
ORIGINAL ARTICLE

Deep-MEG: spatiotemporal CNN features and multiband ensemble
classification for predicting the early signs of Alzheimer’s disease
with magnetoencephalography

Antonio Giovannetti1 • Gianluca Susi2,3 • Paola Casti1 • Arianna Mencattini1 • Sandra Pusil2 •
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Abstract
In this paper, we present the novel Deep-MEG approach in which image-based representations of magnetoencephalography

(MEG) data are combined with ensemble classifiers based on deep convolutional neural networks. For the scope of

predicting the early signs of Alzheimer’s disease (AD), functional connectivity (FC) measures between the brain bio-

magnetic signals originated from spatially separated brain regions are used as MEG data representations for the analysis.

After stacking the FC indicators relative to different frequency bands into multiple images, a deep transfer learning model

is used to extract different sets of deep features and to derive improved classification ensembles. The proposed Deep-MEG

architectures were tested on a set of resting-state MEG recordings and their corresponding magnetic resonance imaging

scans, from a longitudinal study involving 87 subjects. Accuracy values of 89% and 87% were obtained, respectively, for

the early prediction of AD conversion in a sample of 54 mild cognitive impairment subjects and in a sample of 87 subjects,

including 33 healthy controls. These results indicate that the proposed Deep-MEG approach is a powerful tool for detecting

early alterations in the spectral–temporal connectivity profiles and in their spatial relationships.

Keywords Alzheimer’s disease � Deep CNN feature transfer � Functional connectivity � Deep learning � Ensemble

classification � Magnetoencephalography

1 Introduction

Deep convolutional neural networks (CNNs) have become

very popular in recent years thanks to their ability to

decode images [1], video streams [2], and other biomedical

signals [3], including 2D and 3D neuroimaging data [4].

The use of CNNs, in fact, offers the possibility to recognize

the presence of patterns that other techniques are not able

to reveal. In clinical scenarios, when data availability is

limited, transfer learning (TL) can be applied to transfer the

knowledge, previously learned by the CNN, for solving

new problems faster or with different learning solutions

[5, 6]. By combining the merit of multiple classifiers,

ensemble learning can be an additional powerful instru-

ment to improve the performance of predictive models

[7–10].

Thanks to these advantages, the use of CNNs is

becoming predominant for the analysis of many types of

biomedical images, in particular for decoding encephalo-

graphic signals, in which it is important to recognize the

various neural activation patterns in relation to diseases.

Many studies [11–14] have used deep learning to 1D

electroencephalography (EEG) signals to reach this goal,

looking for solutions and architectures of different neural

networks in order to extract the most discriminating

features.
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In recent years, the analysis of brain activity has been

extended to an innovative technique, known as magne-

toencephalography (MEG) [15–18]. MEG is a powerful

non-invasive diagnostic tool that possesses the unique

advantage of providing a direct measure of the neural

activity of the pyramidal neurons in the brain, ensuring

high spatial and temporal resolutions (of order of mm and

ms, respectively), and a fast preparation time [18]. A set of

MEG recordings, together with the positions of the corre-

sponding sources, encompass complex high-dimensional

information on the brain network functioning, which can be

difficult to uncover via standard methodologies, as for the

case of the Alzheimer’s disease (AD).

AD is a neurodegenerative disorder and the most com-

mon form of dementia worldwide [19]. AD may start

decades before the symptoms occur and then gradually

evolve, with progressive alteration of cognitive and func-

tional abilities. A precursory condition to AD, named mild

cognitive impairment (MCI), is known to indicate a devi-

ation from normal aging and an increased risk of devel-

oping dementia in future [20]. MCI, which can be caused

by disorders other than AD (such as frontotemporal

dementia), can remain a stable condition over time

(stable MCI or sMCI), or finally progress to AD (pro-

gressive MCI or pMCI). The full-blown AD is a disabling

condition resulting from the synaptic disruption of local

and large-scale networks of the brain for which there is no

cure. Finding new methods to detect pre-symptomatic or

prodromal phases, i.e., pMCI, and predict earlier their

progression toward AD would facilitate the timely imple-

mentation of therapeutic strategies [26].

To date, the most effective approaches for early AD

diagnosis involve the use of invasive techniques such as the

cerebrospinal fluid analysis [21] or the positron emission

tomography (PET) [22, 23], which require performing a

lumbar puncture or the use of radioactive tracers, respec-

tively. Non-invasive diagnostic tools are being explored as

alternatives [24–28], with MEG representing a promising

technique to be taken into account [15–18]. In the fol-

lowing section, we report an overview of the state-of-the-

art methods relative to the analysis of MEG data, with

particular reference to the early AD diagnosis.

1.1 Literature review

Research on deep learning-based analysis of MEG signals

is in progress. Deep learning architectures have been

applied for artifacts removal [29] or to decode the brain

responses to a set of visual, auditory and somatosensory

stimuli [30]. In particular, Croce and colleagues [29]

derived spectra and 2D topographic representations of the

independent components (IC) of EEG and MEG record-

ings. The set of ICs was used as input to the convolutional

layers of a CNN for the automatic identification of arti-

facts. The obtained accuracy values outperformed the state-

of-the-art feature-based methods for artifact removal.

Zubrarev et al. [30] used a mixture of k-latent sources

based on a linear autoregressive model to represent the

MEG time courses. The authors designed two variants of

CNNs, 1D and 2D, to process the temporal dynamics of the

obtained signals and applied them to decode the brain

responses to a set of visual, auditory, and somatosensory

stimuli. Recently, Aoe and colleagues [31] proposed a deep

neural network, Mnet, which is based on the EnvNet-v2

[32], an architecture originally designed to classify envi-

ronmental sounds. By directly analyzing 160 channels of

raw MEG signal and the relative powers of six frequency

bands, the proposed approach achieved high level of

accuracy in the computer-aided diagnosis of spinal cord

injury and epilepsy.

Recent studies addressed the discrimination of mild

forms of cognitive impairment from healthy subjects. A

shallow neural network was used by Amezquita-Sanchez

et al. [33] to distinguish 18 MCI patients and 19 control

subjects. MEG frequency sub-bands were characterized via

ensemble empirical mode decomposition and permutation

entropy measures and then classified via an enhanced

probabilistic neural network (EPNN). In the work by

Lopez-Martin et al. [34], CNN models were used to decode

a large set of randomized features, i.e., mean, median,

standard deviation, mean absolute deviation, and range,

relative to the mutual information between paired MEG

time series and rearranged as 2D matrices. Their method

outperformed the classic machine learning approaches in

the classification of patients as MCI or healthy subjects.

A very promising tool for the neuroimaging research

community is represented by the MEG-based measures of

functional connectivity (FC) [15–17, 35–38]. FC analysis

can be performed in relation to different frequency bands,

and it is capable of providing a huge amount of information

on the relationship between the brain regions and on their

organization into large-scale networks. In fact, a reduced

[36, 37] or increased [15–17] synchronization between the

activities of key brain regions has been revealed in AD

patients by means of FC, posing MEG-based FC as a

promising biomarker to evaluate AD progression. The bio-

magnetic activity of AD patients, from a spectral per-

spective, is generally associated with changes in the h, b,
and a bands [39]. Similar patterns have been also observed

in the more severe forms of MCI [39], suggesting that

MEG-based spectral characteristics are fundamental indi-

ces for AD diagnosis. The b band oscillations, in particular,

have been proposed as quantitative indicators to predict the

progression to AD at the MCI stage [40–43], while higher

synchronization in low-frequency bands, e.g., the h band,
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has been observed in MCI groups as compared to the

control healthy groups [39, 44].

Recently, based on the analysis of the functional

strength between pre- and post-conversion MEG scans,

Pusil and colleagues [38] succeeded in automatically

detecting all the MCI subjects progressing to AD. Their

analysis was based on the multivariate connectivity phase

estimation (PCE) in five MEG frequency bands using both

pre- and post-conversion MEG data. However, the tem-

poral, power spectrum, and the topological properties of

MEG data seem to drive complementary information [17]

that can be further characterized and investigated to detect

AD earlier and before the symptoms occur. In fact, the

diagnostic prediction of the conversion of MCI to AD,

using MEG data of the asymptomatic at-risk stage, i.e., not

showing clinical evidence of AD, is still an open problem

[15–17, 36, 37]. To our knowledge, neither deep CNNs nor

ensemble architectures have been deployed to recognize

the FC alterations due to the early phases of AD. We

believe that deep learning can help decoding the more

subtle changes in the brain network activity occurring

during the early phases of AD progression, increasing the

predictive capability of the automated approaches to the

analysis of MEG data [45, 46].

1.2 The proposed method

In this work, we propose to exploit transfer learning via

pre-trained CNNs to decode FC maps, whose explicitness

to human eye is not trivial, with the aim to reveal the

topography of the neural activations based on MEG/MRI

data. Indeed, the key to uncover early signs of AD may be

hidden in the multidimensional nature of FC maps which

encode not only information on the electrical coupling

between spatially distant neuronal populations but also on

the way such neuronal activity is spatially distributed and

coordinated [15–17].

As a continuation of our preliminary study [47], in the

present work we take a step further in decoding the elec-

trophysiological anomalies occurring before the conversion

to AD (early diagnosis) by proposing a deep learning

approach, named Deep-MEG, which exploits the new

paradigm image-based coding of MEG/MRI data, and

different ensemble classification architectures. The pro-

posed methods include:

(1) The extraction of temporal, multi-frequency, and

spatial data from MEG recordings and MRI scan in

the form of FC maps;

(2) The novel coding of the FC maps into deep features

by using transfer learning;

(3) The implementation of an ensemble learning archi-

tecture to cooperatively combine the decision of

multiple predictive modules on the basis of different

FC mapping.

Deep-MEG differs from the other existing approaches in

the way the FC patterns of the brain network are decoded

by 2D CNNs. Being the FC maps used in our approach

topologically organized based on the subject-specific

MEG/MRI source reconstruction, Deep-MEG derives

information not only on the individual hypo- or hyper-

synchronization responses, but also on the 2D patterns

related to the spatial arrangement of FC values within the

maps, corresponding to an information route on the brain

connectome up to now unexplored [48]. Pre-trained deep

CNNs provide us the means to decode those FC patterns

via transfer learning, i.e., without the need for large data-

sets to set the network parameters at the training level.

Ensemble classifiers, in addition, led us to extend our

analysis to selected frequency bands, stressing the role of

definite spectral profiles activities that are associated with

different levels of AD progression [39–44].

To evaluate the predictive performance of the proposed

system, we performed quantitative experiments on data

from a longitudinal study from the Hospital Universitario

San Carlos (Madrid, Spain) [15], involving 54 MCI

patients (of which 27 pMCI patients who progressed

toward AD during a 3-year follow-up) and 33 healthy

controls (HC).

The rest of the paper is organized as follows. In Sect. 2,

we describe the characteristics of the subjects involved in

the study and the acquisition process of MEG recordings

and MRI scans. In Sect. 3, we describe the methods used in

our study. The preprocessing of spatial and temporal data

with the band-filtering operations, the different variants of

FC indicators and their mapping into FC images, the

derivation of deep spatiotemporal features based on Alex-

Net [49], and the ensemble learning architectures for the

two-class and three-class scenarios [50]. Experimental

results obtained with the proposed pipeline for investiga-

tion and comparison with other existing approaches are

reported in Sect. 4. Finally, a discussion of the results is

included in Sect. 5.

2 Materials

2.1 The case study

A total of 54 MCI patients were recruited from the Hospital

Universitario San Carlos (Madrid, Spain) [15], and 33

healthy controls were enrolled in this study after signing an

informed consent. In Table 1, we present the demographic

characteristics of the participants. All of them were right-

handed [51]. The study was approved by the Hospital
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Universitario San Carlos Ethics Committee (Madrid). A

diagnosis of MCI was made on 54 patients according to the

National Institute on Aging-Alzheimer Association (NIA-

AA) clinical criteria [52]. Additional 33 elderly healthy

subjects were included in the present work as control (HC).

Besides meeting the clinical criteria, MCI participants had

signs of neuronal injury (hippocampal volume measured by

MRI). Thus, they might be considered as ‘‘MCI due to

AD’’ with an intermediate likelihood [52]. The MCI

patients were cognitively and clinically followed up for

approximately 3 years (every six months) and were split

into two groups, i.e., sMCI and pMCI, according to their

clinical outcome. The sMCI group (n = 27) was comprised

of those participants that still fulfilled the diagnosis criteria

of MCI at the end of follow-up. The pMCI group (n = 27)

was composed of those subjects that met the criteria for

probable AD at the end of the follow-up [53]. None of the

participants had a history of psychiatric or neurological

disorders (other than MCI or AD). General inclusion cri-

teria were: age between 65 and 80, a modified Hachinski

score [54] B 4, a short-form Geriatric Depression Scale

score B 5, and T1 MRI within 12 months and 2 weeks

before the two MEG recordings without indication of

infection, infarction, or focal lesions (rated by two inde-

pendent experienced radiologists) [55]. Patients were off

those medications that could affect MEG activity, such as

cholinesterase inhibitors, 48 h before recordings.

2.2 MRI acquisitions

3D T1-weighted anatomical brain magnetic resonance

imaging (MRI) scans were collected with a General Elec-

tric 1.5 T MRI scanner, using a high-resolution antenna

and a homogenization PURE filter (Fast Spoiled Gradient

Echo, FSPGR, sequence with parameters: TR/TE/TI =

11.2/4.2/450 ms; flip angle 12�; 1 mm slice thickness; a

256 9 256 matrix; and FOV 25 cm).

2.3 MEG recordings

Weighted MEG recordings were acquired with a

306-channel Vectorview system (Elekta Neuromag) at the

Center for Biomedical Technology (Madrid, Spain). MEG

recordings were collected at the same time of the day in

two different periods:

(1) pre-conversion stage (54 MCIs and 33 HCs), at

baseline (first MEG);

(2) post-conversion stage (27 sMCIs and 27 pMCIs),

24 ± 6 months after the first MEG (second MEG).

In both the sets of MEG recordings, participants were in

an awake, resting state with their eyes closed. For each

subject, 5-min task-free data were recorded at a sampling

frequency of 1000 Hz. In the present study, the baseline

pre-conversion data are used to test the predictive power of

the system with reference to the early signs of AD in pMCI

subjects, i.e., when the dementia is still not present. Post-

conversion data in which signs of AD are clinically evident

in pMCI subjects but not in sMCI subjects are used for

comparative analysis.

3 Methods

A schematic representation of the pipeline of the proposed

platform is given in Fig. 1. The main characteristics of the

methods are as follows:

i. MEG recordings and MRI scan are processed to

derive temporal, multi-frequency, and spatial data.

The system receives as input a set of MEG record-

ings and corresponding MRI scan. Sensor-space

MEG signals are filtered in different frequency.

The MRI scan is used to reconstruct the MEG signal

at the neural sources and derive the spatial relation-

ships among the measured MEG time series [56–58].

The statistical interdependence between MEG sig-

nals measured at two or more spatially separated

brain regions is quantified through functional

Table 1 Mean (and SD) values

of the demographic

characteristics of the patients

analyzed in this study

sMCI

(n = 27)

pMCI

(n = 27)

HC

(n = 33)

Age (years) 71.52 (4.87) 74.73 (4.87) 70.73 (4.33)

Gender (females) 15 18 24

Education (years) 2.52 (1.25) 2.77 (1.30) 3.42 (1.09)

MMSE score (first MEG) 27.30 (2.12) 26.18 (3.29) 29.39 (0.86)

MMSE (second MEG) 26.19 (4.13) 23.65 (4.13) –

Patients are grouped as stable MCI (sMCI), progressive MCI (pMCI), and healthy controls (HC) at baseline

MMSE Mini-Mental State Examination
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connectivity (FC) indices [35], obtained as measures

of phase or envelope synchronization for different

frequency bands.

ii. FC is coded into image-based representations. The

intricate communication patterns among neuronal

populations are represented by the spatial arrange-

ments of pixel values in a set of FC images. Each

image is generated by mapping the variants of FC

indices into a topologically organized 2D space.

Different FC indicators or indicators of sub-band

frequencies are also combined into RGB images to

acquire a new set of deep CNN features that can

boost the classification performance. Hyper- or hypo-

activation patterns in the FC images reflect both the

topological organization and the functioning of the

brain network.

iii. Deep-MEG features are used to decode the FC

patterns. The information patterns in each generated

FC image, which represent the spatiotemporal inter-

dependence of signaling in the brain network, are

hierarchically decomposed by means of the CNN

layers of AlexNet [49], which is used as baseline

architecture for deep features extraction. Relevant

features are automatically selected in relation to the

classification task. The obtained deep spatiotemporal

features allow a new representation of the intricate

structure of MEG-based FC that standard engineered

features may fail to extract.

iv. An ensemble learning architecture combines the

decision of multiple predictive modules. The

obtained variants of FC images, also relative to

different frequency bands, are used to train a set of

base-predictive modules with linear discriminant

analysis (LDA) or support vector machine (SVM)

classifiers [50]. Each base classifier receives the

relevant deep features automatically selected from a

single FC image. The predictive scores of the base

classifiers are then combined to derive the final

assignment.

3.1 Artifacts removal, segmentation, and band
filtering

MEG recordings were first band-pass-filtered online

between 0.1 and 330 Hz. Then, the Maxfilter software

(Elekta Neuromag� v2.2, correlation threshold = 0.9, time

window = 10 s) was used to remove external noise of the

raw MEG data with the temporal extension of the signal

space separation method with movement compensation

[59]. MEG data were automatically scanned for ocular,

muscle, and jump artifacts using the Fieldtrip software

[56]. Subsequently, artifacts were visually confirmed and

removed by a MEG expert. The remaining artifact-free

data were segmented in 4 s segments (epochs), as shown in

Fig. 1. An independent component analysis-based proce-

dure was used to remove the heart magnetic field artifact.

Previously to source data calculation, MEG signals were

filtered into h (4–8 Hz), a (8–12 Hz), b (12–30 Hz), and c
(30–55 Hz) frequency bands with a 1800-order finite

impulse response filter with Hamming window and a two-

pass filtering procedure. Being the beta band very wide, for

some analyses it was useful to further divide it into b1
(12–20 Hz) and b2 (20–30 Hz).

Fig. 1 Schematic representation of Deep-MEG: a system for investigating the early signs of Alzheimer’s disease in MEG based on deep

spatiotemporal features and multi-frequency ensembles
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3.2 Source reconstruction and brain parcellation

We employed Freesurfer software (version 5.1.0.21) [60]

to obtain the cortex, skull, and scalp segmentation. A

regular grid with 10-mm spacing was created in the

brain template from the Montreal Neurological Institute

(MNI). This set of nodes was transformed to each partici-

pant’s space using a nonlinear normalization between the

native T1 image (whose coordinate system was previously

converted to match the MEG coordinate system) and a

standard T1 in the MNI space. The forward model was

solved with a single-shell method [61] with a unique

boundary defined by the inner skull (the combination of

white matter, gray matter, and cerebrospinal fluid) taken

from the individual T1. We carried out the source recon-

struction independently for each subject and frequency

band, using a linearly constrained minimum variance

(LCMV) beamformer [62]. Beamforming filters were

estimated with normalized lead fields, regularized covari-

ance matrices averaged over trials, and a 1% regularization

factor (Fig. 1). The neural MEG sources so derived were

anatomically parcellated by dividing the cortex into 90

regions of interest (ROIs) according to the AAL atlas [58]

as shown in Fig. 1.

3.3 Functional connectivity analysis

The spatial, temporal, and band-filtered data extracted

through the MEG recordings and the MRI scans were

analyzed to quantify the way in which the information is

processed within the brain. For each frequency band, FC

measures, named phase locking value (PLV) [63] and

magnitude coefficient (MC) [64, 65], were computed

starting from the combinations of pairs of signals derived

from the 90 ROIs in which the brain cortex was parcel-

lated. Details on the computation of individual FC mea-

sures are reported in Appendix.

Based on the time series used for the computation of the

FC measures and on the averaging strategy along time, a

set of seven different FC indices was obtained as follows.

Two representative sets of the band-filtered time series

were considered: the cent signal and the pca signal. For the

case of the cent signal, the geometrical centroid was

computed for each ROI and the signal obtained from the

closest source to the centroid was considered. To obtain the

pca signal, the signals measured from the same brain area

were subjected to a principal component analysis and the

first principal component was considered. With the

obtained combinations of signals, we extracted the FC

measures for each pair of 4 s segment and finally obtained

the average value along the segments.

An additional set of FC values was considered, the intra-

ROI FC. In this case, the time series of all the sources

pertaining to each ROI were used to estimate the FC

indices among each combination of seed-test sources and

finally a single average value has been extracted for each

ROI.

Two different versions of the MC index, named MCma

and MCam, were derived with respect to the 4 s segments of

the series. The MCma was obtained by computing the mean

of the Pearson complex correlation values among the

segments first and then the absolute value, while the MCam

was obtained by computing the absolute value of the

complex Pearson correlation for each segment and then

averaging the obtained results. The set of seven FC indices

so derived are summarized in Table 2.

3.4 Derivation of image-based representations
of FC

For each MEG sample and for a given a FC index, the

measures computed between all possible pairs of ROIs, 90

in total, were topologically arranged into a 90 9 90 matrix.

For each frequency band, seven FC maps corresponding to

the seven FC indices, i.e., PLV cent, PLVpca,

Intra ROIPLV, MC centma, MC pcama;MC centam, and

MC pcaam, with pixel values in the range [0,1] were

derived. The h, a, b, and b1 frequency bands were con-

sidered in this study, so that a total of 28 FC maps were

generated per MEG sample. We rendered each map as a

digital image, in which the topological arrangement of FC

values and their spatial coordinates on the x-axis and the y-

axis carry meaningful information. Such information,

which is relative to the intricate communication patterns

among neuronal populations, has not been fully investi-

gated by previous MEG studies for AD diagnosis. In fact,

MEG-based FC analysis has been addressed, up to now, by

means of standard features-based approaches, without

contemplating the spatial information contained in the FC

maps [15–17, 36, 37]. In Fig. 2, three examples of MCcent

maps in the b band are reported for a control case, as MCI

patient and a pMCI patient, respectively. Although globally

similar, it can be noted that the maps contain sub-regions of

hyper or hypo-activation which provide information on

both the amount of activation and the spatial location of the

neuronal populations. Once derived for multiple frequency

bands and for different FC indices, the set of images pro-

vides a direct visual representation of the neuronal activity

ready to be decoded.

A further image-based representations, named RGB,

was generated by combining multiple FC indices and fre-

quency bands, as shown in the graphical representation of

Fig. 3. In fact, given the symmetrical nature of the FC
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maps, data integration at the level of diagonal values and as

triangular portions could reduce redundancy or lack of

information. The discriminative power of different

combination of features was checked at the classification

level, and the best image-based representation was

obtained by integrating the b1 sub-band frequency as the

Table 2 Summary of the functional connectivity (FC) indices used in this study

Name Description

PLV cent Phase locking value [63] on the centroid signals

PLV pca Phase locking value [63] on the pca signals

Intra ROIPLV Phase locking value [63] of all the sources pertaining to each ROI

MC centma Magnitude coefficient [64, 65] on the centroid signals (average of the absolute values over the 4 s segments)

MC pcama Magnitude coefficient [64, 65] on the pca signals (average of the absolute values over the 4 s segments)

MC centam Magnitude coefficient [64, 65] on the centroid signals (average over the 4 s segments before computing the absolute value)

MC pcaam Magnitude coefficient [64, 65] on the pca signals (average over the 4 s segments before computing the absolute value)

Fig. 2 Examples of functional connectivity images relative to the MC cent indices in the b band for a a control case, b a sMCI patient, and c a
pMCI patient

Fig. 3 Generation of the RGB

image-based representation of

functional connectivity
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complementary triangular portion of the b band for the

MC cent indicator and by substituting the ones on the

main diagonal in each color channel with the intra-ROI P

LV for the b1 sub-band frequency, as illustrated in Fig. 3.

After distributing the two image-based representations of

the MC cent, i.e., MC centma and MC centam, in different

RGB channels, the RGB images so derived reduce redun-

dancy by integrating multiple levels of data but all per-

taining a similar information content in terms of frequency

band. This choice, made at the pre-conversion stage, is

consistent with the results reported by previous studies in

the field [40]. In particular, b oscillations are believed to

maintain the sensorimotor and cognitive state of an indi-

vidual [41], with the motor performance that is impaired in

AD, but not in MCI [42, 43], thus confirming the prominent

role of the b band in the early detection of AD. We will

see, in Sects. 4.1.1 and 4.1.2, that the phase synchrony in

the b and b1 bands will be pivotal, also in the forms of

individual FC maps, to discriminate the sMCI from the

pMCI cases at the pre-conversion stage.

3.5 Deep-MEG feature transfer

The design of convolutional and pooling layers and their

integration in deep learning architectures have boosted the

performance of digital image classification in so many

different scenarios, which have become the preferred

choice for image analysis. In fact, with CNN, it is possible

to extract meaningful image features automatically once

the parameters of convolutional and pooling layers have

been tuned and learned from big datasets of images, a

procedure known as deep-feature transfer [5, 6]. Among

the existing deep neural networks, AlexNet [49] is a large

network structure with 60 million parameters and 650,000

neurons, consisting of five convolutional layers, most of

them followed by max-pooling layers, and of three fully

connected layers with a final 1000-way softmax layer for

classification into 1000 classes. For our purposes, pre-

trained AlexNet was used as a feature extractor without

retraining the architecture, as shown in Fig. 1. After pre-

liminary tests with other existing pre-trained CNNs pro-

viding comparable results, AlexNet was chosen due to its

reduced number of intermediate descriptors. In particular,

the pooled Conv5 layer was used to characterize the fine-

grained structures present in MEG images and to decode, at

the appropriate level of abstraction, the relatively simple

patterns of interest [6].

For each patient, the image-based representations of FC

were resized to a size of [227 9 227] pixels matrix using

bicubic interpolation, and then, CNN feature transfer was

performed using the pre-trained AlexNet architecture. The

pooled Conv5 features so derived represent not only the

individual values of the FC indicators for the relative

frequency band but also their spatial arrangements and the

generated patterns within the FC images. Dimensionality

reduction on the features so derived was performed using

standard deviation [66]. As the amount of dispersion of the

deep features from their mean value should be indicative of

higher information content and discrimination capability,

only the features with a standard deviation higher than a

given threshold were retained. The final subset of relevant

features was selected using stepwise regression [68] with

the training data of each round of cross-validation.

3.6 Classification

Linear discriminant analysis (LDA) and support vector

machines (SVMs) were used as classification algorithms

[43] with the scope of classifying MEG recordings relative

to each patient as HC or sMCI or pMCI. For each fre-

quency band and FC image, including the RGB images, the

overall procedure was applied and the results obtained for

each classification task are reported and discussed in

Sects. 4 and 5 in terms of accuracy and area under the ROC

curve. Leave-one-patient-out (LOPO) was used for cross-

validation of results, and the classification was performed

on a per-patient basis. Additional cooperative classification

rules were designed to aggregate, at the test level, the

assignment of base classifiers or ensemble modules trained

with the image-based representations of FC. Further details

are given in the following paragraph.

3.7 Cooperative classification

For the binary classification of MEG recordings as sMCI or

pMCI, at the post- and pre-conversion stages, ensemble

classifiers were derived to combine the probability scores

of individual Deep-MEG modules (see ensemble #1 shown

in Fig. 4a). For the more complex classification scenario

including the MCI subjects at the pre-conversion stage and

the HC subjects, a different ensemble architecture between

two suboptimal binary classifiers was derived to aggregate

the assessment of the individual Deep-MEG modules

(ensemble #2 shown in Fig. 4b). With the second derived

architecture, it was possible to detect the early signs of AD

within a more complete scenario in which different rates of

progression of the cognitive impairment (CI), going from

absence of CI (in HC subjects) to pre-symptomatic AD

phases (in pMCI subjects), were present.

3.7.1 Deep-MEG ensemble #1

An ensemble architecture was used in which base classi-

fiers receive as input different FC images, also relative to

diverse frequency bands, and are trained independently

with the same set of patients. The outputs of individual
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classifiers, i.e., the probability scores of belonging to each

class, are combined to derive the final assignment. In

particular, the average values among the probability scores

assigned to each class by the base classifiers were com-

puted, and the sample was assigned to the class with the

maximum obtained value between the two, as shown in

Fig. 4a. Ensemble classifiers were obtained for discrimi-

nating the pMCI from the sMCI at both the pre- and post-

conversion stages, as well as for discriminating HC from

each of the two MCI classes.

3.7.2 Deep-MEG ensemble #2

The cooperative decision-making procedure, shown in

Fig. 4b, is based on an AND logic between two base

classifiers: one trained with the RGB images on MCI

subjects for the discrimination of sMCI from pMCI patients

and the other trained with the PLVcen map in the h band, for
the discrimination of HC from MCI patients. At the test

level, a consensus mechanism is applied between the two

classifiers so that the sample is assigned to the pMCI class

only if both classifiers agree, i.e., if the probability scores

of belonging to the pMCI and MCI classes are both higher

than 0.5. The sample is assigned to the HC class if the

probability score of belonging to the HC class is higher

than 0.5; otherwise, the sample is assigned to the sMCI

class.

The h band has been chosen, in the present ensemble

architecture, for the discrimination of HC from MCI

patients due to its discrimination capability in preliminary

tests and because changes in the h band have been reported

in the literature as indicative of MCI [39, 44]. In particular,

the studies conducted by Lopez et al. [39, 44] outlined a

hyper-synchronization of the h band in MCI patients

compared to the control subjects in resting state, which was

also related to hippocampal atrophy and to lower global

cognitive status. The increase in h power is also considered

as the most stable pattern of EEG activity in MCI patients

[39], claim that has been confirmed by the present and the

other studies on MEG signals [39, 44].

4 Results

In this section, the obtained results are presented for dif-

ferent classification scenarios. First, we report the results

obtained for the classification of MEG recordings of the

MCI subjects as sMCI or pMCI with respect to two clas-

sification approaches: (1) individual Deep-MEG classifiers

based on different FC maps and on the RGB images (2)

Deep-MEG ensemble #1. Finally, for the early detection of

AD within a more complete scenario also including HC

subjects, the results obtained with ensemble #2 are repor-

ted. Results are labeled as post-conversion when the MCI

data include pMCI patients who met the criteria for prob-

able AD and as pre-conversion when the pMCI patients

were still clinically undistinguishable from the sMCI

patients.

Fig. 4 Ensemble architectures proposed for classification of MEG

recordings based on Deep-MEG features and image-based represen-

tations of FC. a Ensemble #1: ensemble architecture for binary

classification. b Ensemble #2: cooperative architecture based on AND

Logic and the RGB images for the three-class scenario of HC vs

sMCI vs pMCI at the pre-conversion stage
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4.1 Classification of MEG recordings as sMCI
or pMCI

4.1.1 Individual Deep-MEG modules

The results obtained with individual FC maps are first

considered, and the frequency bands and image-based

representations of FC that are relevant for each classifica-

tion task, are reported.

In Fig. 5, we show the accuracy obtained at the post-

conversion (a) and pre-conversion stages (b, c) for the

classification of MEG recordings as sMCI or pMCI using

LOPO. The results obtained with LDA and SVM and rel-

ative to the three best FC maps are reported for both sce-

narios in Fig. 5a, b. For the post-conversion stage, when

the signs of AD are clinically evident in pMCI patients,

accuracy values of 0.78, 0.87, and 0.70 were obtained with

the h, a, and b1 bands, respectively, and the PLV pca,

PLV cent, and MC centam FC maps, using LDA. The

obtained values are reported together with the values of

accuracy obtained using SVM (Fig. 5a). For the pre-con-

version stage (Fig. 5b), accuracy values of 0.74, 0.78, and

0.76 were obtained with the b, b1, and b bands, respec-

tively, and the MC centma, MC centam, and MC centam
FC maps. For both post- and pre-conversion stages, the rest

of FC maps or frequency bands provided lower results

when decoded individually by a single classifier.

For the pre-conversion stage, using a single classifier

based on the RGB images as image representation of FC,

accuracy values of 0.89 and 0.87 were obtained, respec-

tively, with LDA and SVM. The confusion matrix obtained

with LDA is reported in Fig. 5c. The FC indicators and

relative frequency bands used to derive the RGB images

are summarized in Table 3. The RGB-based Deep-MEG

model was trained using three deep-features, on average,

selected in each round of LOPO cross-validation.

4.1.2 Deep-MEG ensemble #1

Ensemble decisions were obtained by aggregating the

probability scores of individual base classifiers (i.e., indi-

vidual classifiers, LDA or SVM, of the Deep-MEG mod-

ules receiving as input a single FC map), as described in

Sect. 3.6 and as illustrated in Fig. 4a. The FC maps per-

forming the best with individual Deep-MEG modules in

the post- and pre-conversion stages have been chosen to

derive the corresponding ensembles. The FC indicators

used to derive the image-based representations, or FC

maps, are reported in Table 3: MC centam in the b and b1
were used in the pre-conversion ensemble; PLV cen,

PLV pca, and MC centam, respectively, in the a, h, and b1
frequency bands were selected for the post-conversion

ensemble.

The contribution of the b and b1 bands at the pre-con-

version stage confirms their role in the discrimination of

sMCI from the pMCI cases [40–43]. Regarding the post-

conversion stage, our analyses revealed that the phase

synchrony in the a band serves as a predominant sign of

AD only in symptomatic patients. In fact, a hyper-syn-

chronization in the a band between the anterior cingulate

region and the temporo-occipital region of pMCI patients

as compared to sMCI was also reported by previous studies

[16, 17] and seems to be correlated with cognitive per-

formance. Two are the possible mechanisms behind such

hyper-synchronization: (1) a compensation mechanism in

response to the presence of compromised brain circuits in

other brain areas; (2) the loss of GABAergic synapses

caused by the accumulation of bamyloid plaques leading to

establish aberrant relationships between the areas affected

by the AD, which are hence the result of an inhibitory

deficit [16]. The presence of the phase synchrony map in

the h band confirms, as reported in Sect. 3.7.2, its role in

the recognition of MCI and, in this case, in the

Fig. 5 Results obtained with individual Deep-MEG modules. a, b Bar

diagrams of the accuracy values obtained for classification of MEG

recordings as sMCI or pMCI at the a post-conversion stage and b pre-

conversion stage based on individual FC maps. For each stage, the

results obtained with leave-one-patient-out cross-validation and

relative to the three best FC maps are shown for LDA and SVM.

c Confusion matrix obtained with the RGB images at the pre-

conversion stage using a SVM classifier
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discrimination of sMCI from MCI progressed toward AD,

i.e., pMCI at the post-conversion stage.

The results obtained for classification of MEG patients

as sMCI or pMCI are shown in Fig. 6a in terms of accuracy

for LDA and SVM base classifiers and in Fig. 6b and c in

terms of confusion matrices. For the post-conversion stage,

accuracy values of 0.93 and 0.85 were obtained with LDA

and SVM, respectively (Fig. 6a). In Fig. 6b, the confusion

matrix relative to LDA indicates a sensitivity of 0.93 for

the pMCI cases, which correspond to patients with evident

signs of AD, and specificity of 0.93. For the overall

ensemble architecture, 42 deep features have been auto-

matically selected, on average, to train the base classifiers.

For the pre-conversion stage, the histogram in Fig. 6a

indicates the accuracy values of 0.89 and 0.87 obtained

with the ensemble classification of MEG recordings as

sMCI or pMCI with LDA and SVM, respectively. In this

case, sensitivity of 0.89 and specificity of 0.78 were

obtained, as reported in the confusion matrix in Fig. 6c,

and 16 deep features were automatically selected, on

average, to train the base classifiers.

4.2 Early prediction of AD

4.2.1 Deep-MEG ensemble #2

The aggregation method, named ensemble #2, was used for

the classification scenario that included the HC subjects.

An AND logic was used to derive the final assessment at

the pre-conversion stage, as described in Sect. 3.7 and

shown in Fig. 4b. In addition to the RGB images, which

encode multiple FC indicators in the b and b1 bands, also
the information of the PLVcent in the h band was taken into

account. The accuracy results obtained with ensemble #2

are reported in Fig. 6 relative to LDA.

For the three-class classification, an accuracy of 0.74

was obtained (Fig. 7a). For the overall ensemble, eight

deep features were automatically selected, on average

during the rounds of LOPO cross-validation, to train both

Table 3 Image-based representations of FC, or FC maps, received as input by the ensemble classifiers and by the RGB images used for the

classification of MEG recordings as sMCI or pMCI at the post- and pre-conversion stages

Pre-conversion—RGB Pre-conversion—ensemble #1 Post-conversion—ensemble #1

FC index Frequency band FC index Frequency band FC index Frequency band

MC centam b1 MC centam b1 PLV cent a

MC centam b MC centam b PLV pca h

MC centma b1 MC centam b1
MC centma b

Intra-ROI P LV b1

The FC indices and frequency bands from which the images were derived are indicated

Fig. 6 Results obtained with the Deep-MEG ensemble #1. a Bar

diagrams of the accuracy values obtained for classification of MEG

recordings as sMCI or pMCI at the post-conversion stage (blue and

orange) and at the pre-conversion stage. For each stage, the results

obtained with LOPO cross-validation and relative to the three best FC

maps are reported for LDA and SVM. b, c Confusion matrix at the

post-conversion stage and pre-conversion stage obtained with Deep-

MEG modules of LDA classifiers
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base classifiers (three for the classifier receiving as input

the RGB images and five for the classifier receiving as

input the PLVcent maps in the h band).

The ROC curves relative to the individual base-ensem-

ble classifiers, each trained to solve a specific binary

classification task, are reported in Fig. 7b. An AUC of 0.90

was obtained for the classification of MEG recordings as

sMCI or pMCI by the Deep-MEG module based on RGB

images and an AUC of 0.83 was obtained for the classifi-

cation of MEG recordings as HC or MCI using the PLVcent

map in the h band (Fig. 7b). Similar results were obtained

using SVM. With the sole PLVcent map in the h band, when
received as input by a single Deep-MEG-based classifier,

accuracy value of 0.80 was obtained. For the discrimina-

tion of pMCI cases from the rest of the cases, i.e., HC ?

sMCI, accuracy of 0.87 and a sensitivity of detection of

0.82 were obtained with ensemble #2, as shown by the

confusion matrix in Fig. 7c.

4.3 Comparative analysis

In this paragraph, the results obtained with the proposed

approach are compared with the results obtained with the

standard classification approach, i.e., when the FC indices

were used as data for feature selection and classification

without contemplating the information encoded in the

spatial arrangement of pixel values. When the FC indica-

tors were automatically selected at the training level using

stepwise feature selection, we did not obtain any satisfac-

tory results. To derive better results, the set of FC indica-

tors with AUC values higher than a given threshold was

considered to increase the classification performance of the

standard approach and select the best combination of

features. When single types of FC indicators were used, the

higher results were 0.83 and 0.77 for the classification of

sMCI and pMCI in the post- and pre-conversion phases,

respectively, as compared with accuracy values of 0.87 and

0.78 obtained with individual Deep-MEG classifiers. In

addition, for each classification scenario, multiple types of

FC indicators and frequency bands were used and com-

bined as a single feature vector. In this case, after selection

based on AUC, accuracy values of 0.85 and 0.83 were

obtained, for the classification of sMCI and pMCI in the

post- and pre-conversion phases, respectively, as compared

to accuracy values of 0.93 and 0.89 obtained with the

proposed Deep-MEG approach. With the standard

approach in the three-class scenario, we did not obtain

satisfactory classification results. The best results obtained

with the comparative analysis are reported in Table 4.

5 Discussion

We have presented a deep-feature transfer approach,

named Deep-MEG, and a set of ensemble classification

architectures for decoding MEG recordings based on a new

visual perspective on FC for the early diagnosis of AD.

Image-based representations of FC were derived starting

from the MEG time series. The MEG signals were first

processed and filtered to derive meaningful data for FC

analysis and to quantify the spatiotemporal characteristics

of the brain connectome, in conjunction with the anatom-

ical information encoded in the MRI scans, as described in

Sects. 3.1 and 3.2. Different versions of the PLV and MC

indices were computed as FC descriptors and organized as

RGB images, also relative to multiple frequency bands (see

Fig. 7 Results obtained with ensemble #2 for the early detection of

AD. a Confusion matrix obtained for classification of MEG record-

ings as HC, sMCI, or pMCI. b ROC curves and corresponding AUC

values obtained at pre-conversion stage using the two base

classification modules composing the ensemble. c Confusion matrix

obtained for classification of MEG recordings as pMCI or the rest. All

the results are relative to the pre-conversion phase
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Sects. 3.3 and 3.4). Such images could be received as input

data by the pre-trained CNN and pooling layers in the

AlexNet network, used as feature extractors and decoders

of FC patterns, as described in Sect. 3.5. Cooperative

decision architectures among Deep-MEG modules allowed

the integration of the brain signaling at multiple levels of

frequency bands to derive increased performance (see

Sect. 3.7).

The main novelty of the proposed study is the analysis

of the MEG-FC patterns of the brain network via deep

CNNs. We have shown that the information on the hypo- or

hyper-synchronization is conveyed not only by the FC

values, but it is also embedded in their spatial arrangement

as FC maps, which gave us additional information on the

connectome disruption related to AD. Individual Deep-

MEG modules (see Sect. 4.1) allowed the discrimination of

sMCI and pMCI patients at the post- and pre-conversion

stages, with accuracy values of 0.87 and 0.78, respectively,

using the PLV cent in the a band and the MC centam in

the b1 band. For the binary classification of MEG record-

ings as HC or MCI, using a single Deep-MEG module

based on the PLVcen map in the h band, we obtained an

accuracy of 0.80.

A composed image, named RGB, was designed to

encode multiple levels of information also avoiding

redundancies. The new set of deep features so extracted,

boosted the classification performance at the pre-conver-

sion stage to 0.89. In this scenario, we found that when data

were integrated in different color channels of a single

image, the encoded information has to be similar and

homogeneous to guarantee appropriate decoding by the

CNNs, i.e., indicators relative to the b and b1 bands.
As the connectivity patterns of different frequency

bands were unique and differently informative in terms of

activation patterns, multiband ensemble classifiers were

used to integrate the information encoded in different

image-based representations (see Sect. 4.2). By averaging

the probability scores of the best image representations of

FC at the decision level, increased accuracy values, i.e.,

0.93 and 0.83 for the post- and pre-conversion stages,

respectively, were obtained for the binary classification of

MEG recordings as sMCI or pMCI. These results showed

the fundamental role of integrating heterogeneous and

diverse data (at the spatiotemporal and frequency levels)

for better representation and decoding of the brain func-

tional connectivity.

In our experiments in the three-class scenario also

including the HC cases, none of the single image-based

representations of FC was effective, neither was ensemble

#1 among Deep-MEG modules based on LDA or SVM

classifiers. More importantly, it was not possible to detect

the pMCI cases at the pre-conversion stage, when also HC

cases were present, i.e., the discrimination of pMCI cases

from the HC and sMCI, that is the main goal for early

detection of AD. The reasons of this finding may lie in the

fact that the dynamic activity of the brain network in

relation to diverse clinical conditions possesses diverse

manifestations in terms of spatiotemporal and frequency

responses and that the information relevant to each binary

sub-problem are encoded into different frequency bands or

FC indicators. Therefore, we used another ensemble logic,

named ensemble #2, in which two classification modules

solve the two different sub-tasks, as described in Sect. 3.6.

Finally, we used an AND Logic to aggregate the assess-

ment of the individual predictors. For the three-class

results, accuracy value of 0.74 was obtained. The best

discriminated class was the pMCI, with a percentage of

detection of 0.82. The sMCI cases were mostly confounded

with the HC cases. As the sMCI possess different severity

levels, which may lie on a continuum from the cognitive

perspective [68], different levels of cognitive impairments,

in turn, may be associated with different FC connectivity

patterns, some of which resulted to be similar to those of

the HC cases. This is not surprising, especially considering

the stability in terms of AD conversion of the sMCI cases

over the three years of observation. When the HC and

sMCI were considered as a single class (Fig. 7c), the

accuracy of classification of ensemble #2 increased up to

0.87, maintaining a sensitivity for the pMCI class at 0.82.

Ensemble #2 is the result of cooperation of only two Deep-

MEG-based classifiers trained, on average, with eight deep

features automatically selected during the rounds of LOPO

cross-validation from the RGB images and the PLVcent

map in the h band. Data diversity and cooperation at the

decision level were crucial to boost the recognition of

pMCI cases at the pre-conversion stage and discriminate

them from the HC and sMCI cases.

Table 4 Comparative analysis

using LOPO cross-validation
Deep-MEG Standard approach

sMCI versus pMCI (post-conversion) 0.93 0.85

sMCI versus pMCI (pre-conversion) 0.89 0.83

HC versus sMCI vs pMCI 0.74 0.57

Best accuracy values obtained with the proposed Deep-MEG approach, based on CNN features and

classification ensemble, and with the standard approach based on FC indices used as feature descriptors
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We have also shown that the proposed combination of

deep spatiotemporal features and multiband ensemble

classification showed superior performance as compared to

other existing methods, including the standard approach to

the analysis of FC, in which the FC indicators, also relative

to different frequency bands, are used as feature descrip-

tors. This was verified with respect to multiple combina-

tions of FC features, even when the best FC features were

selected on the complete pool based on their individual

AUC values.

We tested multiple combinations of image representa-

tions of FC, and the higher results are reported in this

study. A major advantage of this approach is that the

learned models can be interpreted in neurophysiological

terms. The results obtained with the present study support

the notion of different functional brain connectivity pat-

terns associated with different rates of progression and

conversion to AD [68]. In line with other work in the lit-

erature [15, 16, 39–44], we have observed the role of

specific frequency bands as potential biomarkers for the

different phases of progression of the disease. In particular,

a different set of FC images and frequency bands was

determinant for the two ensemble classifiers relative to the

post- and pre-conversion phases. In fact, at the post-con-

version stage, our results indicate that the phase synchrony

in the a band can serve as a predominant sign of AD in

symptomatic patients [15, 16], while, at the pre-conversion

stage, the results indicate evidence of changes in the pat-

tern signs relative to the amplitude correlation in the b and

b1 bands among the MEG signals [40–43]. Moreover, the

discrimination of the HC cases from the MCI cases,

instead, was favored by the presence of the FC indicators in

the h band [39, 44], which were not informative for the

sMCI vs pMCI scenario in the pre-conversion phase

(Table 3).

To further validate the platform, it would be important

to test the proposed methods in a larger study. In the pre-

sent work, to avoid overfitting, we extracted the deep data

features from a pre-trained AlexNet architecture. Such

features were automatically selected at the training level

within rounds of LOPO cross-validation, thus allowing the

training of simpler LDA or SVM classification modules

based on a small set of features. In addition, our effort was

devoted to identify the important MEG-based FC repre-

sentations that inform classification (top–down approach)

as the aggregation was performed using the best combi-

nations of FC maps. The results obtained using knowledge-

based computer vision techniques can be used as reference

for deriving possible biomarkers for AD (down–up

approach).

The results obtained in the present work compare

favorably with the standard approach, in which the FC

indicators are used as mono-dimensional training features,

and with previous studies in the literature on the pre-con-

version phase based on MEG data [17] or other imaging

modalities [22, 23], posing the basis for further investiga-

tions on the proposed Deep-MEG architectures.

6 Conclusions

MEG provides the unique advantage of measuring the

brain function with a remarkable combination of spatial

and temporal resolutions. With this work, we have pre-

sented a novel system for decoding MEG recordings based

on image-based representations of FC, deep CNN features,

and ensemble classification architectures. The proposed

methods for deriving and codifying the MEG-based FC

measures allow the generation of pictures that represent,

visually and numerically, the intricate communication

patterns among spatially separated brain regions, which

could be decoded by deep CNN features. The derivation of

different cooperative architectures for integrating the spa-

tiotemporal and multi-frequency information encoded in

such images was the key to recognize the early alterations

of the brain connectome relative to patients who undergo

conversion to AD over a 3-year follow-up period.

In future, the analysis in resting state used in the present

work may be extended with the analysis of other task-

related activation patterns in order to optimize future

applications of Deep-MEG architectures for predicting

early signs of AD. Our findings may also have implications

for the use of MEG-based FC as a biomarker in therapeutic

trials. Finally, the proposed methods can be applied in

other predictive scenarios to decode early signs of diverse

neurodegenerative or neuropsychiatric diseases as well as

to decode EEG signals.

Appendix

Derivation of the FC indices

We initially computed the analytic signal associated to the

time series based on the Hilbert transform.

The analytic signal, sAN tð Þ, of a real-valued signal, s tð Þ,
is a complex-valued signal defined as [69, 70]:

sAN tð Þ ¼ s tð Þ þ isH tð Þ ¼ As tð Þ � eius tð Þ ðA1Þ

where the real part corresponds to the original signal, and

the imaginary part, sH tð Þ, is the Hilbert transform of s tð Þ,
defined as:

sH tð Þ ¼ 1

p
PV r

1

�1

s sð Þ
t � s

ds ðA2Þ
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with PV the Cauchy principal value. From Eq. (A1),

As tð Þ and us tð Þ are the instantaneous amplitude and the

instantaneous phase, respectively, of the analytic signal.

The Phase Locking Value (PLV) [63] was computed as

FC measure of phase synchrony, since it quantifies how the

phase difference between two signals is preserved during

the time course. First, the instantaneous phase u tð Þ has

been extracted for each of the 4 s segment of the series,

s(t). Finally, starting from pairs of analytic signals, The

PLV between two time series was evaluated with the fol-

lowing expression:

PLV ¼ eiDurel tð Þ
�
�

�
� ¼ 1

N

XN

n¼1

eiDurel tnð Þ

�
�
�
�
�

�
�
�
�
�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosDurel tð Þ
2þ sinDurel tð Þ

2
q

ðA3Þ

where N indicates the number of time points, h•i the

time average and Durel tnð Þ the cyclic relative phase, i.e.,

the difference between the instantaneous phases of the two

signals, bounded in the interval [0-2p). PLV ranges from 0

to 1; a value close to 0 reflects the relative phase is uni-

formly distributed (or the phase distribution has n peaks at

values which differ by (2p)/n), while a value of 1 indicates

perfect phase locking between the time series.

As a second index of co-variability between two signals,

we evaluated the magnitude of the complex Pearson cor-

relation between the analytic signals associated to the time

series [64, 65], that we refer to as the Magnitude Coeffi-

cient (MC):

MC ¼
PN

n¼1 sAN;1 tnð Þhis�AN;2 tnð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

n¼1 sAN;1 tnð Þ � s1�AN;2 tnð Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
n¼1 sAN;1 tnð Þ � s�AN;2 tnð Þ
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where the superscript * denotes the complex conjugate.

The MC gives a measure of the strength of the linear

relationship between the envelopes of the signals, in a scale

that ranges from 0 to 1.
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Núñez P, Garcı́a M, Fernández A, Hornero R (2018) Alterations

of effective connectivity patterns in mild cognitive impairment:

an meg study. J Alzheimers Dis 65(3):843–854

37. Yu M, Engels MMA, Hillebrand A, van Straaten ECW, Gouw

AA, Teunissen C, van der Flier WM, Scheltens P, Stam CJ (2017)

Selective impairment of hippocampus and posterior hub areas in

Alzheimer’s disease: an MEG-based multiplex network study.

Brain 140:1466–1485
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