
Noname manuscript No.
(will be inserted by the editor)

Lucid Dreaming for Experience Replay:
Refreshing Past States with the Current Policy

Yunshu Du · Garrett Warnell · Assefaw Gebremedhin ·
Peter Stone · Matthew E. Taylor

Received: date / Accepted: date

Abstract Experience replay (ER) improves the data

efficiency of off-policy reinforcement learning (RL) al-

gorithms by allowing an agent to store and reuse its

past experiences in a replay buffer. While many tech-

niques have been proposed to enhance ER by biasing

how experiences are sampled from the buffer, thus far

they have not considered strategies for refreshing ex-

periences inside the buffer. In this work, we introduce

Lucid Dreaming for Experience Replay (LiDER), a

conceptually new framework that allows replay expe-

riences to be refreshed by leveraging the agent’s cur-

rent policy. LiDER consists of three steps: First, LiDER

moves an agent back to a past state. Second, from that

state, LiDER then lets the agent execute a sequence of

actions by following its current policy—as if the agent

were “dreaming” about the past and can try out dif-
ferent behaviors to encounter new experiences in the

dream. Third, LiDER stores and reuses the new ex-

perience if it turned out better than what the agent

Yunshu Du (corresponding author)
Washington State University
E-mail: yunshu.du@wsu.edu

Garrett Warnell
Army Research Laboratory
E-mail: garrett.a.warnell.civ@mail.mil

Assefaw Gebremedhin
Washington State University
E-mail: assefaw.gebremedhin@wsu.edu

Peter Stone
The University of Texas at Austin
Sony AI
E-mail: pstone@cs.utexas.edu

Matthew E. Taylor
University of Alberta
Alberta Machine Intelligence Institute
Washington State University
E-mail: matthew.e.taylor@ualberta.ca

previously experienced, i.e., to refresh its memories.

LiDER is designed to be easily incorporated into off-

policy, multi-worker RL algorithms that use ER; we

present in this work a case study of applying LiDER to

an actor-critic based algorithm. Results show LiDER

consistently improves performance over the baseline in

six Atari 2600 games. Our open-source implementation

of LiDER and the data used to generate all plots in this

work are available at github.com/duyunshu/lucid-

dreaming-for-exp-replay.

Keywords Deep Reinforcement Learning · Experience

Replay · Self Imitation Learning · Behavior Cloning

1 Introduction

One of the critical components contributing to the re-

cent success of integrating reinforcement learning (RL)

with deep learning is the experience replay (ER) mech-

anism [27]. While deep RL algorithms are often data-

hungry, ER enhances data efficiency by allowing the

agent to store and reuse its past experiences in a re-

play buffer [24]. Several techniques have been proposed

to enhance ER to further reduce data complexity and

one of the commonly used techniques is to influence

the order of replayed experiences. Instead of replaying

experiences uniformly at random [23, 27], studies have

found that sampling experiences with different priori-

ties can speed up the learning [7, 31, 37, 40, 47].

Biased experience sampling affects how the experi-

ences are replayed. However, it does not consider what

experience to replay. An experience comprises a state,

ar
X

iv
:2

00
9.

13
73

6v
3

 [
cs

.L
G

]
 3

 A
pr

 2
02

1

github.com/duyunshu/lucid-dreaming-for-exp-replay
github.com/duyunshu/lucid-dreaming-for-exp-replay

2 Yunshu Du et al.

the action taken at that state, and the return1 obtained

by following the agent’s current policy from that state.

Existing ER methods usually operate on a fixed set of

experiences. That is, once an experience is stored, it

remains static inside the buffer until it ages out. An ex-

perience from several steps ago may no longer be useful

for the current policy to replay because it was gener-

ated in the past with a much worse policy. If the agent

were given a chance to try again at the same place,

its current policy might be able to take different ac-

tions that lead to higher returns than what it obtained

in the past. What the agent should replay is therefore

the newer and updated experience, instead of the older

one. Given this intuition, we propose in this work Lucid
Dreaming for Experience Replay (LiDER), a conceptu-

ally new framework that refreshes past experiences by

leveraging the agent’s current policy, allowing the agent

to learn from valuable data generated by its newer self.

LiDER refreshes replay experiences in three steps:

First, LiDER moves the agent back to a state it has

visited before. Second, LiDER lets the agent follow its

current policy to generate a new trajectory from that

state. Third, if the new trajectory led to a better out-

come than what the agent previously experienced from

that state, LiDER stores the new experience into a sep-

arate replay buffer and reuses it during training. We

refer to this process as “lucid dreaming for experience

replay,” because it is as if the agent were “dreaming”

about the past and can control the dream to practice

again in a past state to achieve better rewards—much

like how research in sports science has found that a

person’s motor skills can be improved by consciously

rehearsing the movements in a lucid dream (e.g., Stum-

brys et al. [41]).

One limitation of LiDER is it requires environmen-

tal interactions to refresh past states. However, we care-

fully account for all environment interactions, includ-

ing steps taken to generate new trajectories, and show

that LiDER reduces the overall sample complexity of

learning compared to methods that do not refresh ex-

periences. LiDER is applicable when a simulator exists

for the task—either the task itself is a simulation like

a video game or we can build a simulator of the real

world—and the simulator is capable of teleporting the

agent back to previously visited states and rolling for-

ward in time from there.

The main contributions of this work are as follows:

1. We propose LiDER, a conceptually new framework

to refresh replay experiences, allowing an agent to

1 A one-step reward r is usually stored instead of the cumu-
lative return (e.g., Mnih et al. [27]). In this work, we follow
Oh et al. [32] and store the Monte-Carlo return G; we fully
describe the buffer structure in Section 3.

revisit and update past experiences using its current

policy in off-policy, multi-worker RL algorithms.

2. LiDER is implemented in an actor-critic based al-

gorithm as a case study.

3. We experimentally show LiDER outperforms the

baseline method (where past experiences were not

refreshed) in six Atari 2600 games, including two

hard exploration games that are challenging for sev-

eral RL benchmark algorithms.

4. Analyses and ablation studies help illustrate the

functioning of different components of LiDER.

5. Two extensions demonstrate that LiDER is also ca-

pable of leveraging policies from external sources,

i.e., a policy trained by a different RL algorithm

and a behavior cloning policy pre-trained from non-

expert human demonstrations.

6. We open-source our implementation of LiDER and

the data used to generate all plots in this work for

reproducibility at github.com/duyunshu/lucid-

dreaming-for-exp-replay.

2 Background

Our algorithm leverages several existing methods, which

we briefly review in this section.

2.1 Reinforcement Learning

We consider an RL problem to be modeled using a

Markov decision process, represented by a 5-tuple

〈S,A, P,R, γ〉. A state st ∈ S represents the environ-

ment at time t. An agent learns what action at ∈ A(s)
to take in st by interacting with the environment. The

transition function P (st+1|st, at) denotes the probabil-

ity of reaching state st+1 after taking action at at state

st. A reward rt ∈ R ⊂ R is given based on at and st+1.

The goal is to maximize the expected cumulative return

Gt =
∑∞
k=0 γ

krt+k from time step t, where γ ∈ [0, 1]

is a discount factor that determines the relative impor-

tance of future and immediate rewards [42].

2.2 Asynchronous Advantage Actor-Critic

Policy-based methods such as the asynchronous advan-

tage actor-critic (A3C) algorithm [28] combine a deep

neural network with the actor-critic framework. In this

work, we leverage the A3C framework to learn both

a policy function π(at|st; θ) (parameterized as θ) and a

value function V (st; θv) (parameterized as θv). The pol-

icy function is the actor that takes action. The value

function is the critic that evaluates the quality of the

github.com/duyunshu/lucid-dreaming-for-exp-replay
github.com/duyunshu/lucid-dreaming-for-exp-replay

Lucid Dreaming for Experience Replay 3

action against a baseline (e.g., state value). A3C di-

rectly minimizes the policy loss La3cpolicy as

La3cpolicy =∇θ log(π(at|st; θ))
(
Q(n)(st, at; θ, θv)− V (st; θv)

)
+ βa3cH∇θ

(
π(st; θ)

)
,

where Q(n)(st, at; θ, θv) =
∑n−1
k=0 γ

krt+k+γnV (st+n; θv)

is the n-step bootstrapped value that is bounded by a

hyperparameter tmax (n ≤ tmax). H is an entropy reg-

ularizer for policy π (weighted by βa3c) which helps to

prevent premature convergence to sub-optimal policies.

The value loss La3cvalue is

La3cvalue = ∇θv
((
Q(n)(st, at; θ, θv)− V (st; θv)

)2)
.

The full A3C loss La3c given by Mnih et al. [28] is then

La3c = La3cpolicy + αLa3cvalue, (1)

where α is a weight for the value loss. A3C’s architec-

ture contains one global policy and k parallel actor-

critic workers. The workers run in parallel and each

has its copy of the environment and parameters; each

worker updates the global policy asynchronously using

the data collected in its own environment. We use the

feedforward version of A3C as it runs faster than, but

with comparable performance to, the recurrent version

[28].

2.3 Transformed Bellman Operator for A3C

The A3C algorithm uses reward clipping to help sta-

bilize learning. However, Hester et al. [18] showed that

clipping rewards to [+1,−1] results in the agent be-

ing unable to distinguish between small and large re-

wards, thus hurting the performance in the long-term.

Pohlen et al. [33] introduced the transformed Bellman

(TB) operator to overcome this problem in the deep Q-

network (DQN) algorithm [27]. The authors consider

reducing the scale of the action-value function while

keeping the relative differences between rewards which

enables DQN to use raw rewards instead of clipping.

Pohlen et al. [33] apply a transform function h : R 7→ R
to reduce the scale of Q(n)(st, at; θ, θv) to

Q
(n)
TB(st, at; θ, θv) =

n−1∑
k=0

h
(
γkrt+k + γnh−1V (st+n; θv)

)
,

where

h : z 7→ sign(z)
(√
|z|+ 1− 1

)
+ εz

and

h−1 : x 7→ sign(x)

(√1 + 4ε(|x|+ 1 + ε)− 1

2ε

)2

− 1

 ,

and ε is a constant that ensures h−1 is Lipschitz con-

tinuous with a closed form inverse. Pohlen et al. [33]

also prove that the TB operator reduces the variance

of the optimization goal while still enabling learning an

optimal policy. Given this benefit, our previous work [6]

applied the TB operator to A3C, denoted as A3CTB,

and showed that A3CTB empirically outperforms A3C.

2.4 Self Imitation Learning for A3CTB

The self imitation learning (SIL) algorithm [32] is moti-

vated by the intuition that an agent can exploit its own

past good experiences and thus improve performance.

Built upon the actor-critic framework [28], SIL adds a

prioritized experience replay buffer D = (S,A,G) to

store the agent’s past experiences, where S is a state,

A is the action taken in S, and G is the Monte-Carlo

return from S (i.e., the return is computed only after a

terminal state is reached). In addition to the A3C loss

in Equation (1), at each step t, SIL samples a mini-

batch from D for M times and optimizes the following

off-policy, actor-critic loss Lsilpolicy and Lsilvalue:

Lsilpolicy = − log(π(at|st; θ))
(
Gt − V (st; θv)

)
+

Lsilvalue =
1

2
||
(
Gt − V (st; θv)

)
+
||2,

where Gt =
∑∞
k=0 γ

krt+k = rt + γGt+1 is the dis-

counted cumulative return, V is the state value. The

value of
(
Gt − V (st; θv)

)
is called the advantage, and

the max operator (·)+ = max(·, 0) meaning that only

experiences with positive advantage values (i.e., good

experiences) can contribute to the policy update. The

experience buffer is prioritized by
(
Gt − V (st; θv)

)
+

to

increase the chance that a good experience is sampled.

The SIL loss Lsil is then

Lsil = Lsilpolicy + βsilLsilvalue, (2)

where βsil is a weight for the value loss.

The SIL algorithm minimizes both the A3C loss

La3c (Equation (1)) and the SIL loss Lsil (Equation

(2)). Minimizing La3c lets the agent learn by interact-

ing with the environment and minimizing Lsil allows

the agent to also learn by replaying its past good ex-

periences. In our previous work [6], we leveraged this

framework to incorporate SIL into A3CTB, denoted as

A3CTBSIL. Specifically, the return Gt is transformed

4 Yunshu Du et al.

to the TB return using operators h and h−1 discussed

in Section 2.3 as:

Gt = h(rt + γh−1(Gt+1)).

For simplicity, from this point on we will use the word

“return” to refer to “TB return.” Our previous work

has shown that A3CTBSIL outperformed both the A3C

and A3CTB algorithms [6]. This article, therefore, uses

an implementation of A3CTBSIL as the baseline.2

3 Lucid dreaming for experience replay

In this work, we introduce Lucid Dreaming for Experi-

ence Replay (LiDER), a conceptually new framework

that allows replay experiences to be refreshed by fol-

lowing the agent’s current policy. LiDER consists of

three steps: First, LiDER moves an agent back to a

past state. Second, from that state, LiDER then lets the

agent execute a sequence of actions by following its cur-

rent policy—as if the agent were “dreaming” about the

past and can try out different behaviors to encounter

new experiences in the dream. Third, LiDER stores and

reuses the new experience if it turned out better than

what the agent previously experienced, i.e., to refresh

its memories. From a high-level perspective, we expect

LiDER to help learning by allowing the agent to witness

and learn from alternate and advantageous behaviors.

LiDER is designed to be easily incorporated into

off-policy, multi-worker RL algorithms that use ER. We

implement LiDER in the A3C framework with SIL for

two reasons. First, the A3C architecture [28] allows us

to conveniently add the “refreshing” component (which

we will introduce in the next paragraph) in parallel with

A3C and SIL workers, which saves wall-clock time for

training. Second, the SIL framework [32] is an off-policy

actor-critic algorithm that integrates an experience re-

play buffer with A3C in a straightforward way, enabling

us to directly leverage the return G of an episode for a

policy update—a key component of LiDER.3

Figure 1 shows the proposed implementation archi-

tecture for LiDER. A3C components are in blue: k par-

allel workers interact with their own copies of the en-

vironment to update the global policy π [28]. SIL com-

ponents are in orange: one SIL worker and a prioritized

replay buffer D are added to A3C [32]. Buffer D stores

all experiences from the A3C workers in the form of

2 The implementation of A3CTBSIL is open-sourced at gi

thub.com/gabrieledcjr/DeepRL. In de la Cruz Jr et al. [6], we
also considered using demonstrations to improve A3CTBSIL,
which is not the baseline used in this work.
3 Note that while the A3C algorithm is on-policy, integrat-

ing A3C with SIL makes it an off-policy algorithm (as in Oh
et al. [32]).

Global A3C
π

Refresher

Buffer D
<S, A, G>

Buffer R
<S, Anew , Gnew>

Update

Random
Sample

Store

Local
A3C

Local
A3C

(Update)+

Priority
Sample

Update π & Store to R
if Gnew > G

SIL

Fig. 1: LiDER architecture. A3C components are in

blue and SIL components are in orange. We introduce

the novel concept of a refresher worker, in green, to gen-

erate new experiences from a randomly sampled past

state from buffer D by leveraging the agent’s current

policy. If the new experiences obtain a higher return

than what is currently stored in the replay buffer D,

they are used to update global policy π and are also

stored into replay buffer R for reuse.

D = {S,A,G} (as described in Section 2). Buffer D is

prioritized by the advantage value such that good states

are more likely to be sampled. The SIL worker runs in

parallel with the A3C workers but does not interact

with the environment; it only samples from buffer D
and updates π using samples that have positive advan-

tage values (Equation (2)).

We introduce the novel concept of a “refresher” wor-

ker in parallel with A3C and SIL to generate new data

from past states (shown in green). The refresher has

access to the environment and takes randomly sampled

states from buffer D as input. For each state sampled,

the refresher resets the environment to that state and

uses the agent’s current policy to perform a rollout un-

til reaching a terminal state (e.g., the agent loses a life).

If the Monte-Carlo return of the new trajectory, Gnew,

is higher than the previous return, G (sampled from

buffer D), the new trajectory is immediately used to

update the global policy π. The update is done in the

same way as the A3C workers (Equation (1), replacing

Qn with Gnew). The new trajectory is also stored in

a prioritized buffer R = {S,Anew,Gnew} (prioritized

by advantage, like in buffer D) if Gnew > G. Finally,

the SIL worker samples from both buffers as follows. A

batch of samples is taken from each of the buffers D and

github.com/gabrieledcjr/DeepRL
github.com/gabrieledcjr/DeepRL

Lucid Dreaming for Experience Replay 5

R (i.e., two batches in total), prioritized by advantage.

Samples from both batches are mixed together and put

into a temporary buffer, shown in the green-orange cir-

cle in Figure 1; the temporary buffer treats all samples

with an equal priority. One batch of samples is then

taken (with replacement) from the mixture of the two

batches (shown as the brown arrow) and SIL performs

updates using the good samples from this batch. Note

that, although samples in the temporary buffer were

initialized with equal priorities, the sampling process is

not uniformly at random since we use the implementa-

tion of prioritized sampling with stochastic prioritiza-

tion as describe in Section 3.3 of Schaul et al. [37]. Hav-

ing this temporary buffer to mix together transitions

from buffers D and R allows the agent to select past

and/or refreshed experiences flexibly without needing

a fixed sampling strategy. We summarize LiDER’s re-

fresher worker’s procedure in Algorithm 1. Full pseudo-

code for the A3C and SIL workers is in Appendix B.

The main benefit of LiDER is that it allows an agent

to leverage its current policy to refresh past experi-

ences. However, LiDER does require the refresher to use

additional environmental steps (see Algorithm 1 line

11: we account for the refresher steps when measuring

the global steps), which can be concerning if acting in

the environment is expensive. Despite this shortcom-

ing, we show in our experiments (Section 4) that the

learning speedup LiDER provides actually reduces the

overall number of environment interactions required. It

seems that the high quality of the refreshed experiences

compensates for the additional quantity of experiences

an agent needs to learn. That is, by leveraging the re-

fresher worker, LiDER can achieve a certain level of

performance within a shorter period of time compared
to without the refresher—an important benefit as RL

algorithms are often data-hungry.

4 Experiments and analyses

We empirically evaluate LiDER in six Atari 2600 games

[3]: Gopher, NameThisGame, Alien, Ms. Pac-Man, Free-

way, and Montezuma’s Revenge. We selected these gam-

es because they cover a range of properties and diffi-

culties. Based on the Atari game taxonomy defined by

Bellemare et al. [2], Gopher and NameThisGame are

easy exploration games with dense reward functions;

they are relatively easy to learn. Alien and Ms. Pac-Man

are hard exploration games with dense reward func-

tions; they are considered to be hard games. Freeway

and Montezuma’s Revenge are also hard exploration

games but with sparse reward functions; they are con-

sidered the hardest games and are challenging for sev-

eral benchmark RL algorithms (e.g., Bellemare et al.

[3], Espeholt et al. [11], and Mnih et al. [28]).

In the next subsection, we compare A3CTBSIL (the

baseline method from de la Cruz Jr et al. [6], which

uses only the blue and the orange components in Fig-

ure 1) and LiDER (our proposed framework in which

the agent’s current policy is used as the refresher) to

show LiDER outperforms A3CTBSIL in all games (See

Appendix A for implementation details). Section 4.2

then introduces analyses to understand why LiDER

helps learning. In Section 5, we conduct three ablation

studies to validate that our design choices for LiDER

were well-founded. Finally, in Section 6, we present two

extensions and show that LiDER can leverage other

policies, rather than its current policy, to refresh past

states.

4.1 Leveraging the current policy to refresh past states

First, we show that the agent’s current policy can be ef-

fectively leveraged to refresh past experiences. Figure 2

shows LiDER outperforms A3CTBSIL in all six games

(averaged over eight trials); a one-tailed independent-

samp-les t-test confirms statistical significance (p �
0.001, see Appendix C for details of the t-tests). We

train each trial for 50 million environmental steps. For

every 1 million steps, we perform a test of 125,000 steps

and report the average testing scores per episode (an

episode ends when the agent loses all its lives).

We hypothesize that the performance improvement

in the four dense reward games (Gopher, NameThis-

Game, Alien, and Ms. Pac-Man) was because the like-

lihood for the refresher to encounter higher-return new

trajectories is higher when rewards are dense. In ad-

dition, we observe in Ms. Pac-Man that once the re-

turn and the action of a state have been refreshed,

LiDER prefers to sample and reuse the newer rather

than the older state-action-return transition from the

same state, which could be another reason for the speed-

up in learning—LiDER replays high-rewarding data mo-

re frequently. We conduct a detailed analysis of LiDER’s

underlying behaviors in the next subsection that sup-

ports this hypothesis.

LiDER also learns well in Freeway and Montezuma’s

Revenge, the two hard exploration, sparse reward games.

In Freeway, the task is difficult because the agent only

receives a non-zero reward after successfully crossing

the highway. We hypothesize that LiDER is helpful in

this case because the refresher can move the agent to

an intermediate state (e.g., in the middle of the high-

way), which shortens the distance between the agent

and the rewarding state, and thus allows the agent to

6 Yunshu Du et al.

Algorithm 1 LiDER: Refresher Worker

1: // Assume shared global policy π, replay buffer D, replay buffer R
2: while T < Tmax do . Tmax = 50 million
3: Synchronize refresher’s policy with the global policy: πe(·|θe)← π
4: Synchronize global step T from the most recent A3C worker
5: Initialize S ← ∅, Anew ← ∅, R← ∅
6: Randomly take a sample {s, a,G} from buffer D, reset the environment to s
7: while not terminal do
8: Execute an action s, a, r, s′ ∼ πe(s|θe)
9: Store the experience S ← S ∪ s, Anew ← Anew ∪ a, R← R ∪ r

10: Go to next state s← s′

11: T ← T + 1
12: end while
13: Gnew =

∑∞
k=0 γ

krt+k, ∀r ∈ R . Compute the new return
14: if Gnew > G then
15: Update π using {S,Anew,Gnew} . Equation (1), replace Q(n) with Gnew
16: Store to buffer R← R∪{S,Anew,Gnew}
17: end if
18: end while

learn faster. We can see LiDER’s learning curve in Free-

way from Figure 2e that it consistently finds an opti-

mal path after about 15 million steps of training (the

standard deviation becomes negligible) but A3CTBSIL

struggles to find a stable solution. The benefit of LiDER

is evident particularly in Montezuma’s Revenge. While

A3CTBSIL fails to learn anything,4 LiDER is capable

of reaching a reasonable score. Although the absolute

performance of our method is not state-of-the-art, we

have shown that LiDER is a light-weight addition to a

baseline off-policy deep RL algorithm which helps im-

proving performance even in the most difficult Atari

games.

4.2 Analyses: why does LiDER help learning?

To understand why LiDER helps improve learning, in

this section, we analyze the underlying behavior of LiD-

ER from three perspectives. First, we look at the be-

haviors of the refresher worker since it is the novel

component of LiDER. Inspecting whether the refresher

worker can successfully generate higher return trajecto-

ries from past states, and how much better the refreshed

data is compared to the older data, will give us insight

into the quality of the data stored in buffer R.

Second, we examine the SIL worker in LiDER to

reveal how SIL makes use of the refreshed data stored

in buffer R. Not only is it critical for the refresher to be

able to generate better data, but the SIL worker must

be able to effectively leverage these data to improve

learning. The SIL worker should use data from buffer

4 Note the performance in Montezuma’s Revenge differs be-
tween A3CTBSIL [6] and the original SIL algorithm [32]—see
the discussion in Appendix D.

Rmore often for policy updates since the refreshed data

is of a higher quality.

Third, we compare the SIL worker between A3CTB-

SIL and LiDER. In A3CTBSIL, the SIL worker sam-

ples only from one buffer; in LiDER, there are two

buffers to sample from. It is thus interesting to inves-

tigate whether the SIL worker uses data from the two

buffers differently. For example, if samples from buffer

R have higher returns, we should see more samples with

positive advantages in LiDER than in A3CTBSIL. The

game of Ms. Pac-Man is used as the running example

for all analyses in this section.

4.2.1 The refresher worker in LiDER

First, we check two quantities of the refresher worker

to get insight into the quality of the data it generated:

– Success rate (Figure 3a): how often can the refresher

worker generate a better trajectory such that Gnew >

G.

– Gnew vs. G (Figure 3b): the average TB return

Gnew compared to G for all successful refresh.

The success rate is measured as the percentage of

the number of successful rollouts over the total number

of rollouts generated. Figure 3a shows that the success

rate remains at approximately 40%, indicating that the

refresher is able to consistently produce higher return

trajectories throughout the training.

The improvement of the refreshed data over the

older data can be measured by comparing Gnew to

G. G is the (TB) return of a state S sampled from

buffer D; Gnew is the refreshed (TB) return of S. We

record the value of Gnew and G for all successful roll-

outs then compute their average value. Figure 3b shows

that Gnew is indeed higher than G. Both measures from

Lucid Dreaming for Experience Replay 7

0 10 20 30 40 50
Steps (in millions)

0

1000

2000

3000

4000

5000

6000

7000

8000

Re
wa

rd

Gopher

(a) Gopher

0 10 20 30 40 50
Steps (in millions)

0

2000

4000

6000

8000

Re
wa

rd

NameThisGame

(b) NameThisGame

0 10 20 30 40 50
Steps (in millions)

0

1000

2000

3000

4000

5000

Re
wa

rd

Alien

(c) Alien

0 10 20 30 40 50
Steps (in millions)

0

2000

4000

6000

8000

10000

Re
wa

rd

MsPacman

(d) Ms. Pac-Man

0 10 20 30 40 50
Steps (in millions)

0

5

10

15

20

25

30

35

Re
wa

rd

Freeway

(e) Freeway

0 10 20 30 40 50
Steps (in millions)

0

250

500

750

1000

1250

1500

1750

Re
wa

rd

MontezumaRevenge

(f) Montezuma’s Revenge

Fig. 2: LiDER performance is compared to A3CTBSIL on six Atari games. The x-axis is the total number of

environmental steps: A3CTBSIL counts steps from 16 A3C workers, while LiDER counts steps from 15 A3C

workers plus one refresher worker. The y-axis is the average testing score over eight trials; shaded regions show

the standard deviation.

8 Yunshu Du et al.

0 10 20 30 40 50
Steps (in millions)

38

39

40

41

42

43

Pe
rc

en
ta

ge
 (%

)

MsPacman Refresher Success Rate
Successful Refresh

(a) Refresher success rate

0 10 20 30 40 50
Steps (in millions)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Av
er

ag
e

TB
 R

et
ur

n

MsPacman Gnew vs. G
Gnew
G

(b) Gnew vs. G

Fig. 3: LiDER’s refresher worker can consistently pro-

duce higher return trajectories. The x-axis is the total

number of environmental steps. The y-axis value is aver-

aged over eight trials; shaded regions show the standard

deviation.

Figures 3a and 3b validate that the refresher worker is

able to generate new trajectories with a higher return,

and thus data in buffer R is expected to be of better

quality than data in buffer D.

4.2.2 The SIL worker in LiDER

We have shown the refresher is able to generate higher

return trajectories from past states. Next, we analyze

the behavior of the SIL worker in LiDER to check whether

it can effectively leverage these data. We inspect the

following quantities for buffer D and buffer R:

– Old samples used (Table 1): how many old samples

were still used for SIL updates even after the sample

has been refreshed to a newer return.

– Batch sample usage ratio (Figure 4a): for one batch

of samples, how many samples taken from buffer D

Table 1: Old samples used (%) by the SIL worker in

LiDER at 1, 25, and 50 million training steps. LiDER

rarely reuses an older state after it has been refreshed.

Results were averaged over eight trials.

Steps (in millions) 1 25 50

Old samples used (%) 0.0103 0.0053 0.0047
Standard deviation (%) 0.0029 0.0005 0.0003

and buffer R were used for SIL updates (i.e., sam-

ples with positive advantages), respectively.

– SIL sample usage ratio (Figure 4b): for samples used

for SIL updates, how many of them were taken from

buffer D and buffer R, respectively.

– Return of used samples (Figure 4c): the return of

samples used for SIL updates.

As mentioned in Section 4.1, we hypothesize that

once a state’s return has been refreshed, LiDER tends

not to reuse the older return. We investigate whether

this hypothesis holds by counting how many older sam-

ples were used for SIL updates. Specifically, we assign

a False Boolean value to each state in buffer D. Once

a state has been sampled as the input to the refresher

worker, we flip the Boolean to True for that state. For

each SIL update, we count the number of samples with

Boolean True and compute the ratio of old samples used

over the total number of samples used for that update.

We show the percentage of the old samples used at

1, 25, and 50 million steps of training in Table 1. It

can be seen that less than 0.01% of the older samples

were reused throughout training, and the reuse ratio

keeps decreasing as training continues. This evidence

validates our observation from Section 4.1 that LiDER

replays the higher-return data in buffer R more fre-

quently than the lower-return data in buffer D.

Recall that the SIL worker only uses samples with

positive advantages (i.e., samples that “pass” the max

operator) to update the policy. The percentage of such

positive samples in buffer D and R, respectively, can

tell us which buffer has higher quality data. We call

this percentage “sample usage ratio” and measure two

type of ratios: batch sample usage ratio and SIL sample

usage ratio.

Batch sample usage ratio measures how many pos-

itive samples are from buffer D and R, respectively,

over one batch of samples (the batch size is 32 in our

experiments). For example, in one batch of 32 samples,

suppose that there were 16 samples with positive ad-

vantages that were taken from buffer R, and that there

were 8 positive samples from buffer D. The batch sam-

ple usage ratio for buffer R is computed as 16
32 = 50%,

and for buffer D is computed as 8
32 = 25%. Figure 4a

Lucid Dreaming for Experience Replay 9

0 10 20 30 40 50
Steps (in millions)

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge
 (%

)

MsPacman Batch Sample Usage Ratio:
 Buffer D vs. Buffer R

Buffer R
Buffer D

(a) Batch sample usage ratio

0 10 20 30 40 50
Steps (in millions)

35

40

45

50

55

60

65

Pe
rc

en
ta

ge
 (%

)

MsPacman SIL Sample Usage Ratio:
 Buffer D vs. Buffer R

Buffer R
Buffer D

(b) SIL sample usage ratio

0 10 20 30 40 50
Steps (in millions)

10

12

14

16

18

20

22

Av
er

ag
e

TB
 R

et
ur

n

MsPacman Return of Used Samples:
 Buffer D vs. Buffer R

Buffer R
Buffer D

(c) Return of used samples

Fig. 4: The SIL worker in LiDER leverages more

refresher-generated data in buffer R than A3C-

generated data in buffer D because refreshed data has

higher returns. The x-axis is the total number of envi-

ronmental steps. The y-axis value is averaged over eight

trials; shaded regions show the standard deviation.

shows that, on average, there are more positive sam-

ples from buffer R than from buffer D in one batch of

data. This trend indicates that buffer R’s samples are

more useful for SIL updates throughout training, and

are thus of a higher quality than samples in buffer D.

SIL sample usage ratio also measures the ratio of

positive samples for each buffer, but it is computed over

the total number of positive samples instead of the en-

tire batch. For example, suppose that in one batch of

32 samples, there were 24 with positive advantages. 18

out of the 24 samples come from buffer R and the other

6 come from buffer D. The SIL sample usage ratio for

buffer R is computed as 18
24 = 75%, and buffer D’s ratio

is 6
24 = 25%. Figure 4b shows that buffer R always has

a higher proportion of positive samples than buffer D
among all positive samples. Both Figure 4a and Figure

4b indicate that the SIL worker is able to effectively

leverage the refreshed samples for policy updates.

We can also confirm that the return of used sam-

ples from buffer R is indeed higher than those from

buffer D. Similar to how Gnew and G were compared,

we compare the average (TB) return of all samples used

for SIL updates between buffer R and buffer D. Figure

4c shows that data in buffer R has a higher return than

data in buffer D during earlier stages of training. The

two values then become similar at the end of training—

an expected observation as the agent has learned a sta-

ble policy.

4.2.3 The SIL worker in A3CTBSIL vs. LiDER

Lastly, we compare the SIL worker between A3CTBSIL

and LiDER. We have seen in the previous subsection

that the SIL worker in LiDER always prefers to use

samples in buffer R, which allows more, and higher-

quality, data to be leveraged for policy updates. It is

thus interesting to inspect what kind of data has been

used in A3CTBSIL, and whether the data is better or

worse than the data in LiDER. As done in the previous

subsection, we examine the batch sample usage ratio

and return of used samples for A3CTBSIL and LiDER.

For A3CTBSIL, the batch sample usage ratio and

return of used samples are measured in buffer D only.

For LiDER, we make a small modification that instead

of quantifying the two buffers separately, we treat them

as one buffer and measure their values together. For ex-

ample, to compute the batch sample usage ratio, sup-

pose that 6 buffer D samples and 18 buffer R samples

were used for a SIL update, the total batch sample us-

age ratio for LiDER would be (18+6)
32 = 75%.

Figure 5a shows that, LiDER has a higher overall

batch sample usage ratio than A3CTBSIL. We can also

confirm the return of used samples is always higher in

10 Yunshu Du et al.

0 10 20 30 40 50
Steps (in millions)

20

30

40

50

60

70

Pe
rc

en
ta

ge
 (%

)

MsPacman Batch Sample Usage Ratio:
 A3CTBSIL vs. LiDER

LiDER
A3CTBSIL

(a) Total sample usage ratio

0 10 20 30 40 50
Steps (in millions)

8

10

12

14

16

18

20

22

Av
er

ge
 T

B
Re

tu
rn

MsPacman Return of Used Samples:
 A3CTBSIL vs. LiDER

LiDER
A3CTBSIL

(b) Return of used samples

Fig. 5: Comparing the SIL worker between A3CTBSIL

and LiDER. LiDER leverages more and better quality

data for policy updates than A3CTBSIL. The x-axis

is the total number of environmental steps. The y-axis

value is averaged over eight trials; shaded regions show

the standard deviation.

LiDER than in A3CTBSIL (Figure 5b). This observa-

tion indicates that not only can the refresher generate

higher return trajectories, but these trajectories are also

effectively leveraged by the SIL worker. Both factors

contribute to the performance improvement of LiDER

over A3CTBSIL.

In summary, our analyses show that 1) the refresher

can consistently generate good trajectories during train-

ing; 2) the SIL worker of LiDER can effectively lever-

age these good trajectories by sampling from buffer R;

and 3) when compared to A3CTBSIL, LiDER performs

policy updates with more and higher quality data. All

three components contribute to the performance im-

provement of LiDER over A3CTBSIL.

5 Ablation studies

We have shown that LiDER can effectively leverage

knowledge from the agent’s current policy. In this sec-

tion, we perform several ablation studies to further val-

idate our design choices.

5.1 How does the quality of refresher-generated data

affect learning?

As shown in Figure 3b, LiDER increases the overall

data quality because we only use new data when it ob-

tains a higher reward than the old data, i.e., Gnew > G.

We show that it is important to store the refresher-

generated experiences and use them to update the global

policy only if those experiences are better, i.e., when the

new return Gnew computed from the refresher experi-

ence is higher than the return G that the agent pre-

viously obtained. This condition ensures that the data

in buffer R is of a higher quality than that in buffer

D. Intuitively, LiDER goes back in time to test if its

current self can perform better than before and only

provide help where it can. To validate the importance

of this condition, we conduct an experiment in which

the refresher adds all new experiences to buffer R, i.e.,

without the Gnew > G condition, to check if doing so

leads to decreased performance. We denote this exper-

iment as LiDER-AddAll.

5.2 How does the buffer architecture affect learning?

The other important design choice of LiDER is the two-

buffer architecture: buffer D stores A3C-generated data

and buffer R stores refresher-generated data. One hy-

pothesis could be that LiDER performs better simply

because the buffer size is doubled and more experiences

can be replayed (e.g., Zhang and Sutton [48] have shown

that buffer size can affect learning). We conduct an ex-

periment to show that simply increasing the size of a

single buffer does not provide the same performance im-

provement as LiDER. We modify LiDER to have only

buffer D and double its size from 105 to 2×105; both

A3C-generated and refresher-generated data are stored

in buffer D. Prioritized sampling still takes a batch of 32

samples from buffer D as the input to the SIL worker,

but without using the temporary buffer. We denote this

experiment as LiDER-OneBuffer.

5.3 How does the sampling ratio affect learning?

LiDER samples from buffer D and R in a flexible man-

ner as described in Section 3, and in Section 4.2.2 we

Lucid Dreaming for Experience Replay 11

have shown the samples from buffer R are more likely

to be used for learning because they have higher re-

turns. The question then arises, “Should the agent al-

ways sample from bufferR since the refresher-generated

data is better?” We conduct an experiment in which

the agent only samples from buffer R; a batch of 32

samples are sampled with priority from buffer R as the

input of the SIL worker, but without using the tempo-

rary buffer. Note that although we do not sample from

buffer D, we still keep it in the architecture since the

refresher worker needs to randomly select a past state

from buffer D to perform the refresh. We denote this

experiment as LiDER-SampleR.5

5.4 Results

Figure 6 shows the results of all ablation studies com-

pared to A3CTBSIL and LiDER. The performance of

LiDER-AddAll degraded in four out of six games, ex-

cept for in Gopher and NameThisGame, where LiDER-

AddAll performs comparably to LiDER. This could be

because they are easy-exploration games with dense re-

ward functions (as categorized by Bellemare et al. [2])

thus the refresher is more likely to generate better tra-

jectories in these games; adding a few “bad” samples

(i.e., Gnew ≤ G) does not hurt the general perfor-

mance. In Alien and Montezuma’s Revenge, LiDER-

AddAll performs at about the same level as the base-

line A3CTBSIL method. Ms. Pac-Man shows the least

amount of performance drop for LiDER-AddAll, but it

still under-performed LiDER. In Freeway, while LiDER-

AddAll eventually reaches the same score as LiDER,

it struggled during the early stages of training. These

results demonstrate the importance of focusing the ex-

ploitation only on places where the refresher can do

better than what the agent had previously experienced.

In all games, LiDER-OneBuffer significantly under-

performed LiDER (p� 0.001). Especially in the game

of Gopher, NameThisGame, and Ms. Pac-Man where

they also performed worse than the baseline A3CTBSIL.

These results confirm our analysis in Section 4.2.2 that

the SIL worker must be able to effectively leverage the

high-quality data generated by the refresher to improve

learning. When mixing the refresher-generated data and

the A3C-generated data into one buffer, it is less likely

for the SIL to sample from the good data. Thus, our

design of the two-buffer architecture was well-chosen.

LiDER-SampleR’s performance was significantly

worse than LiDER in five out of six games (p� 0.001).

Except for in Freeway where LiDER-SampleR even-

5 Note that the baseline A3CTBSIL represents the scenario
of SampleD, i.e., always sample from buffer D.

tually reaches the same performance as LiDER—but

it acts quite unstable (the variance is high). We hy-

pothesize that sampling only from buffer R reduces

the amount of state the agent can experience, lead-

ing to a lack of exploration which impairs the learn-

ing. Therefore, despite that the refresher can generate

higher quality data, the agent should learn from both

A3C-generated data and refresher-generated data.

In summary, in this section we presented three ab-

lation studies to show the benefits of our design choices

of LiDER. Using only experiences where the return is

improved, the two-buffer architecture, and the flexible

sampling strategy between buffer D and buffer R in-

deed improve performance.

6 Extensions: leveraging other policies to

refresh past states

So far, we have shown in Section 4.1 that LiDER out-

performed the baseline A3CTBSIL. The analyses in

Section 4.2 revealed why LiDER helps learning. Sec-

tion 5 validated the design choices of LiDER through

three ablation studies. In this section, we present two

extensions to show that LiDER can leverage not only

the agent’s current policy, but also policies from exter-

nal sources to refresh past states.

In particular, we consider leveraging a trained agent

(TA) and a behavior cloning (BC) model trained from

human demonstration data. LiDER-TA uses a trained

agent (TA) as the refresher. While the TA could come

from any source, we use the best checkpoint from a fully

trained LiDER agent from experiments in Section 4.1

as the TA. This scenario tests whether LiDER can ef-

fectively leverage a high-quality policy.

LiDER-BC uses a behavior cloning (BC) model in

the refresher. The BC policy is far from expert and we

explore if LiDER can benefit from a sub-optimal pol-

icy. The BC model in LiDER-BC is pre-trained with

non-expert demonstration data6, which was collected in

our previous work [6]. Then, we follow the pre-training

method introduced in our previous work [6] to jointly

pre-train a model with supervised, value, and unsuper-

vised autoencoder losses, which gives us a BC model

trained from human demonstration data (see Appendix

F for pre-training details). The difference between the

TA and BC model used in our setting is that the TA is

an RL agent trained with LiDER while the BC model

is trained only with human demonstrations.

Figure 7 shows the results of LiDER-TA and LiDER-

BC compared with A3CTBSIL and LiDER (averaged

6 The data is publicly available: github.com/gabrieledcj
r/atari human demo

github.com/gabrieledcjr/atari_human_demo
github.com/gabrieledcjr/atari_human_demo

12 Yunshu Du et al.

0 10 20 30 40 50
Steps (in millions)

0

2000

4000

6000

8000

Re
wa

rd

Gopher

(a) Gopher

0 10 20 30 40 50
Steps (in millions)

0

2000

4000

6000

8000

Re
wa

rd

NameThisGame

(b) NameThisGame

0 10 20 30 40 50
Steps (in millions)

0

1000

2000

3000

4000

5000

Re
wa

rd

Alien

(c) Alien

0 10 20 30 40 50
Steps (in millions)

0

2000

4000

6000

8000

10000

Re
wa

rd

MsPacman

(d) Ms. Pac-Man

0 10 20 30 40 50
Steps (in millions)

0

10

20

30

40

Re
wa

rd

Freeway

(e) Freeway

0 10 20 30 40 50
Steps (in millions)

0

250

500

750

1000

1250

1500

1750

Re
wa

rd

MontezumaRevenge

(f) Montezuma’s Revenge

Fig. 6: Ablation studies on LiDER in six Atari games. Results show that using only experiences where the return

is improved, the two-buffer architecture, and the flexible sampling method does indeed improve performance. The

x-axis is the total number of environmental steps: A3CTBSIL counts steps from 16 A3C workers, while LiDER

counts steps from 15 A3C workers plus one refresher worker. The y-axis is the average testing score over eight

trials; shaded regions show the standard deviation.

Lucid Dreaming for Experience Replay 13

0 10 20 30 40 50
Steps (in millions)

0

2000

4000

6000

8000

Re
wa

rd

Gopher

(a) Gopher

0 10 20 30 40 50
Steps (in millions)

0

2000

4000

6000

8000

10000

12000

Re
wa

rd

NameThisGame

(b) NameThisGame

0 10 20 30 40 50
Steps (in millions)

0

2000

4000

6000

8000

Re
wa

rd

Alien

(c) Alien

0 10 20 30 40 50
Steps (in millions)

0

2000

4000

6000

8000

10000

Re
wa

rd

MsPacman

(d) Ms. Pac-Man

0 10 20 30 40 50
Steps (in millions)

0

5

10

15

20

25

30

35

Re
wa

rd

Freeway

(e) Freeway

0 10 20 30 40 50
Steps (in millions)

0

500

1000

1500

2000

2500

Re
wa

rd

MontezumaRevenge

(f) Montezuma’s Revenge

Fig. 7: LiDER-TA and LiDER-BC outperform A3CTBSIL and LiDER. The x-axis is the total number of environ-

mental steps: A3CTBSIL counts steps from 16 A3C workers, while LiDER counts steps from 15 A3C workers plus

one refresher worker. The y-axis is the average testing score over eight trials; shaded regions show the standard

deviation.

14 Yunshu Du et al.

over eight trials). As expected, LiDER-TA performs

better than the other three methods, since it uses a

trained agent as the refresher—the learning agent can

observe and learn from high-quality data generated by

an expert. LiDER-TA even exceeds the TA’s perfor-

mance in Gopher and Montezuma’s Revenge. The TA’s

performance is shown in the purple dotted line (shaded

regions show the standard deviation), estimated by ex-

ecuting the TA greedily in the game for 50 episodes.

See Appendix E for the score of each TA.

The more interesting result is the performance of

LiDER-BC, which demonstrates that LiDER works well

even when using a refresher that is far from expert.

The black dashed line shows the average performance

of the BC model (shaded regions show the standard

deviation), estimated by executing the model greedily

in the game for 50 episodes (see Appendix F for the

score of each BC). LiDER-BC can learn to quickly out-

perform BC and achieve better results than the base-

line. LiDER-BC also slightly outperforms LiDER in

five out of the six games, except for NameThisGame

in which LiDER-BC outperforms LiDER initially, but

later plateaued lower than LiDER. These results sug-

gest that the sub-optimal BC model was able to pro-

vide better-than-random data during the early stages of

training, which in turn helps the learning in the later

stages. LiDER-BC could thus be one method of lever-

aging imperfect demonstrations to improve RL.

7 Related work

LiDER is related to several research directions in the

RL literature; we briefly review four of them in this

section.

7.1 Experience replay and extensions

ER was first introduced to improve the data efficiency

of off-policy RL algorithms [24] and has since become an

essential component for off-policy deep RL [27]. Many

techniques have been proposed to enhance ER for bet-

ter data efficiency and generally fall into two categories.

One category focuses on biasing the sampling strategy

such that important experiences are reused more fre-

quently for policy updates [7, 31, 37, 39, 40, 47]. The

other category focuses on tuning the replay buffer ar-

chitecture, such as changing the buffer size [8, 25, 48],

combining experiences from multiple workers to gener-

ate more data to replay [11, 19, 21], or augmenting the

structure or content of replay experiences (e.g., generat-

ing additional “goal states” [1] or modifying experiences

based on a teacher’s advice [4]).

LiDER does not fall into the first category but is

complementary to existing sampling methods. We lever-

age prioritized experience replay [37] in our experiments:

experiences are prioritized by advantages in buffer D
and buffer R, the SIL worker samples from both buffers

with priority (although the refresher worker samples

randomly from buffer D). LiDER is related to the sec-

ond category but differs in three ways. First, LiDER

uses two replay buffers which double the buffer size,

but we have shown that simply extending the size of

a single buffer does not achieve the same performance

as LiDER. Second, the refresher worker generates addi-

tional data, which is similar to using multiple workers

to generate more data, but we kept the total number

of workers the same between LiDER and the baseline

and accounted for all environmental steps. Third, the

refresher-generated data is stored in a separate buffer

only when it has a higher return than the old data,

which can be viewed as augmenting the quality of the

data, but we do not change the data structure when

storing them.

Recently, Fedus et al. [12] revisited the fundamen-

tals of ER to study how the architecture and the con-

tent of a replay buffer can affect learning. One of their

key findings was that performance can be improved by

increasing the replay buffer size and decreasing the age

of the oldest data stored in the buffer. LiDER’s refresh-

ing mechanism achieves exactly this purpose: the two-

buffer architecture doubles the replay size and the re-

fresher worker refreshes older experiences with a newer

policy, which reduces the age of the overall policy. There-

fore, LiDER can be viewed as a validation of the above

finding by Fedus et al. [12].

7.2 Experience replay for actor-critic algorithms

The difficulty of combining ER into actor-critic algo-

rithms is caused by the discrepancy between the cur-

rent policy and the past policy that generated the ex-

perience. This problem is usually solved by leveraging

various importance sampling techniques, such that the

bias from past experiences can be corrected when used

for updating the current policy [11, 15, 29, 45, 46]. In

this work, we chose to use the SIL algorithm over the

other actor-critic with ER algorithms because SIL pro-

vides a straightforward way of integrating ER into A3C

without importance sampling [32].

As proven theoretically by Oh et al. [32], the SIL ob-

jective (Equation 2) updates the policy and the value

function directly towards optimal by leveraging the Mo-

nte-Carlo return G, which can be viewed as a form

of lower-bound-soft-Q learning. Thus, off-policy correc-

tion techniques like importance sampling are not needed

Lucid Dreaming for Experience Replay 15

even though the SIL worker learns from off-policy data

(i.e., from a replay buffer), while the A3C worker learns

on-policy. In addition, Oh et al. [32] have shown that

the SIL objective is compatible, not conflicting, with

off-policy correction algorithms like ACER [45]. LiDER

builds upon the SIL objective and thus shares similar

properties. Incorporating LiDER into other off-policy

RL algorithms is important for future work (as de-

scribed in Section 8).

7.3 Learning from past good experiences of oneself

The main idea of LiDER is to allow the agent to learn

from past states that have been improved by its current

policy. Several existing methods have shown that it is

beneficial for the agent to learn from its past good ex-

periences. For example, the optimality tightening pro-

posed by He et al. [17] constrains the Q function with

lower and upper bounds, with the intuition that the Q

function should be updated using trajectories that per-

form better than the current policy. The self-imitation

learning (SIL) algorithm was inspired by the lower-

bound Q learning from optimality tightening that only

trajectories with positive advantages should be used to

update the policy [32].

Gangwani et al. [14] and Guo et al. [16] extended

the SIL algorithm and found that the performance can

be further improved if the past good experiences are

also diverse—diversity helps drive exploration. While

we did not design LiDER to explicitly leverage explo-

ration techniques, LiDER revisits a past state, then

generates new trajectories using a different policy, which

could potentially lead to unseen states and increase the

data diversity. This implicit exploration could be one

of the reasons that LiDER improves the performance

of two hard exploration Atari games.

A generalized form of SIL algorithm was proposed

recently by Tang [43]. This new algorithm leverages n-

step lower bound Q-learning which improves the origi-

nal SIL algorithm in two aspects: 1) the agent can now

self-imitate partial trajectories while the original SIL

algorithm requires learning from a full trajectory, and

2) bootstrapping from learned Q-functions is enabled

while the original SIL algorithm does not bootstrap

from learned Q-functions. The generalized SIL algo-

rithm can be applied to both deterministic and stochas-

tic RL algorithms and outperforms SIL in a wide range

of continuous control tasks. Leveraging the generalized

SIL algorithm could be an interesting future work to

improve LiDER.

Interestingly, the idea of learning from refreshed past

states was also used in the MuZero algorithm [38], a

tree-based searching algorithm that combines a learned

model. Specifically, MuZero introduced a second vari-

ant called MuZero Reanalyze, in which the agent re-

visits a past time step and performs Monte-Carlo tree

search again using the current model parameters. Ac-

cording to Schrittwieser et al. [38], MuZero Reanalyze

largely improves the performance of MuZero because

the reanalyze process potentially results in better pol-

icy than the original search. LiDER’s results align with

the findings of MuZero Reanalyze: an agent’s current

policy can be used to generate better quality data from

a past state; leveraging these data leads to improved

performance.

7.4 Relocating the agent to a past state

LiDER assumes there is a simulator for the task where

resetting to a previously seen state is possible. The idea

of relocating the agent to past states has been explored

in the literature (e.g., Mihalkova and Mooney [26]). Par-

ticularly, in the research area of curriculum learning, it

is common to assume a simulator is available and the

agent can be reset to any arbitrary state at the be-

ginning of training (e.g., Florensa et al. [13]). A similar

line of work has found that resetting the agent to a past

state, instead of the simulator’s default initial state, can

benefit the learning. Such a state can be drawn from dif-

ferent distributions over the replay buffer [44] or from

human demonstrations [20, 30, 34, 36, 49]. Many simu-

lators are already equipped with the ability to relocate

the agent so that they can reset the agent to an initial

state when an episode ends. LiDER makes full use of

this common feature.

While we can exploit simulators’ relocation features
if one is available, there are also situations when such a

feature does not exist. The recently developed policy-

based Go-Explore algorithm learned a goal-conditioned

policy to guide the agent to return to a past state, which

enables relocating without using the simulator reset fea-

ture [10].7 Concurrently with policy-based Go-Explore,

Guo et al. [16] proposed the Diverse Trajectory-conditi-

oned Self-Imitation Learning (DTSIL) algorithm. It uses

similar mechanisms as Ecoffet et al. [10] to train a goal-

condition based policy for the relocating process and no

simulator reset is needed for DTSIL.8

Both the policy-based Go-Explore and DTSIL algo-

rithms share similarities with LiDER in that they first

7 The policy-based Go-Explore algorithm is an extension
of the Go-Explore without a policy framework, which was
presented in an earlier pre-print [9]. Go-Explore without a
policy framework also leverages the simulator reset feature.
8 Ecoffet et al. [10] made a detailed comparison between the

policy-based Go-Explore and DTSIL. We refer the interested
readers to Ecoffet et al. [10] for further reading.

16 Yunshu Du et al.

teleport the agent to a past state then explore from

there. However, LiDER is distinct from these two al-

gorithms in three perspectives. First, the functional-

ity of the learned policy is different. LiDER learns an

actor-critic policy that maximizes the cumulative re-

turn; its policy takes a state as input and produces

actions that can achieve maximum return. While the

policy-based Go-Explore and DTSIL’s policies are goal-

conditioned and only learn how to return the agent to

a past state, not how to maximize return. Their poli-

cies take both the agent’s current state and the selected

state (called a goal state) as input and produce actions

that will lead the agent back to the goal state. Second,

the state selection strategy is different. LiDER teleports

the agent back to a randomly selected state, while the

policy-based Go-Explore and DTSIL algorithms select

”novel’” states to return to (i.e., states that are rarely

visited). Lastly, from the relocated state, LiDER then

performs a refresh with its current policy. While the

policy-based Go-Explore explores with either random

actions or actions sampled from the goal-conditioned

policy (with equal probability), the DTSIL algorithm

only explores randomly from that state.

Besides the three key differences, there are many

minor distinctions between LiDER and these two algo-

rithms, such as the main goal and structure of the al-

gorithm, the replay buffer architecture, the state repre-

sentations, and the hyperparameters. Because of these

differences, policy-based Go-Explore and DTSIL are

not directly comparable to LiDER. On the other hand,

LiDER can be considered as more evidence that sup-

ports the core benefits of “agent relocation,” rather

than a competing method. Nevertheless, leveraging the

relocation mechanism of these two algorithms in LiDER

can be an important step towards allowing LiDER to

work outside of simulations, as mentioned in the future

work discussion in Section 8.

8 Discussion and future work

In this paper, we proposed Lucid Dreaming for Experi-

ence Replay (LiDER), a conceptually new framework

that allows experiences in the replay buffer to be re-

freshed by leveraging the agent’s current policy, lead-

ing to improved performance compared to the baseline

method without refreshing past experiences. We investi-

gated the underlying behavior of the refresher to better

understand why LiDER helps learning. We also con-

ducted several ablation studies to validate our design

choices of LiDER. Two extensions demonstrated that

LiDER is also capable of leveraging knowledge from

external policies, such as a trained agent and a behav-

ior cloning model. One potential limitation of LiDER is

that it must have access to a simulator that can return

to previously visited states before resuming.

This paper opens up several new interesting direc-

tions for future work. First, based on the initial positive

results reported in this paper, additional computational

resources ought to be devoted to evaluating LiDER in

a broad variety of domains.

Second, while we have presented in this paper a

case study of applying LiDER to a multi-worker, actor-

critic based algorithm, future work could investigate

extending LiDER to other types of off-policy RL algo-

rithms that leverage ER. We expect LiDER to be most

applicable to the PPO+SIL algorithm Oh et al. [32].

PPO+SIL’s multi-worker, actor-critic architecture al-

lows the refresher worker to be easily added as was done

in A3CTBSIL. Similarly, the SIL objective (Equation

(2)) of PPO+SIL enables integrating ER, and the agent

can learn from both PPO-generated and refresher-generated

experiences.

On the other hand, applying LiDER to single-worker,

value-based algorithms, such as the deep Q-network

(DQN) algorithm [27], presents more challenges. The

first is that it is non-trivial to decide how often one

should “pause” the training and perform a refresh. In

multi-worker architectures, we do not need to explic-

itly control this frequency as all workers are running in

parallel. With a single worker, the training and the re-

freshing cannot happen simultaneously. Another chal-

lenge is that, in value-based algorithms like DQN, a

value function is learned instead of directly learning a

policy. The Q value is updated using a one-step TD

error instead of the Monte-Carlo return. Since the key

concept of LiDER is to leverage higher returns for pol-

icy updates, how to integrate returns in value updates

should be considered carefully before applying LiDER

to DQN. Nevertheless, LiDER has the potential to ben-

efit other off-policy algorithms that use ER, which is a

good direction to explore in future work.

Third, the refresher in LiDER-BC uses a fixed policy

from behavior cloning. Future work could investigate

whether it helps to use different policies during training.

For example, one could use the BC policy during the

early stages of training, and then once A3C’s current

policy outperforms BC, replace it with the A3C pol-

icy. Additionally, it is thus natural to consider adding

multiple SIL and/or refresher works to enable leverag-

ing multiple policies. Investigating how the proportion

among the number of A3C, SIL, and refresher work-

ers affects performance would make for an interesting

future study.

Fourth, it would be interesting to allow LiDER to

work outside of simulations by returning to a similar,

but not identical state, and from there generate new

Lucid Dreaming for Experience Replay 17

trajectories. For example, in robotics, a robot may be

able to return to a position that is close to, but not

identical to, a previously experienced state.

Acknowledgements We thank Gabriel V. de la Cruz Jr.
for helpful discussions; his open-source code at github.c

om/gabrieledcjr/DeepRL is used for training the behav-
ior cloning models in this work. This research used resources
of Kamiak, Washington State University’s high-performance
computing cluster. Assefaw Gebremedhin is supported by the
NSF award IIS-1553528. Part of this work has taken place in
the Intelligent Robot Learning (IRL) Lab at the University of
Alberta, which is supported in part by research grants from
the Alberta Machine Intelligence Institute (Amii), CIFAR,
and NSERC. Part of this work has taken place in the Learn-
ing Agents Research Group (LARG) at UT Austin. LARG
research is supported in part by NSF (CPS-1739964, IIS-
1724157, NRI-1925082), ONR (N00014-18-2243), FLI (RFP2-
000), ARL, DARPA, Lockheed Martin, GM, and Bosch. Peter
Stone serves as the Executive Director of Sony AI America
and receives financial compensation for this work. The terms
of this arrangement have been reviewed and approved by the
University of Texas at Austin in accordance with its policy
on objectivity in research.

Conflict of interest

The authors declare that they have no conflict of inter-

est.

References

1. Andrychowicz M, Wolski F, Ray A, Schneider

J, Fong R, Welinder P, McGrew B, Tobin J,

Pieter Abbeel O, Zaremba W (2017) Hindsight Ex-

perience Replay. In: Guyon I, Luxburg UV, Bengio

S, Wallach H, Fergus R, Vishwanathan S, Garnett

R (eds) Advances in Neural Information Processing

Systems, Curran Associates, Inc., vol 30, pp 5048–

5058, URL https://proceedings.neurips.cc/p

aper/2017/file/453fadbd8a1a3af50a9df4df899

537b5-Paper.pdf

2. Bellemare M, Srinivasan S, Ostrovski G, Schaul T,

Saxton D, Munos R (2016) Unifying Count-Based

Exploration and Intrinsic Motivation. In: Lee D,

Sugiyama M, Luxburg U, Guyon I, Garnett R (eds)

Advances in Neural Information Processing Sys-

tems, Curran Associates, Inc., vol 29, pp 1471–

1479, URL https://proceedings.neurips.cc

/paper/2016/file/afda332245e2af431fb7b672a

68b659d-Paper.pdf

3. Bellemare MG, Naddaf Y, Veness J, Bowling M

(2013) The Arcade Learning Environment: An

Evaluation Platform for General Agents. Journal

of Artificial Intelligence Research 47(1):253–279

4. Chan H, Wu Y, Kiros J, Fidler S, Ba J (2019) AC-

TRCE: Augmenting Experience via Teacher’s Ad-

vice For Multi-Goal Reinforcement Learning. arXiv

preprint arXiv:190204546 abs/1902.04546

5. de la Cruz GV, Du Y, Taylor ME (2019) Pre-

training with Non-expert Human Demonstration

for Deep Reinforcement Learning. The Knowledge

Engineering Review 34:e10, DOI 10.1017/S02698

88919000055

6. de la Cruz Jr GV, Du Y, Taylor ME (2019) Jointly

Pre-training with Supervised, Autoencoder, and

Value Losses for Deep Reinforcement Learning. In:

Adaptive and Learning Agents Workshop, AAMAS

7. Dao G, Lee M (2019) Relevant Experiences in

Replay Buffer. In: 2019 IEEE Symposium Series

on Computational Intelligence (SSCI), pp 94–101,

DOI 10.1109/SSCI44817.2019.9002745

8. De Bruin T, Kober J, Tuyls K, Babuška R (2015)

The Importance of Experience Replay Database

Composition in Deep Reinforcement Learning. In:

Deep Reinforcement Learning Workshop, NIPS

9. Ecoffet A, Huizinga J, Lehman J, Stanley KO,

Clune J (2019) Go-explore: a New Approach

for Hard-exploration Problems. arXiv preprint

arXiv:190110995

10. Ecoffet A, Huizinga J, Lehman J, Stanley KO,

Clune J (2020) First Return Then Explore. arXiv

preprint arXiv:200412919

11. Espeholt L, Soyer H, Munos R, Simonyan K,

Mnih V, Ward T, Doron Y, Firoiu V, Harley T,

Dunning I, Legg S, Kavukcuoglu K (2018) IM-

PALA: Scalable Distributed Deep-RL with Impor-

tance Weighted Actor-Learner Architectures. Pro-

ceedings of Machine Learning Research 80:1407–

1416, URL http://proceedings.mlr.press/v8

0/espeholt18a.html

12. Fedus W, Ramachandran P, Agarwal R, Bengio Y,

Larochelle H, Rowland M, Dabney W (2020) Revis-

iting Fundamentals of Experience Replay. In: Pro-

ceedings of the 37th International Conference on

Machine Learning, PMLR, URL https://procee

dings.icml.cc/paper/2020/hash/5460b9ea1986

ec386cb64df22dff37be-Abstract.html

13. Florensa C, Held D, Wulfmeier M, Zhang M,

Abbeel P (2017) Reverse Curriculum Generation

for Reinforcement Learning. In: Levine S, Van-

houcke V, Goldberg K (eds) Proceedings of Ma-

chine Learning Research, PMLR, vol 78, pp 482–

495, URL http://proceedings.mlr.press/v78/

florensa17a.html

14. Gangwani T, Liu Q, Peng J (2019) Learning Self-

Imitating Diverse Policies. In: International Con-

ference on Learning Representations, URL https:

github.com/gabrieledcjr/DeepRL
github.com/gabrieledcjr/DeepRL
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v80/espeholt18a.html
https://proceedings.icml.cc/paper/2020/hash/5460b9ea1986ec386cb64df22dff37be-Abstract.html
https://proceedings.icml.cc/paper/2020/hash/5460b9ea1986ec386cb64df22dff37be-Abstract.html
https://proceedings.icml.cc/paper/2020/hash/5460b9ea1986ec386cb64df22dff37be-Abstract.html
http://proceedings.mlr.press/v78/florensa17a.html
http://proceedings.mlr.press/v78/florensa17a.html
https://openreview.net/forum?id=HyxzRsR9Y7

18 Yunshu Du et al.

//openreview.net/forum?id=HyxzRsR9Y7

15. Gruslys A, Dabney W, Azar MG, Piot B, Belle-

mare M, Munos R (2018) The Reactor: a Fast

and Sample-efficient Actor-Critic Agent for Rein-

forcement Learning. In: International Conference

on Learning Representations, URL https://open

review.net/forum?id=rkHVZWZAZ

16. Guo Y, Choi J, Moczulski M, Feng S, Ben-

gio S, Norouzi M, Lee H (2020) Memory Based

Trajectory-conditioned Policies for Learning from

Sparse Rewards. In: Advances in Neural Informa-

tion Processing Systems, URL https://papers.n

ips.cc/paper/2020/hash/2df45244f09369e16ea

3f9117ca45157-Abstract.html

17. He FS, Liu Y, Schwing AG, Peng J (2017) Learning

to Play in a Day: Faster Deep Reinforcement Learn-

ing by Optimality Tightening. In: International

Conference on Learning Representations, URL ht

tps://openreview.net/forum?id=rJ8Je4clg

18. Hester T, Vecerik M, Pietquin O, Lanctot M,

Schaul T, Piot B, Horgan D, Quan J, Sendonaris A,

Osband I, Dulac-Arnold G, Agapiou J, Leibo JZ,

Gruslys A (2018) Deep Q-learning from Demon-

strations. In: Annual Meeting of the Association for

the Advancement of Artificial Intelligence (AAAI),

New Orleans (USA)

19. Horgan D, Quan J, Budden D, Barth-Maron G,

Hessel M, van Hasselt H, Silver D (2018) Dis-

tributed Prioritized Experience Replay. In: Inter-

national Conference on Learning Representations,

URL https://openreview.net/forum?id=H1Dy

---0Z

20. Hosu IA, Rebedea T (2016) Playing Atari

Games with Deep Reinforcement Learning and

Human Checkpoint Replay. arXiv preprint

arXiv:160705077

21. Kapturowski S, Ostrovski G, Dabney W, Quan

J, Munos R (2019) Recurrent Experience Replay

in Distributed Reinforcement Learning. In: Inter-

national Conference on Learning Representations,

URL https://openreview.net/forum?id=r1ly

TjAqYX

22. Le L, Patterson A, White M (2018) Supervised Au-

toencoders: Improving Generalization Performance

with Unsupervised Regularizers. In: Bengio S, Wal-

lach H, Larochelle H, Grauman K, Cesa-Bianchi

N, Garnett R (eds) Advances in Neural Informa-

tion Processing Systems, Curran Associates, Inc.,

vol 31, pp 107–117, URL https://proceedings.

neurips.cc/paper/2018/file/2a38a4a9316c49e

5a833517c45d31070-Paper.pdf

23. Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez

T, Tassa Y, Silver D, Wierstra D (2016) Continu-

ous Control with Deep Reinforcement Learning. In:

International Conference on Learning Representa-

tions, URL https://openreview.net/forum?id=

tX O8O-8Zl

24. Lin LJ (1992) Self-improving Reactive Agents

Based on Reinforcement Learning, Planning and

Teaching. Machine learning 8(3-4):293–321

25. Liu R, Zou J (2018) The Effects of Memory Replay

in Reinforcement Learning. In: The 56th Annual

Allerton Conference on Communication, Control,

and Computing, pp 478–485

26. Mihalkova L, Mooney R (2006) Using Active Relo-

cation to Aid Reinforcement Learning. In: Prodeed-

ings of the 19th International FLAIRS Conference

(FLAIRS-2006), Melbourne Beach, FL, pp 580–

585, URL http://www.cs.utexas.edu/users/

ai-lab?mihalkova:flairs06

27. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Ve-

ness J, Bellemare MG, Graves A, Riedmiller M,

Fidjeland AK, Ostrovski G, et al. (2015) Human-

level Control Through Deep Reinforcement Learn-

ing. Nature 518(7540):529

28. Mnih V, Badia AP, Mirza M, Graves A, Lillicrap

T, Harley T, Silver D, Kavukcuoglu K (2016) Asyn-

chronous Methods for Deep Reinforcement Learn-

ing. In: Balcan MF, Weinberger KQ (eds) Proceed-

ings of Machine Learning Research, PMLR, New

York, New York, USA, vol 48, pp 1928–1937, URL

http://proceedings.mlr.press/v48/mniha16.

html

29. Munos R, Stepleton T, Harutyunyan A, Bellemare

M (2016) Safe and Efficient Off-Policy Reinforce-

ment Learning. In: Lee D, Sugiyama M, Luxburg

U, Guyon I, Garnett R (eds) Advances in Neu-

ral Information Processing Systems, Curran Asso-

ciates, Inc., vol 29, pp 1054–1062, URL https:

//proceedings.neurips.cc/paper/2016/file/c

3992e9a68c5ae12bd18488bc579b30d-Paper.pdf

30. Nair A, McGrew B, Andrychowicz M, Zaremba

W, Abbeel P (2018) Overcoming Exploration in

Reinforcement Learning with Demonstrations. In:

2018 IEEE International Conference on Robotics

and Automation (ICRA), pp 6292–6299, DOI

10.1109/ICRA.2018.8463162

31. Novati G, Koumoutsakos P (2019) Remember and

Forget for Experience Replay. In: Chaudhuri K,

Salakhutdinov R (eds) Proceedings of Machine

Learning Research, PMLR, Long Beach, Califor-

nia, USA, vol 97, pp 4851–4860, URL http://pr

oceedings.mlr.press/v97/novati19a.html

32. Oh J, Guo Y, Singh S, Lee H (2018) Self-Imitation

Learning. In: Dy J, Krause A (eds) Proceed-

ings of Machine Learning Research, PMLR, Stock-

https://openreview.net/forum?id=HyxzRsR9Y7
https://openreview.net/forum?id=HyxzRsR9Y7
https://openreview.net/forum?id=rkHVZWZAZ
https://openreview.net/forum?id=rkHVZWZAZ
https://papers.nips.cc/paper/2020/hash/2df45244f09369e16ea3f9117ca45157-Abstract.html
https://papers.nips.cc/paper/2020/hash/2df45244f09369e16ea3f9117ca45157-Abstract.html
https://papers.nips.cc/paper/2020/hash/2df45244f09369e16ea3f9117ca45157-Abstract.html
https://openreview.net/forum?id=rJ8Je4clg
https://openreview.net/forum?id=rJ8Je4clg
https://openreview.net/forum?id=H1Dy---0Z
https://openreview.net/forum?id=H1Dy---0Z
https://openreview.net/forum?id=r1lyTjAqYX
https://openreview.net/forum?id=r1lyTjAqYX
https://proceedings.neurips.cc/paper/2018/file/2a38a4a9316c49e5a833517c45d31070-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/2a38a4a9316c49e5a833517c45d31070-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/2a38a4a9316c49e5a833517c45d31070-Paper.pdf
https://openreview.net/forum?id=tX_O8O-8Zl
https://openreview.net/forum?id=tX_O8O-8Zl
http://www.cs.utexas.edu/users/ai-lab?mihalkova:flairs06
http://www.cs.utexas.edu/users/ai-lab?mihalkova:flairs06
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
https://proceedings.neurips.cc/paper/2016/file/c3992e9a68c5ae12bd18488bc579b30d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/c3992e9a68c5ae12bd18488bc579b30d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/c3992e9a68c5ae12bd18488bc579b30d-Paper.pdf
http://proceedings.mlr.press/v97/novati19a.html
http://proceedings.mlr.press/v97/novati19a.html

Lucid Dreaming for Experience Replay 19

holmsmässan, Stockholm Sweden, vol 80, pp 3878–

3887, URL http://proceedings.mlr.press/v8

0/oh18b.html

33. Pohlen T, Piot B, Hester T, Azar MG, Horgan D,

Budden D, Barth-Maron G, van Hasselt H, Quan J,

Večeŕık M, et al. (2018) Observe and Look Further:

Achieving Consistent Performance on Atari. arXiv

preprint arXiv:180511593

34. Resnick C, Raileanu R, Kapoor S, Peysakhovich

A, Cho K, Bruna J (2018) Backplay:” Man muss

immer umkehren”. In: Workshop on Reinforcement

Learning in Games, AAAI

35. Ross S, Bagnell D (2010) Efficient Reductions

for Imitation Learning. In: Teh YW, Tittering-

ton M (eds) Proceedings of Machine Learning Re-

search, JMLR Workshop and Conference Proceed-

ings, Chia Laguna Resort, Sardinia, Italy, vol 9, pp

661–668, URL http://proceedings.mlr.press/

v9/ross10a.html

36. Salimans T, Chen R (2018) Learning Montezuma’s

Revenge from a Single Demonstration. arXiv

preprint arXiv:181203381

37. Schaul T, Quan J, Antonoglou I, Silver D (2016)

Prioritized Experience Replay. In: International

Conference on Learning Representations, URL ht

tp://arxiv.org/abs/1511.05952

38. Schrittwieser J, Antonoglou I, Hubert T, Simonyan

K, Sifre L, Schmitt S, Guez A, Lockhart E, Hass-

abis D, Graepel T, et al. (2019) Mastering Atari,

Go, Chess and Shogi by Planning with a Learned

Model. arXiv preprint arXiv:191108265

39. Sinha S, Song J, Garg A, Ermon S (2020) Ex-

perience Replay with Likelihood-free Importance

Weights. arXiv preprint arXiv:200613169

40. Sovrano F (2019) Combining Experience Replay

with Exploration by Random Network Distillation.

In: 2019 IEEE Conference on Games (CoG), pp 1–

8, DOI 10.1109/CIG.2019.8848046

41. Stumbrys T, Erlacher D, Schredl M (2016) Effec-

tiveness of Motor Practice in Lucid Dreams: a Com-

parison with Physical and Mental Practice. Journal

of Sports Sciences 34:27 – 34

42. Sutton RS, Barto AG (2018) Reinforcement Learn-

ing: An Introduction. MIT press

43. Tang Y (2020) Self-Imitation Learning via General-

ized Lower Bound Q-learning. In: Advances in Neu-

ral Information Processing Systems, vol 33, URL

https://papers.nips.cc/paper/2020/file/a04

43c8c8c3372d662e9173c18faaa2c-Paper.pdf

44. Tavakoli A, Levdik V, Islam R, Smith CM, Kor-

mushev P (2018) Exploring Restart Distributions.

arXiv:181111298

45. Wang Z, Bapst V, Heess NMO, Mnih V, Munos

R, Kavukcuoglu K, de Freitas N (2017) Sample

Efficient Actor-Critic with Experience Replay. In:

International Conference on Learning Representa-

tions, URL https://openreview.net/pdf?id=Hy

M25Mqel

46. Wawrzyński P (2009) Real-time Reinforcement

Learning by Sequential Actor-Critics and Experi-

ence Replay. Neural Networks 22(10):1484–1497

47. Zha D, Lai KH, Zhou K, Hu X (2019) Expe-

rience Replay Optimization. In: Proceedings of

the Twenty-Eighth International Joint Conference

on Artificial Intelligence, IJCAI-19, International

Joint Conferences on Artificial Intelligence Organi-

zation, pp 4243–4249, DOI 10.24963/ijcai.2019/58

9, URL https://doi.org/10.24963/ijcai.201

9/589

48. Zhang S, Sutton RS (2017) A Deeper Look at Ex-

perience Replay. arXiv preprint arXiv:171201275

49. Zhang X, Bharti SK, Ma Y, Singla A, Zhu X

(2020) The Teaching Dimension of Q-learning.

arXiv preprint arXiv:200609324

http://proceedings.mlr.press/v80/oh18b.html
http://proceedings.mlr.press/v80/oh18b.html
http://proceedings.mlr.press/v9/ross10a.html
http://proceedings.mlr.press/v9/ross10a.html
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1511.05952
https://papers.nips.cc/paper/2020/file/a0443c8c8c3372d662e9173c18faaa2c-Paper.pdf
https://papers.nips.cc/paper/2020/file/a0443c8c8c3372d662e9173c18faaa2c-Paper.pdf
https://openreview.net/pdf?id=HyM25Mqel
https://openreview.net/pdf?id=HyM25Mqel
https://doi.org/10.24963/ijcai.2019/589
https://doi.org/10.24963/ijcai.2019/589

20 Yunshu Du et al.

Appendices for “Lucid Dreaming for Experience Replay: Re-
freshing Past States with the Current Policy”

We provide further details of our work in the following six appendices:

– Appendix A contains the implementation details of LiDER, including neural network architecture, hyperparameters, and compu-
tation resources used for all experiments.

– Appendix B presents the pseudo-code for the A3C and SIL workers. Both follow the original work of Mnih et al. [28] and Oh et al.
[32] respectively, we add them here for completeness.

– Appendix C provides detailed statistics of the one-tailed independent-samples t-tests: 1) A3CTBSIL compared to LiDER, 2)
A3CTBSIL compared to the three ablation studies of LiDER, 3) A3CTBSIL compared to the two extensions of LiDER, 4) LiDER
compared to the three ablation studies of LiDER, and 5) LiDER compared to the two extensions of LiDER.

– Appendix D discusses the differences between the A3CTBSIL algorithm in de la Cruz Jr et al. [6] and the original SIL algorithm
in Oh et al. [32] (as mentioned in Section 4.1).

– Appendix E presents the performance of the trained agents (TA) used in LiDER-TA.
– Appendix F details the pre-training process for obtaining the BC models used in LiDER-BC, including the statistics of the

demonstration collected by de la Cruz et al. [5], the network architecture, the hyperparamters used for pre-training, and the
performance of the trained BC models.

A Implementation details

We use the same neural network architecture as in the original A3C algorithm [28] for all A3C, SIL, and refresher workers (the blue,
orange, and green components in Figure 1 respectively). The network consists of three convolutional layers, one fully connected layer,
followed by two branches of a fully connected layer: a policy function output layer and a value function output layer. Atari images are
converted to grayscale and resized to 88×88 with 4 images stacked as the input.

We run each experiment for eight trials due to computation limitations. Each experiment uses one GPU (Tesla K80 or TITAN V),
five CPU cores, and 40 GB of memory (each LiDER-OneBuffer experiment uses 64 GB of memory since the buffer size was doubled).
The refresher worker runs on GPU to generate data as quickly as possible; the A3C and SIL workers run distributively on CPU cores.
In all games, the wall-clock time is roughly 0.8 to 1 million steps per hour and around 50 to 60 hours to complete one trial of 50
million steps.

The baseline A3CTBSIL is trained with 17 parallel workers; 16 A3C workers and 1 SIL worker. The RMSProp optimizer is used
with a learning rate = 0.0007. We use tmax = 20 for n-step bootstrap Q(n) (n ≤ tmax). The SIL worker performs M = 4 SIL policy
updates (Equation (2)) per step t with minibatch size 32 (i.e., 32×4=128 total samples per step). Buffer D is of size 105. The SIL loss
weight βsil = 0.5.

LiDER is also trained with 17 parallel workers: 15 A3C workers, 1 SIL worker, and 1 refresher worker—we keep the total number of
workers in A3CTBSIL and LiDER the same to ensure a fair performance comparison. The SIL worker in LiDER also uses a minibatch
size of 32, samples are taken from buffer D and R as described in Section 3. All other parameters are identical to that of A3CTBSIL.
We summarize the details of the network architecture and experiment parameters in Table 2.

Lucid Dreaming for Experience Replay 21

Table 2: Hyperparameters for all experiments. We train each game for 50 million steps with a frame skip of 4, i.e.,
200 million game frames were consumed for training.

Network Architecture Value

Input size 88×88×4
Tensorflow Padding method SAME

Convolutional layer 1 32 filters of size 8×8 with stride 4
Convolutional layer 2 64 filters of size 4×4 with stride 2
Convolutional layer 3 64 filters of size 3×3 with stride 1
Fully connected layer 512

Policy output layer number of actions
Value output layer 1

Common Parameters

RMSProp initial learning rate 7× 10−4

RMSProp epsilon 1× 10−5

RMSProp decay 0.99
RMSProp momentum 0

Maximum gradient norm 0.5
Discount factor γ 0.99

Parameters for A3CTB

A3C entropy regularizer weight βa3c 0.01
A3C maximum bootstrap step tmax 20

A3C value loss weight α 0.5
k parallel actors 16

Transformed Bellman operator ε 10−2

Parameters for SIL

SIL value loss weight βsil 0.1
SIL update per step M 4

Replay buffer D size 105

Replay buffer priority α 0.6
Minibatch size 32

Parameters for LiDER (refresher worker)

Replay buffer R size 105

Minibatch size 32

22 Yunshu Du et al.

B Pseudo-code for the A3C and SIL workers

Algorithm 2 LiDER: A3C Worker (as in Mnih et al. [28])

1: // Assume global network parameters θ and θv and global step T = 0
2: // Assume replay buffer D ← ∅, replay buffer R← ∅
3: Initialize worker-specified local network parameters, θ

′
, θ

′
v

4: Initialize worker-specified local time step t = 0 and local episode buffer E ← ∅
5: while T < Tmax do . Tmax = 50 million
6: Reset gradients: dθ ← 0, dθv ← 0

7: Synchronize local parameters with global parameters θ
′ ← θ and θ

′
v ← θv

8: tstart ← t
9: while st+1 is not terminal or t < tmax do . tmax = 20

10: Execute an action st, at, rt, st+1 ∼ π(at|st, θ
′
)

11: Store transition to local buffer: E ← E∪ {st, at, rt, }
12: T ← T + 1, t← t+ 1
13: end while

14: G ←
{

0 if st+1 is terminal

V (St+1; θ
′
v) otherwise

. Perform A3C update [28]

15: for i ∈ {t, ..., tstart} do
16: G← ri + γG

17: Accumulate gradients w.r.t. θ
′
: dθ ← dθ +∇

θ
′ logπ(ai|si, θ

′
)(G− V (si; θ

′
v))

18: Accumulate gradients w.r.t. θ
′
v : dθv ← dθv + ∂(G− V (si; θ

′
v))2/∂θ

′
v

19: end for
20: if st+1 is terminal then: . Prepare for SIL worker [32]
21: compute Gt =

∑∞
k γk−trk for all t in E

22: Store transition to global replay buffer D ← D∪{st, at, Gt} for all t in E
23: Reset local buffer E ← ∅
24: end if
25: Asynchronously update global parameters using local parameters
26: end while

Algorithm 3 LiDER: SIL Worker (as in Oh et al. [32])

1: // Assume global network parameters, θ, θv
2: // Assume (Non-empty) replay buffer D, replay buffer R
3: Initialize worker-specific local network parameters, θ

′
, θ

′
v

4: Initialize local buffer B ← ∅
5: while T < Tmax do . Tmax = 50 million
6: Synchronize global step T from the most recent A3C worker

7: Synchronize parameters θ
′ ← θ and θ

′
v ← θv

8: for m = 1 to M do . M = 4
9: Sample a minibatch of size 32 {sD, aD, GD} from D

10: Sample a minibatch of size 32 {sR, aR, GR} from R
11: Store both batches into B: B ← {sD, aD, rD} ∪ {sR, aR, rR} . Length of B=64
12: Sample a minibatch of 32 {sB , aB , GB} from B . Perform SIL update [32]

13: Compute gradients w.r.t. θ
′

: dθ ← ∇
θ
′ logπ(aB |sB ; θ

′
)(GB − V (sB ; θ

′
v))+

14: Compute gradients w.r.t. θ
′
v : dθv ← ∂((GB − V (sB ; θ

′
v))+)2/∂θ

′
v

15: Perform asynchronous update of θ using dθ and θv using dθv
16: Reset local buffer B ← ∅
17: end for
18: end while

Lucid Dreaming for Experience Replay 23

C One-tailed independent-samples t-tests

We conducted one-tailed independent-samples t-tests (equal variances not assumed) in all games to compare the differences in the
mean episodic reward among all methods in this paper. For each game, we restored the best model checkpoint from each trial (eight
trials per method) and executed the model in the game following a deterministic policy for 100 episodes (an episode ends when the
agent loses all its lives) and recorded the reward per episode. This gives us 800 data points for each method in each game. We use a
significance level α = 0.001 for all tests.

First, we check the statistical significance of the baseline A3CTBSIL compared to LiDER (Section 4.1), the main framework
proposed in this paper. We report the detailed statistics in Table 3. Results show that the mean episodic reward of LiDER is
significantly higher than A3CTBSIL (p� 0.001) in all games.

Table 3: One-tailed independent-samples t-test for the differences of the mean episodic reward between A3CTBSIL
and LiDER. Equal variances are not assumed.

Methods
Mean episodic reward

Standard deviation One-tailed p-value
(800 episodes)

Gopher

A3CTBSIL 4291.20 2913.52 -
LiDER 6618.88 3300.10 1.24×10−47

NameThisGame

A3CTBSIL 6786.75 1275.87 -
LiDER 8332.50 1754.30 4.09×10−80

Alien

A3CTBSIL 3558.58 1596.18 -
LiDER 5065.04 2012.93 3.77×10−57

Ms. Pac-Man

A3CTBSIL 4975.03 1527.05 -
LiDER 8532.34 2477.02 1.49×10−187

Freeway

A3CTBSIL 23.10 5.84 -
LiDER 31.62 0.98 1.19×10−201

Montezuma’s Revenge

A3CTBSIL 0.25 4.99 -
LiDER 987.63 951.69 3.36×10−129

24 Yunshu Du et al.

Second, we compare A3CTBSIL to the three ablation studies, LiDER-AddAll, LiDER-OneBuffer, and LiDER-SampleR (Section
5). Table 4 shows that all ablations were helpful in Freeway and Montezuma’s Revenge, in which the mean episodic rewards of the
ablations are significantly higher than the baseline (p � 0.001). LiDER-AddAll also performed significantly better than A3CTBSIL
in all games (p � 0.001). LiDER-OneBuffer outperformed A3CTBSIL in Freeway and Montezuma’s Revenge (p � 0.001), but it
performed worse than the other four games (p � 0.001). LiDER-SampleR outperformed A3CTBSIL in Ms. Pac-Man, Freeway, and
Montezuma’s Revenge (p� 0.001), but under-performed A3CTBSIL in Gopher, NameThisGame, and Alien (p� 0.001).

Table 4: One-tailed independent-samples t-test for the differences of the mean episodic reward between A3CTBSIL
and LiDER-AddALL, between A3CTBSIL and LiDER-OneBuffer, and between A3CTBSIL and LiDER-SampleR.
Equal variances are not assumed.

Methods
Mean episodic reward

Standard deviation One-tailed p-value
(800 episodes)

Gopher

A3CTBSIL 4291.20 2913.52 -
(Ablation) LiDER-AddAll 7086.53 3188.04 2.72×10−68

(Ablation) LiDER-OneBuffer 1962.05 1872.94 5.97×10−72

(Ablation) LiDER-SampleR 3072.40 5146.23 3.61×10−9

NameThisGame

A3CTBSIL 6786.75 1275.87 -
(Ablation) LiDER-AddAll 8200.04 1580.23 2.86×10−77

(Ablation) LiDER-OneBuffer 6422.48 1374.87 2.34×10−8

(Ablation) LiDER-SampleR 5819.81 1743.05 3.35×10−35

Alien

A3CTBSIL 3558.58 1596.18 -
(Ablation) LiDER-AddAll 4054.28 1837.20 5.13×10−9

(Ablation) LiDER-OneBuffer 3204.41 1998.95 4.74×10−5

(Ablation) LiDER-SampleR 3104.99 1548.04 4.86×10−9

Ms. Pac-Man

A3CTBSIL 4975.03 1527.05 -
(Ablation) LiDER-AddAll 6828.82 2562.33 1.81×10−62

(Ablation) LiDER-OneBuffer 4625.37 1920.67 2.95×10−5

(Ablation) LiDER-SampleR 7303.22 1869.98 4.32×10−134

Freeway

A3CTBSIL 23.10 5.84 -
(Ablation) LiDER-AddAll 31.20 0.99 1.35×10−189

(Ablation) LiDER-OneBuffer 27.55 5.15 6.34×10−55

(Ablation) LiDER-SampleR 27.45 10.46 4.17×10−24

Montezuma’s Revenge

A3CTBSIL 0.25 4.99 -
(Ablation) LiDER-AddAll 77.63 144.18 3.93×10−46

(Ablation) LiDER-OneBuffer 3.00 24.31 8.97×10−4

(Ablation) LiDER-SampleR 265.86 178.74 8.46×10−205

Lucid Dreaming for Experience Replay 25

Third, we compare A3CTBSIL to the two extensions, LiDER-BC and LiDER-TA (Section 6). Table 5 shows that the two extensions
outperformed the baseline significantly in all games (p� 0.001).

Table 5: One-tailed independent-samples t-test for the differences of the mean episodic reward between A3CTBSIL
and LiDER-BC, and between A3CTBSIL and LiDER-TA. Equal variances are not assumed.

Methods
Mean episodic reward

Standard deviation One-tailed p-value
(800 episodes)

Gopher

A3CTBSIL 4291.20 2913.52 -
(Extension) LiDER-TA 8133.50 3800.38 1.97×10−98

(Extension) LiDER-BC 7775.75 3480.92 1.11×10−91

NameThisGame

A3CTBSIL 6786.75 1275.87 -
(Extension) LiDER-TA 10227.69 2222.20 7.63×10−212

(Extension) LiDER-BC 7303.74 1649.01 1.81×10−12

Alien

A3CTBSIL 3558.58 1596.18 -
(Extension) LiDER-TA 7753.54 1681.06 0.000
(Extension) LiDER-BC 6261.79 1865.67 4.01×10−166

Ms. Pac-Man

A3CTBSIL 4975.03 1527.05 -
(Extension) LiDER-TA 10272.18 2035.98 0.000
(Extension) LiDER-BC 9613.89 2875.71 2.40×10−226

Freeway

A3CTBSIL 23.10 5.84 -
(Extension) LiDER-TA 32.42 0.73 2.81×10−223

(Extension) LiDER-BC 31.68 0.85 4.63×10−203

Montezuma’s Revenge

A3CTBSIL 0.25 4.99 -
(Extension) LiDER-TA 1677.50 1050.33 2.53×10−222

(Extension) LiDER-BC 1811.86 994.38 2.30×10−256

26 Yunshu Du et al.

Fourth, we check the statistical significance of LiDER compared to the three ablation studies, LiDER-AddAll, LiDER-OneBuffer,
and LiDER-SampleR (Section 5). Results in Table 6 show that most of the ablations significantly under-performed LiDER (p� 0.001)
in terms of the mean episodic reward. Except for Gopher and NameThisGame, in which LiDER-AddAll performs at the same level as
LiDER (p > 0.001).

Table 6: One-tailed independent-samples t-test for the differences of the mean episodic reward between LiDER and
LiDER-AddAll, between LiDER and LiDER-OneBuffer, and between LiDER and LiDER-SampleR. Equal variances
are not assumed. Methods in bold are not significant at level α = 0.001.

Methods
Mean episodic reward

Standard deviation One-tailed p-value
(800 episodes)

Gopher

LiDER 6618.88 3300.10 -
(Ablation) LiDER-AddAll 7086.53 3188.04 0.002
(Ablation) LiDER-OneBuffer 1962.05 1872.94 3.65×10−186

(Ablation) LiDER-SampleR 3072.40 5146.23 1.38×10−55

NameThisGame

LiDER 8332.50 1754.30 -
(Ablation) LiDER-AddAll 8200.04 1580.23 0.056
(Ablation) LiDER-OneBuffer 6422.48 1374.87 4.25×10−110

(Ablation) LiDER-SampleR 5819.81 1743.05 6.54×10−147

Alien

LiDER 5065.04 2012.93 -
(Ablation) LiDER-AddAll 4054.28 1837.20 3.28×10−25

(Ablation) LiDER-OneBuffer 3204.41 1998.95 5.92×10−70

(Ablation) LiDER-SampleR 3104.99 1548.04 3.55×10−92

Ms. Pac-Man

LiDER 8532.34 2477.02 -
(Ablation) LiDER-AddAll 6828.82 2562.33 9.06×10−40

(Ablation) LiDER-OneBuffer 4625.37 1920.67 4.18×10−199

(Ablation) LiDER-sampleR 7303.22 1869.98 2.76×10−28

Freeway

LiDER 31.62 0.98 -
(Ablation) LiDER-AddAll 31.20 0.99 1.32×10−17

(Ablation) LiDER-OneBuffer 27.55 5.15 1.62×10−85

(Ablation) LiDER-SampleR 27.45 10.46 1.22×10−27

Montezuma’s Revenge

LiDER 987.63 951.69 -
(Ablation) LiDER-AddAll 77.63 144.18 1.68×10−114

(Ablation) LiDER-OneBuffer 3.00 24.31 1.09×10−128

(Ablation) LiDER-SampleR 265.86 178.74 5.31×10−80

Lucid Dreaming for Experience Replay 27

Lastly, we compare LiDER to the two extensions, LiDER-TA and LiDER-BC (Section 6). Results in Table 7 show that LiDER-TA
always outperforms LiDER (p� 0.001). LiDER-BC outperformed LiDER in Gopher, Alien, Ms. Pac-Man, and Montezuma’s Revenge.
In Freeway, LiDER-BC performs the same as LiDER (p > 0.001), while in NameThisGame LiDER-BC performed worse than LiDER
(p� 0.001).

Table 7: One-tailed independent-samples t-test for the differences of the mean episodic reward between LiDER
and LiDER-TA, and between LiDER and LiDER-BC. Equal variances are not assumed. Methods in bold are not
significant at level α = 0.001.

Methods
Mean episodic reward

Standard deviation One-tailed p-value
(800 episodes)

Gopher

LiDER 6618.86 3300.10 -
(Extension) LiDER-TA 8133.50 3800.38 2.07×10−17

(Extension) LiDER-BC 7775.75 3480.92 6.55×10−12

NameThisGame

LiDER 8332.50 1754.30 -
(Extension) LiDER-TA 10227.69 2222.20 3.75×10−72

(Extension) LiDER-BC 7303.74 1649.01 1.68×10−32

Alien

LiDER 5065.04 2012.93 -
(Extension) LiDER-TA 7753.54 1681.06 3.53×10−148

(Extension) LiDER-BC 6261.79 1865.67 1.05×10−33

Ms. Pac-Man

LiDER 8532.34 2477.02 -
(Extension) LiDER-TA 10272.18 2035.98 8.01×10−50

(Extension) LiDER-BC 9613.89 2875.71 7.81×10−16

Freeway

LiDER 31.62 0.98 -
(Extension) LiDER-TA 32.42 0.73 8.54×10−69

(Extension) LiDER-BC 31.68 0.85 0.104

Montezuma’s Revenge

LiDER 987.63 951.69 -
(Extension) LiDER-TA 1677.50 1050.33 4.55×10−41

(Extension) LiDER-BC 1811.88 994.38 1.53×10−59

28 Yunshu Du et al.

D Differences between A3CTBSIL and SIL

There is a performance difference in Montezuma’s Revenge between the A3CTBSIL algorithm (our previous work in de la Cruz Jr
et al. [6], which is used as the baseline method in this article) and the original SIL algorithm (by Oh et al. [32]). The A3CTBSIL agent
fails to achieve any reward while the SIL agent can achieve a score of 1100 (Table 5 in [32]).

We hypothesize that the difference is due to the different number of SIL updates (Equation (2)) that can be performed in A3CTBSIL
and SIL; lower numbers of SIL updates would decrease the performance. In particular, Oh et al. [32] proposed to add the “Perform
self-imitation learning” step in each A3C worker (Algorithm 1 of Oh et al. [32]). That is, when running with 16 A3C workers, the SIL
agent is actually using 16 SIL workers to update the policy. However, A3CTBSIL only has one SIL worker, which means A3CTBSIL
performs strictly fewer SIL updates compared to that of the original SIL algorithm, and thus resulting in lower performance.

We empirically validate the above hypothesis by conducting an experiment in the game of Ms. Pac-Man by modifying the
A3CTBSIL algorithm from our previous work [6]. Instead of performing a SIL update whenever the SIL worker can, we force the
SIL worker to only perform an update at even global steps; this setting reduces the total number of SIL updates by half. We denote
this experiment as A3CTBSIL-ReduceSIL.

Figure 8 shows that A3CTBSIL-ReduceSIL under-performed A3CTBSIL, which provides preliminary evidence that the number
of SIL updates is positively correlated to performance. More experiments will be performed in future work to further validate this
correlation.

0 10 20 30 40 50
Steps (in millions)

0

1000

2000

3000

4000

5000

6000

Re
wa

rd

MsPacman
A3CTBSIL
A3CTBSIL-ReduceSIL

Fig. 8: A3CTBSIL-ReduceSIL compared to A3CTBSIL in the game of Ms. Pac-Man. The x-axis is the total number
of environmental steps. The y-axis is the average testing score over five trials. We ran A3CTBSIL-ReduceSIL for five
trials due to limited computing resources; we plot the first five trials out of eight for A3CTBSIL for a fair comparison
to the number of trials in A3CTBSIL-ReduceSIL. Shaded regions show the standard deviation.

E The performance of trained agents used in LiDER-TA

Section 6 shows that LiDER can leverage knowledge from a trained agent (TA). While the TA could come from any source, we use
the best checkpoint of a fully trained LiDER agent. Table 8 shows the average performance of the TA used in each game. The score
is estimated by executing the TA greedily in the game for 50 episodes. An episode ends when the agent loses all its lives.

Table 8: The performance of trained agents used in LiDER-TA, shown as the purple dotted line in Figure 7. The
score is estimated by executing the TA greedily in the game for 50 episodes.

Game Trained TA score standard deviation

Gopher 6972.4 2190.26
NameThisGame 9969.0 1910.91
Alien 7190.4 1251.27
Ms. Pac-Man 9145.42 955.94
Freeway 32.92 0.27
Montezuma’s Revenge 1108.0 1057.14

Lucid Dreaming for Experience Replay 29

F Pre-training the behavior cloning model for LiDER-BC

In Section 6, we demonstrated that a BC model can be incorporated into LiDER to improve learning. The BC model is pre-trained
using a publicly available human demonstration dataset. Dataset statistics are shown in Table 9.

Table 9: Demonstration size and quality, collected in de la Cruz et al. [5]. All games are limited to 20 minutes of
demonstration time per episode.

Game Worst score Best score # of states # of episodes

Gopher 1420 5800 16847 8
NameThisGame 2510 4840 17113 4
Alien 3000 8240 12885 5
Ms. Pac-Man 4020 18241 14504 8
Freeway 26 31 24396 12
Montezuma’s Revenge 500 10100 18751 9

The BC model uses the same network architecture as the A3C algorithm [28] and pre-training a BC model for A3C requires
a few more steps than just using supervised learning as to how it is normally done in standard imitation learning (e.g., Ross and
Bagnell [35]). A3C has two output layers: a policy output layer and a value output layer. The policy output is what we usually train
a supervised classifier for. However, the value output layer is usually initialized randomly without being pre-trained. Our previous
work [6] observed this inconsistency and leveraged demonstration data to also pre-train the value output layer. In particular, since the
demonstration data contains the true return G, we can obtain a value loss that is almost identical to A3C’s value loss La3cvalue: instead

of using the n-step bootstrap value Q(n) to compute the advantage, the true return G is used.
Inspired by the supervised autoencoder (SAE) framework [22], Our previous work [6] also blended in an unsupervised loss for pre-

training. In SAE, an image reconstruction loss is incorporated with the supervised loss to help extract better feature representations
and achieve better performance. A BC model pre-trained jointly with supervised, value, and unsupervised losses can lead to better
performance after fine-tuning with RL, compared to pre-training with the supervised loss only.

We copy this approach by jointly pre-training the BC model for 50,000 steps with a minibatch of size 32. Adam optimizer is used
with a learning rate = 0.0005. After training, we perform testing for 50 episodes by executing the model greedily in the game and
record the average episodic reward (an episode ends when the agent loses all its lives). For each set of demonstration data, we train
five models and use the one with the highest average episodic reward as the BC model in LiDER-BC. The performance of the trained
BC models is present in Table 10. All parameters are based on those from our previous work [6] and we summarize them in Table 11.

Table 10: The performance of behavior cloning models used in LiDER-BC, shown as the black dashed line in Figure
7. The score is estimated by executing the BC greedily in the game for 50 episodes.

Game Trained BC model score standard deviation

Gopher 450.8 393.57
NameThisGame 1491.2 530.55
Alien 839.2 718.72
Ms. Pac-Man 1776.6 993.94
Freeway 25.06 1.48
Montezuma’s Revenge 174.0 205.72

Table 11: Hyperparameters for pre-training the behavior cloning (BC) model used in LiDER-BC.

Network Architecture Value

Input size 88×88×4
Tensorflow Padding method SAME

Convolutional layer 1 32 filters of size 8×8 with stride 4
Convolutional layer 2 64 filters of size 4×4 with stride 2
Convolutional layer 3 64 filters of size 3×3 with stride 1
Fully connected layer 512

Classification output layer number of actions

Value output layer 1

Parameters for pre-training

Adam learning rate 5× 10−4

Adam epsilon 1× 10−5

Adam β1 0.9
Adam β2 0.999

L2 regularization weight 1× 10−5

Number of minibatch updates 50,000
Batch size 32

	1 Introduction
	2 Background
	3 Lucid dreaming for experience replay
	4 Experiments and analyses
	5 Ablation studies
	6 Extensions: leveraging other policies to refresh past states
	7 Related work
	8 Discussion and future work
	A Implementation details
	B Pseudo-code for the A3C and SIL workers
	C One-tailed independent-samples t-tests
	D Differences between A3CTBSIL and SIL
	E The performance of trained agents used in LiDER-TA
	F Pre-training the behavior cloning model for LiDER-BC

