

with the inner products hli ¼ wl�1
i � nl of the current

weight vectors with the next example input in the stream.

Note that the change of weight vectors is proportional to nl

and can be interpreted as a form of Hebbian Learning

[15, 22, 23].

2.2.2 Student–teacher scenario and model data

In order to define and model meaningful learning situa-

tions, we resort to the consideration of student–teacher

scenarios [4, 5, 19, 53].

We assume that the target can be defined in terms of an

SCM with a number M of hidden units and a specific set of

weights Bm 2 RN
� 
M

m¼1
:
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sðnÞ ¼
XM

m¼1

gðBm � nÞ and sl ¼ sðnlÞ ¼
XM

m¼1

gðblmÞ ð12Þ

with blm ¼ Bm � nl for one of the training examples. This

so-called teacher network can be equipped with M[K

hidden units in order to model regression schemes which

cannot be learnt by an SCM student of the form (6). On the

contrary, K[M would correspond to an over-learnable

target or over-sophisticated student. For the discussion of

these highly interesting cases in stationary environments,

see for instance [8, 9, 42, 44, 45]. In a student–teacher

scenario with K and M hidden units the update of the

student weight vectors by on-line gradient descent is given

by Eq. (11) with sl from Eq. (12).

In the following, we will restrict our analysis to per-

fectly matching student complexity with K ¼ M ¼ 2 only,

which further simplifies Eq. (11). Extensions to more

hidden units and settings with K 6¼ M will be considered in

forthcoming projects.

In contrast to the model for LVQ-based classification,

the vectors Bm define the target outputs sl ¼ sðnlÞ
explicitly via the teacher network for any input vector.

While clustered input densities of the form (4) can also be

studied for feedforward networks as in [35, 36], we assume

here that the actual input vectors are uncorrelated with the

teacher vectors Bm. Consequently, we can resort to a

simpler model density and consider vectors n of indepen-

dent, zero mean, unit variance components with

PðnÞ ¼ ð2 pÞ�N=2
exp � n2=2
� �

: ð13Þ

Note that the density (13) is recovered formally from

Eq. (4) by setting k ¼ 0 and v1 ¼ v2 ¼ 1, for which both

clusters in (4) coincide in the origin and the parameters p1;2
become irrelevant.

Note that the student/teacher scenario considered here is

different from concepts used in studies of knowledge dis-

tillation, see [51] and references therein. In the context of

distillation, a teacher network is itself trained on a given

data set to approximate the target function. Thereafter a

student network, frequently of a simpler architecture, dis-

tills the knowledge in a subsequent training process. In our

work, as in most statistical physics-based studies

[4, 19, 53], the teacher network is taken to directly define

the true target function. A particular architecture is chosen

and, together with its fixed weights, it controls the com-

plexity of the task. The teacher network provides correct

target outputs to all input data that are generated according

to the distribution in Eq. (13). In the actual training pro-

cess, a sequence of such input vectors and teacher-gener-

ated labels is presented to the student network.

2.3 Mathematical analysis of the training
dynamics

In the following we sketch the successful theory of on-line

learning [4, 5, 19, 43, 53] as, for instance, applied to the

dynamics of LVQ algorithms in [12, 20, 54] and to on-line

gradient descent in SCM in [8, 9, 26, 42, 44, 45, 49]. We

refer the reader to the original publications for details. The

extensions to non-stationary situations with concept drifts

are discussed in Sect. 2.4.

The mathematical analysis proceeds along the same

generic steps in both settings. Our presentation follows

closely the descriptions in [14, 47].

We consider adaptive vectors w1;2 2 RN (prototypes in

LVQ, student weights in the SCM) while the characteristic

vectors B1;2 specify the target task (cluster centers in LVQ

training, SCM teacher vectors for regression).

The consideration of the thermodynamic limit N ! 1 is

instrumental for the theoretical treatment. The limit facil-

itates the following key steps which, eventually, yield an

exact mathematical description of the training dynamics in

terms of ordinary differential equations (ODE):

(a) Order parameters

The many degrees of freedom, i.e., the components of

the adaptive vectors, can be characterized in terms of only

very few quantities. The definition of these so-called order

parameters follows naturally from the mathematical

structure of the model. After presentation of a number l of

examples, as indicated by corresponding superscripts, we

describe the system by the projections for i; k;m 2 f1; 2g
Rl
im ¼ wl

i � Bm and Ql
ik ¼ wl

i � w
l
k : ð14Þ

Obviously, Ql
11;Q

l
22 and Ql

12 ¼ Ql
21 relate to the norms and

mutual overlap of the adaptive vectors, while the quantities

Rim specify their projections into the linear subspace

defined by the characteristic vectors fB1;B2g, respectively.
(b) Recursions

Recursion relations for the order parameters (14) can be

derived directly from the update steps, which are of the

generic form wl
k ¼ wl�1

k þ g=N Dwl
k : The corresponding

inner products yield

NðRl
im � Rl�1

im Þ ¼ gDwl
i � Bm

NðQl
ik � Ql�1

ik Þ ¼ g wl�1
i � Dwl

k þ wl�1
k � Dwl

i

� �

þ g2=N Dwl
i � Dw

l
k :

ð15Þ

Terms of order Oð1=NÞ on the r.h.s. will be neglected in

the following. Note however that Dwl
i � Dw

l
k comprises

contributions of order jnj2 / N for the considered updates

(2) and (10).

(c) Averages over the model data
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Applying the central limit theorem (CLT) we can per-

form an average over the random sequence of independent

examples.

Note that Dwl
k / nl or Dwl

k / nl � wl�1
k

� �
for the

SCM and LVQ, respectively. Consequently, the current

input nl enters the r.h.s. of Eq. (15) only through its norm

j n j2¼ OðNÞ and the quantities

hli ¼ wl�1
i � nl and blm ¼ Bm � nl: ð16Þ

Since these inner products correspond to sums of many

independent random quantities in our model, the CLT

implies that the projections in Eq. (16) are correlated

Gaussian quantities for large N and the joint density

Pðhl1 ; h
l
2 ; b

l
1 ; b

l
2Þ is given completely by first and second

moments.

LVQ: For the clustered density, cf. Eqs. (4), the con-

ditional moments read

hlih im¼ kRl�1
im ; blm

� �
n
¼ kdmn;

hli h
l
k

� �
m
� hlih im hlk

� �
m
¼ vm Ql�1

ik ;

hli b
l
n

� �
m
� hlih im bln

� �
m
¼ vm Rl�1

in ;

bll b
l
n

� �
m
� bll
� �

m
bln
� �

m
¼ vm dln;

ð17Þ

with i; k; l;m; n 2 f1; 2g and the Kronecker-Delta dij ¼ 1

for i ¼ j and dij ¼ 0 else.

SCM: In the simpler case of the isotropic, spherical

density (13) with k ¼ 0 and v1 ¼ v2 ¼ 1 the moments

reduce to

hlih i ¼ 0; blm
� �

¼ 0; hli h
l
k

� �
� hlih i hlk

� �
¼ Ql�1

ik

hli b
l
n

� �
� hlih i bln

� �
¼ Rl�1

in ; bll b
l
n

� �
� bll
� �

bln
� �

¼ dln:

ð18Þ

Hence, in both cases (LVQ and SCM) the four-dim. density

of hl1;2 and bl1;2 is fully specified by the values of the order

parameters in the previous time step and the parameters of

the model density. This important result enables us to

average the recursion relations (15) over the most recent

training example by means of Gaussian integrals. The

resulting r.h.s. can be expressed as functions of

fRl�1
im ;Ql�1

ik g: Obviously, the precise form depends on the

details of the algorithm and model setup.

(d) Self-Averaging Properties

The self-averaging property of the order parameters

allows us to describe the dynamics in terms of mean val-

ues: Fluctuations of the stochastic dynamics can be

neglected in the limit N ! 1. The concept relates to the

statistical physics of disordered materials and has been

transferred successfully to the study of neural network

models and learning processes [4, 19, 53]. A detailed

mathematical discussion in the context of sequential on-

line learning dynamics is given in [41]. As a consequence,

we can interpret the averaged equations (15) directly as

deterministic recursions for the actual values of fRl
im;Q

l
ikg;

which coincide with their disorder average in the thermo-

dynamic limit.

(e) Continuous Time Limit

In the thermodynamic limit N ! 1; ratios of the form

ð. . .Þ=ð1=NÞ on the left hand sides of Eq. (15) can be

interpreted as derivatives with respect to a continuous

learning time a defined by

a ¼ l =N with da � 1=N: ð19Þ

This scaling corresponds to the natural assumption that the

number of examples should be proportional to the number

of adaptive quantities in the system.

Averages are performed over the joint density

P hl1 ; h
l
2 ; b

l
1 ; b

l
2

� �
corresponding to the latest, independently

drawn input vector. For simplicity, we omit indices l in the

following. The resulting sets of coupled ODE is of the form

dRim

da

	 


stat

¼ gFim;
dQik

da

	 


stat

¼ gGð1Þ
ik þ g2Gð2Þ

ik : ð20Þ

Here, the subscript stat indicates that the ODE describe

learning from a stationary density, Eqs. (4) or (13).

Limit of small learning rates

The dynamics can also be studied in the limit of small

learning rates g ! 0. In this case, the term g2Gð2Þ
ik can be

neglected in Eq. (20). In order to retain non-trivial per-

formance, the small step size has to be compensated for by

training with a large number of examples that diverges like

1=g. Formally, we introduce the quantity ea in the simul-

taneous limit

ea ¼ lim
g!0

lim
a!1

ðgaÞ; ð21Þ

which leads to a simplified system of ODE

dRim

dea

	 


stat

¼ Fim;
dQik

dea

	 


stat

¼ G
ð1Þ
ik ð22Þ

in rescaled continuous time ea for g ! 0:

LVQ: In the classification model we have to insert

Fim ¼ bmfih i�Rim fih ið Þ;

G
ð1Þ
ik ¼

�
hifk þ hkfih i�Qik fiþfkh i

�

and G
ð2Þ
ik ¼

P
m¼1;2 vmpm fifkh im

ð23Þ

in Eqs. (20) or (22). The LVQ1 modulation functions fi is

given in Eq. (3) and conditional averages h. . .im are with

respect to the density (4).

SCM: In the case of non-linear regression we obtain

Fim ¼ hqibmi; G
ð1Þ
ik ¼ h qihk þ qkhið Þi;

and G
ð2Þ
ik ¼ hqiqki with qk ¼ �ðy� sÞg0ðhkÞ:

ð24Þ
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Eventually, the r.h.s. of Eqs. (20) or (22) are expressed in

terms of elementary functions of order parameters. For the

straightforward, yet lengthy results we refer the reader to

the original literature for LVQ [12, 20] and SCM

[9, 42, 44, 45], respectively.

(f) Generalization error

After training, the success of learning is quantified in

terms of the generalization error �g, which is also given as a

function of the macroscopic order parameters.

LVQ: In the case of the LVQ model, �g is given as the

probability of misclassifying a novel, randomly drawn

input vector. The class-specific errors corresponding to

data from clusters k ¼ 1; 2 in Eq. (4) can be considered

separately:

�g ¼ p1 �
1
g þ p2 �

2
g where �kg ¼

�
H dk � dbk

� ��

k

ð25Þ

is the class-specific misclassification rate, i.e., the proba-

bility for an example drawn from a cluster k to be assigned

to bk 6¼ k with dk [ dbk . For the derivation of the class-wise

and total generalization error for systems with two proto-

types as functions of the order parameters we also refer to

[12]. One obtains

�kg ¼ U
Qkk � Qbkbk � 2kðRkk � RbkbkÞ
2
ffiffiffiffi
vk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q11 � 2Q12 þ Q22

p
 !

ð26Þ

with the function UðzÞ ¼
R z
�1 dx e�x2=2=

ffiffiffiffiffiffi
2p

p
:

SCM: In the regression scenario, the generalization

error is defined as an average � � �h i of the quadratic devi-

ation between student and teacher output over the isotropic

density, cf. Eq. (13):

�g ¼ 1

2

XK

k¼1

g hkð Þ �
XM

m¼1

g bmð Þ
" #2* +

: ð27Þ

In the simplifying case of K ¼ M ¼ 2 we obtain for Erf-

SCM:

�g ¼ 1

3
þ 1

p

X2

i;k¼1

sin�1 Qikffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Qii

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Qkk

p
� �

� 2

p

X2

i;m¼1

sin�1 Rimffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Qii

p
� � ð28Þ

and for ReLU-SCM:

�g ¼
X2

i;j¼1

Qij

8
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QiiQjj�Q2

ij

q
þQij sin

�1 Qijffiffiffiffiffiffiffiffiffi
QiiQjj

p
� �

4p

2

664

3

775

�
X2

i;j¼1

Rij

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qii�R2

ij

q
þRij sin

�1 Rijffiffiffiffiffi
Qii

p
� �

2p

2

4

3

5þpþ1

2p
:

ð29Þ

Both results are for orthonormal teacher vectors, extensions

to general Bm � Bn ¼ Tmn can be found in [45, 47].

(g) Learning curves

The (numerical) integration of the ODE for a given

particular training algorithm, model density and specific

initial conditions fRimð0Þ;Qikð0Þg yields the temporal

evolution of order parameters in the course of training.

Exploiting the self-averaging properties of order

parameters once more, we can obtain the learning curves

�gðaÞ ¼ �g fRimðaÞ;QikðaÞgð Þ or the class-wise �kgðaÞ,
respectively. Hence, we determine the typical generaliza-

tion error after on-line training with ðaNÞ random

examples.

2.4 The learning dynamics under concept drift

The analysis summarized in the previous section concerns

learning in the presence of a stationary concept, i.e., for a

density of the form (4) or (13) which does not change in the

course of training. Here, we introduce the effect of concept

drift to the modelling framework and consider weight

decay as an example mechanism for explicit forgetting.

2.4.1 Virtual drift in classification

As defined above, virtual drifts affect statistical properties

of the observed example data while the actual target

function remains unchanged.

A variety of virtual drift processes can be addressed in

our modelling framework. For example, time-varying label

noise in regression or classification could be incorporated

in a straightforward way [4, 19, 53]. Similarly, non-sta-

tionary cluster variances in the input density, cf. Eq. (4),

can be introduced through explicitly time-dependent vrðaÞ
into Eq. (20) for the LVQ system.

Here we focus on a particularly relevant case in classi-

fication, in which a varying fraction of examples represents

each of the classes in the data stream. We consider non-

stationary, a-dependent prior probabilities p1ðaÞ ¼
1� p2ðaÞ in the mixture density (4). In practical situations,

varying class bias can complicate the training significantly

and lead to inferior performance [52]. Specifically, we

distinguish the following scenarios:

(A) Drift in the training data only
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Here we assume that the true target classification is

defined by a fixed reference density of data. As a simple

example we consider equal priors p1 ¼ p2 ¼ 1=2 in a

symmetric reference density (4) with v1 ¼ v2. On the

contrary, the characteristics of the observed training data

are assumed to be time-dependent. In particular, we study

the effect of non-stationary pmðaÞ and weight decay on the

learning dynamics. Given the order parameters of the

learning systems in the course of training, the corre-

sponding reference generalization error

�refðaÞ ¼ �1g þ �2g

� �
=2 ð30Þ

is obtained by setting p1 ¼ p2 ¼ 1=2 in Eq. (25), but

inserting RimðaÞ and QikðaÞ as obtained from the integra-

tion of the corresponding ODE with time dependent

p1ðaÞ ¼ 1� p2ðaÞ in the training process.

(B) Drift in training and test data

In the second interpretation we assume that the variation

of pmðaÞ affects training and test data in the same way.

Hence, the change of the statistical properties of the data is

inevitably accompanied by a modification of the target

classification: For instance, the Bayes optimal classifier and

its best linear approximation depend explicitly on the

actual priors [12].

The learning system is supposed to track the actual

drifting concept and we refer to the corresponding gener-

alization error as the tracking error

�track ¼ p1ðaÞ �1g þ p2ðaÞ �2g: ð31Þ

In terms of modelling the training dynamics, both sce-

narios, (A) and (B), require the same straightforward

modification of the ODE system: the explicit introduction

of a-dependent quantities prðaÞ in Eq. (20). The obtained

temporal evolution yields the reference error �refðaÞ for the
case of drift in the training data (A) and �trackðaÞ in inter-

pretation (B).

Note that in both interpretations, we consider the very

same drift processes affecting the training data. However,

the interpretation of the relevant performance measure is

different. In (A) only the training data is subject to the drift,

but the classifier is evaluated with respect to an idealized

static situation representing a fixed target. On the contrary,

the tracking error in (B) is thought to be computed with

respect to test data available from the stream, at the given

time. Alternatively, one could interpret (B) as an example

of real drift with a non-stationary target, where �track rep-

resents the corresponding generalization error. However,

we will refer to (A) and (B) as virtual drift throughout the

following.

2.4.2 Real drift in regression

In the presented framework, a real drift can be modelled as

a process which displaces the characteristic vectors B1;2,

i.e., the cluster centers in LVQ or the teacher weight vec-

tors in the SCM. Here we focus on the latter case and refer

the reader to [47] for earlier results on LVQ training under

real drift.

A variety of time dependences could be considered in

the model. We restrict ourselves to the analysis of diffu-

sion-like random displacements of vectors B1;2ðlÞ at each
time step. Upon presentation of example l, we assume that

random vectors B1;2ðlÞ are generated which satisfy the

conditions

B1ðlÞ � B1ðl�1Þ ¼ B2ðlÞ � B2ðl�1Þ ¼ 1� d=Nð Þ
B1ðlÞ � B2ðlÞ ¼ 0 and j B1ðlÞ j2¼j B2ðlÞ j2¼ 1:

ð32Þ

Here d quantifies the strength of the drift process. The

displacement of the teacher vectors is very small in an

individual training step. For simplicity we assume that the

orthonormality of teacher vectors is preserved in the drift.

In continuous time a ¼ l=N, the drift parameter defines a

characterstic scale 1=d on which the overlap of the current

teacher vectors with their initial positions decay:

BmðlÞ � Bmð0Þ ¼ exp½�d l=N�:
The effect of such a drift process is easily taken into

account in the formalism: For a particular student wi 2 RN

we obtain [6, 7, 28, 50]

wi � BkðlÞ½ � ¼ 1� d=Nð Þ wi � Bkðl� 1Þ½ �: ð33Þ

under the above specified random displacement. Hence, the

drift tends to decrease the quantities Rik which clearly

reduces the success of training compared with the case of

stationary teachers. The corresponding ODE in the limit

N ! 1 in the drift process (32) become

dRim=da½ �drift ¼ dRim=da½ �stat �dRim and

dQik=da½ �drift¼ dQik=da½ �stat
ð34Þ

with the terms � � �½ �stat for stationary environments taken

from Eq. (20). Note that now order parameters RimðaÞ
correspond to the inner products wl

i � BmðaÞ, as the teacher
vectors themselves are time-dependent.

2.4.3 Weight decay

Possible motivations for the introduction of so-called

weight decay in machine learning systems range from

regularization as to reduce the risk of over-fitting in

regression and classification [15, 22, 23] to the modelling

of forgetful memories in attractor neural networks [24, 37].

Here we include weight decay as to enforce explicit

forgetting and to potentially improve the performance of
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the systems in the presence of real concept drift. We

consider the multiplication of all adaptive vectors by a

factor ð1� c=NÞ before the generic learning step given by

Dwl
i in Eq. (2) or Eq. (10) is performed:

wl
i ¼ 1� c=Nð Þwl�1

i þ g=N Dwl
i : ð35Þ

Since the multiplications with 1� c=Nð Þ accumulate in

the course of training, weight decay enforces an increased

influence of the most recent training data as compared to

earlier examples. Note that analagous modifications of

perceptron training under concept drift have been discussed

in [6, 7, 28, 50].

In the thermodynamic limit N ! 1, the modified ODE

for training under real drift, cf. Eq. (32), and weight decay,

Eq. (35), are obtained as

dRim=da½ �decay¼ dRim=da½ �stat�ðdþ cÞRim and

dQik=da½ �decay ¼ dQik=da½ �stat�2 cQik

ð36Þ

where the terms for stationary environments in absence of

weight decay are given in Eq. (20).

3 Results and discussion

Here we present and discuss our results obtained by inte-

grating the systems of ODE with and without weight decay

under different time-dependent drifts. For comparison,

averaged learning curves obtained by means of Monte

Carlo simulations are also shown. These simulations of the

actual training process provide an independent confirma-

tion of the ODE-based description and demonstrate the

relevance of results obtained in the thermodynamic limit

N ! 1 for relatively small, finite systems.

3.1 Virtual drift in LVQ training

All results presented in the following are for constant

learning rate g ¼ 1 in the LVQ training. The results remain

qualitatively the same for a range of learning rates. LVQ

prototypes were initialized as normalized independent

random vectors without prior knowledge:

Q11ð0Þ ¼ Q22ð0Þ ¼ 1; Q12ð0Þ ¼ 0; and Rikð0Þ ¼ 0:

ð37Þ

We study three specific scenarios for the time dependence

p1ðaÞ ¼ 1� p2ðaÞ as detailed in the following.

3.1.1 Linear increase of the bias

Here we consider a time-dependent bias of the form

p1ðaÞ ¼ 1=2 for a\ao and

p1ðaÞ ¼
1

2
þ ðpmax�1=2Þ ða� aoÞ

ðaend � aoÞ
for a� ao: ð38Þ

where the maximum class weight p1 ¼ pmax is reached at

learning time aend. Figure 1 shows the learning curves as

obtained by numerical integration of the ODE together

with Monte Carlo simulation results for ðN ¼ 100Þ-di-
mensional inputs and prototype vectors. As an example we

set the parameters to ao ¼ 25; pmax ¼ 0:8; aend ¼ 200. The

learning curves are displayed for LVQ1 without weight

decay (upper) and with c ¼ 0:05 (lower panel). Simulations

show excellent agreement with the ODE results.

The system adapts to the increasing imbalance of the

training data, as reflected by a decrease (increase) of the

class-wise error for the over-represented (under-repre-

sented) class, respectively. The weighted overall error �track
also decreases, i.e., the presence of class bias facilitates

smaller total generalization error, see [12]. The perfor-

mance with respect to unbiased reference data deteriorates

slightly, i.e., �ref grows with increasing class bias as the

training data represents the target less faithfully.

3.1.2 Sudden change of the class bias

Here we consider an instantaneous switch from low bias

p1ðaÞ ¼ 1� pmax for a� ao to high bias

p1ðaÞ ¼
1� pmax for a� ao:

pmax [ 1=2 for a[ ao:

�
ð39Þ

0 50 100 150 200
0

0.1

0.2

0.3

0 50 100 150 2000

0.1

0.2

0.3

Fig. 1 LVQ1 in the presence of a concept drift with linearly

increasing p1ðaÞ given by ao¼20, aend¼200, pmax¼0:8 in (38). Solid

lines correspond to the integration of ODE with initialization as in

Eq. (37). We set v1;2¼0:4 and k ¼ 1 in the density (4). The upper

graph corresponds to LVQ1 without weight decay, the lower graph

displays results for c ¼ 0:05 in Eq. (35). In addition, Monte Carlo

results for N ¼ 100 are shown: class-wise errors �1;2ðaÞ are displayed
as downward (upward) triangles, respectively; squares mark the

reference error �refðaÞ; circles correspond to �trackðaÞ, cf. Eqs. (30, 31)
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We consider pmax ¼ 0:75 as an example, the corresponding

results from the integration of ODE and Monte Carlo

simulations are shown in Fig. 2 for training without weight

decay (upper) and for c ¼ 0:05 (lower panel).

We observe similar effects as for the slow, linear time

dependence: The system reacts rapidly with respect to the

class-wise errors and the tracking error �track maintains a

relatively low value. Also, the reference error �ref displays

robustness with respect to the sudden change of p1. Weight

decay, as can be seen in the lower panel of Fig. 2 reduces

the overall sensitivity to the bias and its change: Class-wise

errors are more balanced and the weighted �track slightly

increases compared to the setting with c ¼ 0.

3.1.3 Periodic time dependence

As a third scenario we consider oscillatory modulations of

the class weights during training:

p1ðaÞ ¼ 1=2þ pmax � 1=2ð Þ cos 2p a
�
T

� �
ð40Þ

with periodicity T on a-scale and maximum amplitude

pmax\1. Example results are shown in Fig. 3 for T ¼ 50

and pmax ¼ 0:8. Monte Carlo results for N ¼ 100 are only

displayed for the class-wise errors, for the sake of clarity.

They show excellent agreement with the numerical inte-

gration of the ODE for training without weight decay

(upper panel) and for c ¼ 0:05 (lower panel). These results

confirm our findings for slow and sudden changes of the

prior weights: Weight decay limits the flexibility of the

LVQ system to react to the presence of a bias and its time

dependence.

3.1.4 Discussion: LVQ under virtual drift

Our results for the different realizations of time-dependent

class weights show that Learning Vector quantization can

cope with this form of drift to a certain effect. By design,

standard incremental updates like the classical LVQ1 allow

the prototypes to adjust to the changing statistics of the

data. This has been shown in [47] for the actual drift of the

cluster centers in the model density. Here we show that

LVQ1 can also cope with the virtual drift processes.

In analogy to our findings in [47], one might have

expected improved performance when introducing weight

decay as a mechanism of forgetting. As we demonstrate,

however, weight decay does not have a very strong effect

on the the system’s reaction to changing prior class

weights. Essentially, weight decay limits the prototype

norms and hinders shifts of the decision boundary by

prototype displacement. The overall influence of class bias

and its time dependence is reduced in the presence of

weight decay. Weight decay restricts the norm of the

prototypes, i.e., the possible offset of the decision boundary

from the origin. As a consequence, the tracking error

slightly increases for c[ 0, in general. On the contrary, the

error �ref with respect to the reference density decreases

compared to the training without weight decay.

A clear beneficial effect of forgetting previous infor-

mation in favor of the most recent examples cannot be

confirmed. The reaction of the learning system to sudden

(B) or oscillatory changes of the priors (C) remains also

unchanged when introducing weight decay.

90 100 110 120
0

0.1

0.2

90 100 110 120
0

0.1

0.2

Fig. 2 LVQ1 in the presence of a concept drift with a sudden change

of class weights according to Eq. (39) with ao ¼ 100 and pmax ¼ 0:75.
Only the a-range close to ao is shown. All other details are provided

in Fig. 1

Fig. 3 LVQ1 in the presence of oscillating class weights according to

Eq. (40) with parameters T ¼ 50 and pmax ¼ 0:8, without weight

decay c ¼ 0 (upper graph) and for c ¼ 0:05 (lower). For clarity,

Monte Carlo results are only shown for the class-conditional errors �1

(downward) and �2 (upward triangles). All other details are given in

Fig. 1
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3.2 Results: SCM regression under real drift

Here we present the results concerning the SCM student–

teacher scenario with K ¼ M ¼ 2 under real concept drift,

i.e., random displacements of the teacher vectors as intro-

duced in Sect. 2.4.2. Unlike LVQ for classification, gra-

dient descent-based training of a regression system is

expected to be much more sensitive to the choice of the

learning rate. Here, we restricted the discussion to the well-

defined limit of small learning rates, g ! 0 and a ! 1
with ea ¼ ga ¼ Oð1Þ; see the discussion before Eq. (21). In

the corresponding Monte Carlo simulations, cf. Fig. 4a, b,

we employed a small learning rate g ¼ 0:05 which yielded

very good agreement.

Already in the absence of concept drift, the model dis-

plays non-trivial effects as shown in, for instance

[9, 44, 45]. Perhaps the most thoroughly studied phe-

nomenon in the SCM training process is the existence of

quasi-stationary plateaus in the evolution of the order

parameters and the generalization error. In the most clear-

cut cases, they correspond to approximately symmetric

configurations of the student network with respect to the

teacher network, i.e., Rim � R for all i, m. In such a state,

all student units have acquired the same, limited knowl-

edge of the target rule. Hence, the generalization error in

the plateau is sub-optimal. In terms of Eq. (20), plateaus

correspond to weakly repulsive fixed points of the ODE

system. One can show in case of orthonormal teacher units

and for small learning rates that a symmetric fixed point

with Rim ¼ R and the associated plateau state always

exists; see, e.g., [45]. In order to achieve a further decrease

of the generalization error, the symmetry of the student

with respect to the teacher units has to be broken by spe-

cialization: Each student weight vector w1;2 has to repre-

sent a specific teacher unit and Ri1 6¼ Ri2 is required for

successful learning.

Our recent comparison of Erf-SCM and ReLU-SCM

revealed interesting differences even in absence of concept

drift [46]. For instance, in the Erf-SCM, student vectors are

nearly identical in the symmetric plateau with Qik � Q for

all i; k 2 f1; 2g: On the contrary, in ReLU systems the

student weights are not aligned in the quasi-stationary

state: Qii ¼ Q and Q12\Q [46].

3.2.1 ODE and Monte Carlo simulations

Here, we investigate and compare the learning dynamics of

networks with Erf- and ReLU-activation under concept

drift and in the presence of weight decay. To this end we

study the models by numerical integration of the corre-

sponding ODE and, in addition, by Monte Carlo

simulations.

We study training processes in absence of prior

knowledge in the student. In the following we consider

exemplary initial conditions with

Rimð0Þ ¼ 0;

Q11ð0Þ ¼ Q22ð0Þ ¼ 0:5;

Q12ð0Þ ¼ 0:49

ð41Þ

which correspond to almost identical w1ð0Þ and w2ð0Þ;
which are both orthogonal to the teacher vectors. Note that

the initial norm of the student vectors and their mutual

overlap Q12ð0Þ can be set arbitrarily in practice.

For the networks with two hidden units we define the

quantity SiðaÞ ¼ jRi1ðaÞ � Ri2ðaÞj as the specialization of

student units i ¼ 1; 2. In the plateau state, SiðaÞ � 0 for an

extended amount of training time, while an increasing

value of SiðaÞ indicates the specialization of the unit. In

practice, one expects that initially Rimð0Þ � 0 for all i, m if

no prior information is available about the target rule.

Hence, the student specialization Sið0Þ ¼ jRi1ð0Þ � Ri2ð0Þj
is also small, initially.
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Fig. 4 The learning performance under concept drift in terms of

generalization error as a function of the learning time ea. Dots

correspond to 10 runs of Monte Carlo simulations with N ¼ 500,

g ¼ 0:05 with initials conditions as in Eq. (41). Solid lines show ODE

integrations. a Erf SCM. From bottom to top, the curves correspond to

the levels of target drift ed ¼ f0; 0:01; 0:02; 0:05g. b ReLU SCM.

From bottom to top, the levels of target drift are:
ed ¼ f0; 0:05; 0:1; 0:3g
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The unspecialized plateau can dominate the learning

process and, consequently, its length is a quantity of sig-

nificant interest. Quite generally, it is governed by the

repulsive properties of the relevant fixed point of the ODE

system and depends logarithmically on the the magnitude

of the initial specialization Sið0Þ, see [9] for a detailed

discussion. In simulations for large N, a random initial-

ization of student vectors would result in overlaps

Rimð0Þ ¼ Oð1=
ffiffiffiffi
N

p
Þ with the teacher vectors which also

implies that Sið0Þ ¼ Oð1=
ffiffiffiffi
N

p
Þ: The accurate extrapolation

of simulation results for N ! 1 is complicated by this

interplay of finite size effects and initial specialization

which governs the escape from the plateau states [9]. Due

to fluctuations in a finite system, plateaus are typically left

earlier than predicted by the theoretical prediction for

N ! 1. Here we focus on the performance achieved in the

plateau states and resort to a simpler strategy: The values of

the order parameters observed at ea ¼ 0:05 in the Monte

Carlo simulation are used as initial values for the numerical

integration of the ODE. This does not necessarily warrant a

one-to-one correspondence of the precise shape and length

of the plateau states. However, the comparison shows

excellent qualitative agreement and allows for the quanti-

tative comparison of the performance in the quasistationary

and states.

We have studied the Erf-SCM and the ReLU-SCM

under concept drift, Eq. (32), and weight decay, Eq. (35),

in the limit of small learning rates g ! 0. We resorted to

this simplifying limit as the term G
ð2Þ
ik in Eq. (24) could not

be obtained analytically for the ReLU-SCM. However,

non-trivial results can be achieved in terms of the rescaled

training time ea in the limit (21). Hence we integrate the

ODE provided in Eq. (22), combined with the drift and

weight decay terms from Eqs. (34, 36) that also have to be

scaled with g in this case: ed ¼ gd, ec ¼ gc. In addition to

the numerical integration we have performed and averaged

over 10 independent runs of Monte Carlo simulations with

system size N ¼ 500 and small but finite learning rate

g ¼ 0:05.

3.2.2 Learning curves under concept drift

Figure 4 shows the learning curves �gðeaÞ as results of the
averaged Monte Carlo simulations and the ODE integration

for different strengths ed of concept drift with no weight

decay (ec ¼ 0). The left and right panel corresponds to Erf-

and ReLU-SCM, respectively.

Apart from deviations in terms of the plateau lengths,

simulations and the numerical integration of the ODE show

very good agreement. In particular, the generalization error

in the plateau and final states nearly coincides. As outlined

in Sect. 3.2.1, the actual length of plateaus in simulations

depends on subtle details [9] which were not addressed

here.

Note also that a direct, quantitative comparison of Erf-

and ReLU-SCM in terms of training times ea is not

meaningful. For instance, it seems tempting to conclude

that the ReLU-SCM exhibit shorter plateau states for the

same network size and training conditions. However, one

has to take into account that the activation functions

influence the complexity of the input output relation of the

network in a non-trivial way.

From the behavior of the learning curves for increasing

strengths ed, several impeding effects of the drift can be

identified: The generalization error in the unspecialized

plateau and in the final state for large ea increase with ed. At
the same time, the plateau lengths increase. These effects

are observed for both types of activation function. More

specifically, the behavior for small ed is close to the sta-

tionary setting with ed ¼ 0: A rapid initial decrease of the

generalization error is followed by the quasi-stationary

plateau state that persists for a relatively long training time.

Eventually, the system escapes from the plateau and

improved generalization performance becomes possible.

Despite the matching complexity of student and teacher,

perfect generalization cannot be achieved in the presence

of on-going concept drift.

We note that the stronger the drift, the smaller is the

difference between the performance in the plateau and the

final state. For very large values of ed both versions of the

SCM cannot escape the plateau state anymore as it corre-

sponds to a stable fixed point of the ODE.

In the following we discuss for both activation functions

the effect of concept drift on the plateau- and final gener-

alization error in greater detail. The influence of weight

decay on the dynamics is also presented.

Erf-SCM under drift and weight decay

Figure 5a displays the effect of the drift strength ed on

the generalization error in the unspecialized plateau state

and in the final state for ea ! 1, i.e., �pgðedÞ and �1g ðedÞ;
respectively. As mentioned above, weak drifts still allow

for student specialization with improved performance in

the final state for large ea. However, increasing the drift

strength results in a decrease of the difference j�1g ðedÞ �
�pgðedÞj: We have marked the value of ed, above which the

plateau becomes the stable final state for ea ! 1 in the

figure and refer to it as edc.
Interestingly, in a small range of the drift parameter,

0:036\ed\0:061, the final performance is actually worse

than in the plateau with �1g ðedÞ[ �pgðedÞ. Since �g depends

explicitly also on the Qik, it is possible for an unspecialized

state with Rim ¼ R to generalize better than a slightly
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specialized configuration with unfavorable values of the

student norms and mutual overlaps.

Figure 5c shows the effect of the drift on the plateau

length. The start and end of the plateau are defined as

ea0 ¼minfea j �pg � 10�4\�gðeaÞ\�pg þ 10�4g
eaP ¼minfea j SiðeaÞ� 0:2 Siðea ! 1Þg :

ð42Þ

Here, Siðea ! 1Þ represents the final specialization that is

achieved by the system for large training times. ðaP � a0Þ
is used as a meaure of the plateau length.

In the weak drift regime, the plateau length increases

slowly with ed as shown in panel (c) for ec ¼ 0. It eventually

diverges as ed approaches edc from Fig. 5a.

The dependence of �pg and �1g on the weight decay

parameter ec is shown in Fig. 5b. We observe improved

performance for a small amount weight decay compared to

absence of weight decay (ec ¼ 0). However, the system is

quite sensitive to the actual setting of ec: Values slightly

larger than the optimum quickly deteriorate the ability for

improvement from the plateau generalization error. The

value of ec, above which the plateau- and final generaliza-

tion error coincide has been marked in the figure and we

refer to it as ecc.
Figure 5d shows the effect of the weight decay on the

plateau length in the same setting as in Fig. 5b. Introducing

a weight decay always extends the plateau length. For

small ec the plateau length grows slowly and diverges as ec
approaches ecc from Fig. 5b.

ReLU-SCM under drift and weight decay

The effect of the strength of the drift on the general-

ization error in the unspecialized plateau state and in the

final state is displayed in Fig. 6a. The picture is similar to

the Erf-SCM: an increase in the drift strength causes an

increase in the plateau- and final generalization error. We

have marked in the figure the drift strength edc at which

there is no further change in performance from the plateau.

In contrast to the Erf-SCM, there is no range of ec for which
the ReLU-SCM generalization error increases after leaving

the plateau.

Figure 6c shows the effect of the strength of the drift on

the plateau length. Here too, a similar dependence is

observed as for the Erf-SCM: For the range of weaker

drifts, the plateau length grows slowly and diverges for

strong drifts up to the drift strength edc from Fig. 6a.

Figure 6b shows the effect of the amount of weight

decay on the plateau- and final generalization error in a

concept drift situation. A small amount of weight decay

can improve the generalization error compared to no

weight decay (ec ¼ 0). The effect weight decay has on the

ReLU-SCM shows a much greater robustness compared to

the Erf-SCM in terms of the ability to improve from the

plateau value: For high amounts of weight decay, an escape

from the plateau to better performance can still be

(a) (b)

(c) (d)

Fig. 5 Erf-SCM: Generalization error under concept drift in unspe-

cialized plateau states (dashed lines) and final states (solid) of the

learning process. a Plateau- and final generalization error for an

increasing strength ed of the target drift. Here, weight decay is not

applied: ec ¼ 0. For ed[ edc as marked by the vertical line, the curves

merge. b The plateau- and final generalization error as a function of

the weight decay parameter ec for a fixed level of real target drift, here:
ed ¼ 0:03. The curves merge for ec[ecc, as marked by the vertical

line. The lower panels show the observed plateau lengths as a function

of ed for ec ¼ 0 (c) and as a function of ec for fixed ed ¼ 0:03 (d),
respectively
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observed. The value ecc, above which the plateau- and final

generalization error coincide has been marked in the figure.

Figure 6d shows the effect of the amount of weight

decay on the plateau length in the same concept drift sit-

uation as in Fig. 6b. It shows that the plateau is shortened

significantly in the smaller range of weight decay, the same

range that also improves the final generalization error as

observed in Fig. 6b. The plateau length increases again for

very high levels of weight decay and diverges as ec
approaches the ecc from Fig. 6b.

3.3 Discussion: SCM regression under real drift

As was already discussed, the symmetric plateau corre-

sponds to states where the student units have all learned the

same limited and general knowledge about the teacher

units, i.e., Rij � R and therefore the specialization of each

student unit i is small: SiðeaÞ ¼ jRi1ðeaÞ � Ri2ðeaÞj � 0.

Eventually, the symmetry is broken by the start of spe-

cialization, when SiðeaÞ increases for each student unit i.

For stationary learnable situations with K ¼ M, throughout

learning the students units will acquire a full overlap to the

teacher units: Si ¼ 1 for all student units i. In this config-

uration, the target rule has been fully learned and therefore

the generalization error is zero. In our modelled concept

drift, the teacher vectors are changing continuously. This

reduces the overlaps the student units can achieve with the

teacher units, which increases the generalization error in

the plateau state and the final state.

Identifying the specific teacher vectors is more difficult

than learning the general structure of the teacher: Hence,

increasing the drift causes the final generalization error to

deteriorate faster than the plateau generalization error. For

very strong target drift, the teacher vectors are changing

too fast for specialization to be possible. We have identi-

fied the strength of the drift above which any kind of

specialization is impossible for both SCM by studying the

properties of the fixed point in the ODE. In stationary sit-

uations, one eigenvalue of the linearized dynamics near the

fixed point is positive and causes the repulsion away from

the fixed point to specialization. We refer to this positive

eigenvalue as ks. The eigenvalue decreases linearly with

the drift strength: For small ed, ks is still positive and

therefore an escape from the plateau is observed. However,

ks is negative for ed[ edc, the symmetric fixed point is

stable and specialization becomes impossible. For the Erf-

SCM, edc � 0:0615 and for the ReLU-SCM edc � 0:225.

The weaker repulsion of the fixed point for stronger drift

causes the plateau length to grow for ed ! edc. In practice,

this implies that higher training effort is necessary the

stronger the concept drift is.

In the ea ! 1 final state, the student tracks the drifting

target rule. For ed 	 edc, the student can achieve highly

specialized states while tracking the teacher. The closer the

drift strength is to edc, the weaker is the specialization that

can be achieved by the student while following the rapidly

moving teacher vectors. For ed[ edc, the unspecialized

student can only track the rule in terms of a simple

approximation.

In the results of the Erf-SCM, a range of drift strength

0:036\ed\edc was observed for which the final general-

ization error in the tracking state is worse than the plateau

generalization error. Upon further inspection, this is due to

(a) (b)

(c) (d)

Fig. 6 ReLU-SCM:

Generalization error under

concept drift in unspecialized

plateau states (dashed lines) and

final states (solid), as a function

of the drift strength (a) and
weight decay (b). In (b),
ed ¼ 0:2. The drift strength edc
above which the curves merge is

marked in (a) and similar for

weight decay ecc in (b). The
lower panels show the observed

plateau lengths as a function of
ed for ec ¼ 0 (c) and as a function

of ec for fixed ed ¼ 0:2 (d),
respectively
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the large values of Q11 and Q22 of the student vectors in the

specialized regime. Hence, the effect can be prevented by

introducing an appropriate weight decay.

3.3.1 Erf SCM versus ReLU SCM: weight decay in concept
drift situations

Our results show that weight decay can improve the final

generalization error in the specialized tracking state for

both SCM. The suppression of the contributions of older

and thus less representative data shows benefits in both

systems.

However, from the result in Fig. 5b, we find that it is

particularly important to tune the weight decay parameter

for the Erf-SCM, since the specialization ability deterio-

rates quickly for values slightly off the optimum, as shown

in the figure by the rapid increase in �1g . This reflects a

steep decrease of the largest eigenvalue ks in the ODE for

the Erf-SCM with ec, which also causes the increase of the

plateau length as observed in Fig. 5d. Already from

ecc � 0:0255, the eigenvalue ks becomes negative, and

therefore the fixed point becomes an attractor.

We found a very different effect of weight decay on the

performance of the ReLU-SCM. Not only is it able to

improve the final generalization error in the tracking state

as shown in Fig. 6b, but it also significantly reduces the

plateau length in the lower range of weight decay. This

reflects the increase of ks with the weight decay parameter

in the fixed point of the ODE, which increases the repulsion

from the unspecialized fixed point. Clearly, suppressing the

contribution of older data is beneficial for the specialization

ability of the ReLU-SCM. For larger values of ec; the pla-

teau length increases, reflecting a decrease of ks. However,
specialization remains possible up to a rather high value of

weight decay ecc � 1:125. The greater robustness to weight

decay with respect to specialization as shown in Fig. 6b is

likely related to our previous findings in [46], which show

that the ReLU student–teacher setup needs fewer examples

to reach specialization. We hypothesize that the simple

linear nature of the function makes it easier for the student

to learn features of the target rule. Hence a relatively small

window of recent examples can already facilitate a degree

of specialization.

4 Summary and outlook

We have presented a mathematical framework in which to

study the influence of concept drift systematically in model

scenarios. We exemplified the use of the versatile approach

in terms of models for the training of prototype-based

classifiers (LVQ) and shallow neural networks for regres-

sion, respectively.

LVQ for classification under drift and weight decay

In all specific drift scenarios considered here, we

observe that simple LVQ training can track the time-

varying class bias to a non-trivial extent: In the interpre-

tation of the results in terms of real drift, the class-condi-

tional performance and the tracking error �trackðaÞ clearly

reflect the time dependence of the prior weights. In general,

the reference error �refðaÞ with respect to class-balanced

test data, displays only little deterioration due to the drift in

the training data. The main effect of introducing weight

decay is a reduced overall sensitivity to bias in the training

data: Figures 1, 2 and 3 display a decreased difference

between the class-wise errors �1;2 for c[ 0. Naı̈vely, one

might have expected an improved tracking of the drift due

to the imposed forgetting, resulting in, for instance, a more

rapid reaction to the sudden change of bias in Eq. (39).

However, such an improvement cannot be confirmed. This

finding is in contrast to a recent study [47], in which we

observe increased performance by weight decay for a

particular real drift, i.e., the randomized displacement of

cluster centers.

The precise influence of weight decay clearly depends

on the geometry and relative position of the clusters. Its

dominant effect, however, is the regularization of the LVQ

system by reducing the norms of the prototype vectors.

Consequently, the NPC classifier is less flexible to reflect

class bias which would require significant offset of the

prototypes and decision boundary from the origin. This

mildens the influence of the bias and its time dependence,

and it results in a more robust behavior of the employed

error measures.

SCM for regression under drift and weight decay

On-line gradient descent learning in the SCM has pro-

ven able to cope with drifting concepts in regression: For

weak drifts, the SCM still achieves significant specializa-

tion with respect to the drifting teacher vectors, although

the required learning time increases with the strength of the

drift. In practice, this results in higher training effort to

reach beneficial states in the network. The drift constantly

reduces the overlaps with the teacher vectors which dete-

riorates the performance. After reaching a specialized state,

the network efficiently tracks the drifting target. However,

in the presence of very strong drift, both versions of the

SCM (with Erf- and ReLU-activation) lose their ability to

specialize and as a consequence their generalization

behavior remains poor.

We have shown that weight decay can improve the

performance in the plateau and in the final tracking state.

For the Erf-SCM, we found that there is a small range in

which weight decay yields favorable performance while
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the network quickly loses the specialization ability for

values outside this range. Therefore, in practice a careful

tuning of the weight decay parameter would be required.

The ReLU network showed greater robustness to the

magnitude of the weight decay parameter and displayed a

stronger tendency to specialize. Weight decay also reduced

the plateau length significantly in the training of ReLU

SCM. Hence, weight decay could speed up the training of

ReLU networks in practical concept drift situations,

achieving favorable weight configurations more efficiently.

Also, the network performs well with a larger range of the

weight decay parameter and does not require the careful

tuning necessary for the Erf-SCM.

Outlook

The presented modelling framework offers the possi-

bility to extend the scope of our studies in several relevant

directions. For instance, the formalism facilitates the con-

sideration of more complex model scenarios. Greater val-

ues of K and M should be studied in, both, classification

and regression. While we expect key results to carry over

from K ¼ M ¼ 2, the greater complexity of the systems

should result in richer dynamical behavior in detail. We

will study if and how a mismatched number of prototypes

further impedes the ability of LVQ systems to react

appropriately to the presence of concept drift. The training

of an SCM with K 6¼ M should be of considerable interest

and will also be addressed in forthcoming studies. One

might speculate that concept drift could enhance overfitting

effects in over-sophisticated SCM with K[M hidden

units. Ultimately, the characteristic robustness of the ReLU

activation function to weight decay that was found should

be studied in practical situations. Qualitative results are

likely to carry over to similarly shaped activation func-

tions, which will be verified in future work.

In a sense, the considered sigmoidal and ReLU activa-

tion functions are prototypical representatives of the most

popular choices in machine learning practice. The exten-

sion to various modifications or significantly different

transfer functions [18, 22] should provide additional valu-

able insights of practical relevance. Exact solutions to the

averages that are necessary for the formulation of the

learning dynamics in the thermodynamic limit may not be

available for all activation functions. In such cases we can

resort to approximations schemes and simulations.

The consideration of more complex input densities will

also shed light on the practical relevance of our theoretical

investigations. Recent work [21, 33] shows that the sta-

tistical physics-based investigation of machine learning

processes can take into account realistic input densities,

bridging the gap between the theoretical models and

practical applications.

Our modeling framework can also be applied in the

analysis of other types of drift or combinations thereof.

Several virtual processes could readily be implemented in

the model of LVQ training: time-dependent characteristics

of the input density could include the variances of the

clusters or their relative position in feature space. A

number of extensions is also possible in the regression

model. For instance, teacher networks with time-dependent

complexity could be studied by varying the mutual teacher

overlaps Bm � Bn in the course of training.

Alternative mechanisms of forgetting beyond weight

decay should be considered, which do not limit the flexi-

bility of the trained systems as drastically. As one example

strategy we intend to investigate the accumulation of

additive noise in the training processes. We will also

explore the parameter space of the model density in greater

depth and study the influence of the learning rate

systematically.

One of the major challenges in the field is the reliable

detection of concept drift in a stream of data. Learning

systems should be able to discriminate drift from static

noise in the data and infer also the type of drift, e.g., virtual

versus real. Moreover, the strength of the drift has to be

estimated reliably in order to adjust the training prescrip-

tion accordingly. It could be highly beneficial to extend our

framework towards efficient drift detection and estimation

procedures.
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47. Straat M, Abadi F, Göpfert C, Hammer B, Biehl M (2018) Sta-

tistical mechanics of on-line learning under concept drift. Entropy

20(10), art. No. 775

48. Vellido A, Gibert K, Angulo C, Martin Guerrero J (eds) (2019)

13th workshop on self-organizing maps and learning vector

quantization, clustering and data visualization (WSOM 2019),

Advances in intelligent systems and computing, vol 976.

Springer, Cham

49. Vicente R, Caticha N (1997) Functional optimization of online

algorithms in multilayer neural networks. J Phys A Math Gen

30:L599–L605

50. Vicente R, Caticha N (1998) Statistical mechanics of on-line

learning of drifting concepts: a variational approach. Mach Learn

32(2):179–201

51. Wang L, Yoon KJ (2021) Knowledge distillation and student–

teacher learning for visual intelligence: a review and new

outlooks. IEEE Trans Pattern Anal Mach Intell. https://doi.org/

10.1109/TPAMI.2021.3055564, early access

52. Wang S, Minku LL, Yao X (2017) A systematic study of online

class imbalance learning with concept drift. CoRR abs/

1703.06683. arxiv:1703.06683

53. Watkin T, Rau A, Biehl M (1993) The statistical mechanics of

learning a rule. Rev Mod Phys 65(2):499–556

54. Witoelar A, Biehl M, Hammer B (2007) Learning vector quan-

tization: generalization ability and dynamics of competing pro-

totypes. In: Proceedings of 6th international workshop on self-

organizing-maps (WSOM 2007), Univ. Bielefeld, Germany

55. Zliobaite I, Pechenizkiy M, Gama J (2016) An overview of

concept drift applications. In: Big data analysis: new algorithms

for a new society. Springer, Berlin

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

118 Neural Computing and Applications (2022) 34:101–118

123

https://doi.org/10.1109/TPAMI.2021.3055564
https://doi.org/10.1109/TPAMI.2021.3055564
http://arxiv.org/abs/1703.06683

	Supervised learning in the presence of concept drift: a modelling framework
	Abstract
	Introduction
	Model and methods
	Learning vector quantization
	Nearest prototype classifier
	The LVQ1 training algorithm
	Clustered model data

	Layered neural networks
	Regression scheme and on-line learning
	Student--teacher scenario and model data

	Mathematical analysis of the training dynamics
	The learning dynamics under concept drift
	Virtual drift in classification
	Real drift in regression
	Weight decay


	Results and discussion
	Virtual drift in LVQ training
	Linear increase of the bias
	Sudden change of the class bias
	Periodic time dependence
	Discussion: LVQ under virtual drift

	Results: SCM regression under real drift
	ODE and Monte Carlo simulations
	Learning curves under concept drift

	Discussion: SCM regression under real drift
	Erf SCM versus ReLU SCM: weight decay in concept drift situations


	Summary and outlook
	Acknowledgements
	References




