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Abstract
In this paper, we break with the traditional approach to classification, which is regarded as a form of supervised learning.

We offer a method and algorithm, which make possible fully autonomous (unsupervised) detection of new classes, and

learning following a very parsimonious training priming (few labeled data samples only). Moreover, new unknown classes

may appear at a later stage and the proposed xClass method and algorithm are able to successfully discover this and learn

from the data autonomously. Furthermore, the features (inputs to the classifier) are automatically sub-selected by the

algorithm based on the accumulated data density per feature per class. In addition, the automatically generated model is

easy to interpret and is locally generative and based on prototypes which define the modes of the data distribution. As a

result, a highly efficient, lean, human-understandable, autonomously self-learning model (which only needs an extremely

parsimonious priming) emerges from the data. To validate our proposal, we approbated it on four challenging problems,

including imbalanced Faces-1999 data base, Caltech-101 dataset, vehicles dataset, and iRoads dataset, which is a dataset of

images of autonomous driving scenarios. Not only we achieved higher precision (in one of the problems outperforming by

25% all other methods), but, more significantly, we only used a single class beforehand, while other methods used all the

available classes and we generated interpretable models with smaller number of features used, through extremely weak and

weak supervision. We demonstrated the ability to detect and learn new classes for both images and numerical examples.
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1 Introduction

Machine learning and pattern recognition, including clas-

sification, are perhaps at the peak of their development

with a sharp interest not only from scientists and practi-

tioners, but also from the wider public and media. This is,

in part, thanks to the boom surrounding the wider area of

artificial intelligence (AI) and recent successful and widely

publicized applications ranging from games [14, 34],

driverless cars [10, 33], defense and security [1, 32, 35],

home applications [23, 28]. Despite the great success of the

standard bearer algorithm in this area, the so-called deep

learning in image and speech recognition [18, 27], the

underlying concept of machine learning which requires

large amount of labeled training data remains unchanged.

So-called reinforcement learning offers some departure

from complete labeling, but still requires user input for

each individual data sample. The most powerful approa-

ches such as deep learning and support vector machines

(SVM) suffer from lack of interpretability [5, 11, 25, 30],

are extremely power, time and computational resources

hungry and are like dinosaurs—unable to adapt and change

with agility. They require complete retraining even for a

single or few new data samples.

In this paper, we propose a method and algorithm that

departs from the traditional approach and offers a paradigm

shift bringing the machine learning, in general, and pattern

recognition and classification, in particular, extremely

close to a fully unsupervised form. In a nutshell, it offers a

self-learning locally generative models that work together

and require extremely light supervision in the form of few
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data samples. It is able to automatically detect the unknown

and to learn from it. This is in sharp contrast to the tradi-

tional approach where learning is, in essence, only an

averaging of the history. The current approaches struggle to

detect changes, dynamical evolution or appearance of new

classes. They also assume a certain number of features (the

same for all classes) provided at the start of the process.

This is one of the reasons traditional approaches struggle to

predict or react quickly to sudden changes in the data

pattern, such as the economic crash during 2008 [15], for

example.

Methods like eClass [8], FLEXFISClass [20] and other

similar ones are called ‘‘evolving’’ classifiers. They are

designed to take into account new coming data samples.

However, when talking about new classes (rather than just

new data samples) class label is required which means

these methods are supervised learning methods. The pro-

posed method in this paper is unsupervised in regard to the

new data that represent a new class. There are also unsu-

pervised evolving algorithms for clustering [9], but these

methods do not deal with classification as the method

proposed in this paper. Another type of methods that claim

to approach similar problems is the so-called zero-shot

learning (ZSL) methods. They have as an objective to

transfer a learnt model to unknown classes without the

acquisition of new features. However, the main problem

with this type of technique is the dependence on additional

information to relate unknown classes to previously trained

models. Not always such information is available or pos-

sible to acquire [17]. In this respect, the ZSL approach is

not unsupervised in terms of the new class and not a direct

comparator.

The proposed approach is prototype-based and learns

locally around them extracting the empirical data distri-

bution called typicality as well as the data density [6]. The

approach is recursive, thus computationally very lean. It is

also non-iterative, nonparametric. This adds to its effi-

ciency in terms of time and computational resources. From

the user perspective, the proposed approach is clearly

understandable to human users since it can be represented

in a linguistic IF...THEN form. It combines reasoning and

logic with machine learning. It can also be presented as a

deep neural network. Finally, it also has a statistical nature

and offers an empirical form of the probability density

function (pdf) [7].

In this paper, we apply this new principally different

type of machine learning to four challenging problems and

demonstrate its significant advantages. The main chal-

lenges that the method proposed in this paper addresses

are: i) to detect when a certain unlabeled (new) data sample

is not from a class that was used in training, i.e. to have

class ‘‘Unknown’’ or ‘‘New’’; ii) to learn from such new

unlabeled data in an unsupervised manner. The proposed

approach to address the first issue is based on the drop of

the density that represent the confidence in a decision. The

proposed approach to the second issue is by learning from

the data for which the class is ‘‘New’’. The proposed

approach further selects prototypes out of the data samples

of the ‘‘New’’ class according to their density in the same

way as for the other/known classes. Because, the learning

in the proposed approach is per class, all new data from a

‘‘New’’ class are analysed separately from the data from

the known classes. The remainder of this paper is organized

as follows: The method and algorithm section introduces

the proposed exploratory approach for extremely weakly

supervised classification. The experimental data employed

in the analysis and results are presented in the Results

section. Discussion is presented in the last section of this

paper.

2 Material and method

2.1 Concept and basic algorithm

Traditionally, the pipeline of learning from data includes

the following steps:

(1) Pre-precessing, which includes different substeps

like normalization/standardization, dealing with

missing data, and feature selection [16]. Specifically

for image processing there are often other stages,

such as rotation, augmentation, scaling, and elastic

deformation [26]. Even deep learning methods which

claims to avoid handcrafting apply some of the cited

steps.

(2) Learning phase, which can be offline, when the full

dataset is available; or it can be done online, when

the data arrive in the form of a data stream (sample-

by-sample). Evolving learning, ability of the algo-

rithms to adapt their parameters and structure

according to the non-stationary data streams, is a

more sophisticated form of online learning [3, 29].

(3) Generating outputs for new unseen data, which is

the validation phase. Different algorithms use

different strategies in order to validate the model

generated in the learning phase.

The proposed method also starts with a pre-processing step

which involves mostly the same steps depending on the

specific problem. For example, for image processing we

may also apply scaling, augmentation, rotation, etc. Prac-

tically for all problems normalization and standardization

is required.

The proposed xClass method uses standardization and

normalization as follows:
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Firstly, it standardizes the newly observed data sample,

xi; where i ¼ 1; 2; . . .; n denotes a time stamp in the current

moment. j ¼ 1; 2; . . .; n refers to the number of features of

the given x.

bxi;j ¼
xi;j � lðxi;jÞ

rðxi;jÞ
ð1Þ

where bx denotes the standardized data sample. Outliers

ðjbxj � 3Þ are ignored and not used for training. After that,

the data are rescaled within the range [0, 1] to consider

them in the same proportion. It is important to highlight

that in the proposed xClass method, the normalization is

done upon the standardized data. Unity-based normaliza-

tion of the i-th element of the j-th sample is given by:

�xi;j ¼
bxi;j �min

i
ðbxi;jÞ

max
i
ðbxi;jÞ �min

i
ðbxi;jÞ

ð2Þ

where �x denotes the normalized data sample.

The prototype-based learning is the core of the proposed

method which represents local (the prototypes are focal

points of locally valid generative models described by

multimodal Cauchy distribution [6]. The meta-parameters

are initialized with the first observed data sample. The

proposed algorithm works per class; therefore, all the cal-

culations are done for each class separately.

P 1; l �xi; ð3Þ

where l denotes the global mean of data samples of the

given class. P is the number of the identified prototypes in

total from the observed data samples.

Each class C is initialized by the first data sample of that

class:

C1  f�x1g; p1  �x1;

S1  1; r1  r�;
ð4Þ

where p1 is the prototype of C1; S1 is the corresponding

support (number of members); r1 is the corresponding

radius of the area of influence of C1.

In this paper, we use r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2cosð30oÞ
p

same as [6];

the rationale is that two vectors for which the angle

between them is less than p=6 or 30o are pointing in close/

similar directions. That is, we consider that two feature

vectors can be considered to be similar if the angle between

them is smaller than 30 degrees. Note that r� is data

derived, not a problem- or user-specific parameter. In fact,

it can be defined without prior knowledge of the specific

problem or data. The next step is to calculate the data

density at �xi and pjðj ¼ 1; 2; . . .;PÞ.

Dð�xiÞ ¼
1

1þ jj �x�pijj
2

ðriÞ2
ð5Þ

where pjðj ¼ 1; 2; . . .;PÞ is the set of prototypes and ri is
the standard deviation.

The reason it is Cauchy is not arbitrary [4]. It can be

demonstrated theoretically that if Euclidean or Maha-

lanobis type of distances in the feature space are consid-

ered, the data density reduces to Cauchy type as referred in

equation (5). It can also be demonstrated that the so-called

typicality, s, which is the weighted average of the data

density, D, with weights representing the frequency of

occurrence of a data sample [6]. Furthermore, the typicality

s can be considered an empirically derived form of the pdf

having the same properties; notably, it integrates to 1 an

infinite range.

Density per feature f is obtained according to the

equation (5), where Df
i denotes the density for f-th feature

of the �xi sample.

The cumulative effect across all data samples per feature

can be obtained according to the equation (6).

Kf
i ¼

Rn
i¼1D

f
i ð�x

f
i Þ

n
: ð6Þ

The cumulative contribution for each feature Kf
i can be

rank ordered, n represents the number of samples. The

higher, the value of Kf
i is for a particular feature, the more

important is the f-th feature. The rationale is that an

interesting feature has higher density than other features -

meaning that it conveys unique, different clear information,

and, as a consequence, it contributes more to the classifier’s

result because the overlap between data of different classes

is less pronounced for this feature.

Then the algorithm absorbs the new data samples one by

one by assigning then to the nearest (in the feature space)

prototype:

n� ¼ argmin
j¼1;2;...;P

ðjj�xi � pjjj2Þ ð7Þ

Because of this form of assignment, the shape of the data

partitioning is of the so-called Voronoi tesselation type

[21]. We call all data points associated with a prototype

data clouds, because their shape is not regular (e.g. hyper-

spherical, hyper-ellipsoidal, etc.) and the prototype is not

necessarily the statistical and geometric mean [6].

In case, the following condition [6] is met:

IF ðDið�xiÞ� max
j¼1;2;...;P

DiðpjÞÞOR

ðDið�xiÞ� min
j¼1;2;...;P

DiðpjÞÞ

THENðaddanewdatacloudÞ

ð8Þ

It means that �xi is out of the influence area of pj. Therefore,

�xi becomes a new prototype of a new data cloud with meta-
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parameters initialized by equation (9). Add a new data

cloud:

P Pþ 1;CP  f�xig; pP  �xi; SP  1; rP  ro; ð9Þ

Otherwise, data cloud parameters are updated online by

equation (10). It has to be stressed that all calculations per

data cloud are performed on the basis of data points

associated with a certain data cloud only (i. e. locally, not

globally, on the basis of all data points).

Cn�  Cn� þ f�xig; pn�  
Sn�

Sn� þ 1
pn� þ

1

Sn� þ 1
�xi;

Sn�  Sn� þ 1; r2n�  
r2n� þ ð1� jjpn� jj

2Þ
2

;

ð10Þ

One of the strongest aspects of the proposed approach is its

high level of interpretability which comes from its proto-

type-based, local generative models as well as as its ability

to be expressed as a set of linguistic IF...THEN fuzzy rules

of the following type:

R : IFðx� p1ÞOR � � �ORðx� pPÞTHENðClasscÞ ð11Þ

The fuzziness represents the degree of association/simi-

larity to the prototypes. Indeed, the value of data density,

D, equation (5) can be interpreted as a membership func-

tion of the fuzzy set ðx� pÞ [6]. With a maximum 1 when

x ¼ p. The continuous typicality, s given by the equation

(12), is an empirically derived form of probability distri-

bution. The value of s even at the point x ¼ pi is much less

than 1 the integral of
R1
�1 sdx ¼ 1. The typicality per class

offers conditional probability that is the basis of a gener-

ative model, but within both, xDNN and xClass from the

classifier design point of view, we are interested in the

local peaks of the typicality which coincide with the peaks

of the data density. Indeed, it can be demonstrated that

since the mathematical expression of the typicality is a

mixture of Cauchy expressions and of the data density is a

Cauchy expression, the peaks of s and D are at the same

value of x*. Data density, D is much easier to calculate and

therefore, we use D rather than s further.

siðxÞ ¼
DiðxÞ

R

x DiðxÞdx
ð12Þ

2.2 Detect and learn from unknown

This is the most innovative part of the proposed algorithm

in addition to the feature selection per class, which wakes it

exploratory (we call it xClass) and allows to detect new

data patterns autonomously and learn from them.

2.2.1 Drop of confidence (detect the novelty)

Unlabeled data samples become available as soon as the

training process with labeled samples finishes. Then, the

eXploratory classifier (xClass) can continue to learn from

these unknown data samples. The unlabeled training sam-

ples are defined as the set uf g, and the number of unlabeled

samples is defined as U.

The first step in the weakly supervised learning process

of xClass is to extract the vector of confidence/degrees of

closeness to the nearest prototypes for each unlabeled data

sample defined as kðuiÞ, i ¼ 1; 2; . . .;U follows:

k ¼ max
j¼1;2;...;P

ð�x; pjÞ; ð13Þ

where k denotes the confidence degree.

The recursive mean li of the kmax for the labeled data

samples is used to detect sudden drop of the confidence

generated by the xClass classifier when a new unknown

class arrives and can be calculated as follows [2]:

li ¼
i� 1

i
li�1 þ

1

i
kmaxi ; l1 ¼ kmax1 : ð14Þ

Then the m-r rule is applied, for detailed explanation about

the m-r please refer to [24]. New classes are actively added

by the proposed xClass classifier when the inequality (15)

is satisfied and rules are actively created. Otherwise, if the

inequality is not satisfied the newly arrival unlabeled data

samples are used for updating the structure and meta-pa-

rameters of the xClass classifier. Figure 1 illustrates the

drop of confidence of the proposed method when a new a

unseen class arrives. The black line indicates the confi-

dence of xClass. As the fall is detected, if the inequality

(15) is satisfied this indicates that the label of this data

sample is not any of the known to xClass labels. The

options are that: a) This drop is a one off due to outlier,

noise, randomness, or b) a number of such data samples

above a drop of confidence is detected are close to each

other in the data space (please note that they may not

necessarily arrive one after the other as in Fig. 1). Other-

wise, if the condition given by the inequality (15) is not

met the data sample is used to update the meta-parameters

of the proposed method.

IFkmaxðUiÞ

\ð�li � mrÞTHENðUi 2 Possible new class detectedÞ

ELSEðUpdate structure and meta� parametersÞ
ð15Þ

When the inequality (15) is satisfied, the arrival data

sample is denoted as a potential outlier and temporally

saved. When several of potential outliers are close to each

other in the data space, have similar densities, they are
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denoted as ‘‘new class 1’’, if more than one group is formed

than new classes are formed as well and new labels as ‘new

class 2’ are generated. The user can be proactively asked to

(optionally) label with a semantically meaningful identifi-

cation, for example, ‘‘apple’’, however, no retraining is

required.

One or few labels for new detected classes are provided.

The validation process is done through the ‘winners-take-

all’ principle, which is given by,

Label ¼ argmaxðkð�xÞÞ: ð16Þ

The general structure of the proposed xClass approach is

illustrated by the block diagram presented in Fig. 2.

3 Results

In this section, we will demonstrate the results obtained by

the proposed extremely weakly supervised classification

approach. Computational simulations were performed to

assess the accuracy of the classification methods

considering 4 different benchmark problems. The results

from experimentation with the proposed algorithm aim to

demonstrate that it offers:

– high precision as compared with the top state-of-the-art

algorithms.

– ability to detect unseen/new data patterns autonomously

and learn from them.

– ability to learn with extremely low supervision (few)

labeled data samples for the newly detected classes.

– ability to autonomously select the most effective

features per class.

– highly transparent interpretable model.

– no user- or problem-specific algorithmic parameter

(except for feature selection which can be done by ad

hoc decision).

– non-iterative algorithm able to learn continuously.

Fig. 1 Drop of confidence of the

proposed method when a new a

unseen class arrives

Fig. 2 General structure of

xClass—block diagram
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3.1 iRoads dataset

In the first experiment, the iRoads dataset [22] was con-

sidered. The convolutional deep neural network VGG–16

was trained with 80% of the available iRoads dataset;

however, images for the ‘Rainy day’ scenario were omitted

of the training phase. After the training phase, ‘Rainy day’

trained images were presented to the neural network. As

the VGG–16 approach was not trained for the presented

situation, and it is not able to adapt its structure for the

newly arrived class, it misclassified the ‘Rainy Day’ sce-

nario with almost 90% confidence as a ‘Night’ scenario as

illustrated in Fig. 3.

The convolutional neural network VGG–16 misclassifed

with almost 90% of confidence the ‘Rainy day’ driving

scenario as a ‘Night’ scenario as illustrated in Fig. 3. This

is not surprising because the VGG–16 (same as other

mainstream deep nerual networks) can only recognise what

it was trained for and is not equipped with an exploratory

mechanism to enable detection and learning from unknown

data samples. In such new situations mainstream deep

networks require a full retraining in order to correctly

classify new classes. However a full retraining of a deep

neural network is usually time consuming, computational

expensive, and costly and involves the human for labeling

purposes.

The xClass exploratory mechanism is able to discover

new classes as they arrive to the system due to its mech-

anism based on the recursive density estimation [2] and

Chebyshev inequality approach [24] as given in Fig. 4. The

blue line indicates the confidence value (Kmax boundary)

given by the xClass classifier, the red line indicates the the

recursive density estimation value, the green line is the 3-r.
The sudden fall of the blue line indicates the moment when

the unlabeled set of images belonging to an unknown class

arrive to the system.

The proposed xClass classifier was trained with 80% of

the available iRoads images of all classes except the ‘Rainy

day’ class. Then, the new unlabeled class was present to the

proposed classifier, xClass was able to successfully detect

the suddenly drastic fall in the confidence (Fig. 4) and

proactively create a new class as illustrated in Fig. 5. The

prototype-based and non-iterative nature of the proposed

method allowed to detect the fall in the confidence (kmax) in
real time, and differently, from traditional deep learning

approaches, no retraining is required to learn the new class.

The proposed xClass classifier obtained 99.12% classi-

fication accuracy for unlabeled images using the 3-r
approach. The semantically meaningful label ‘Rainy Day

Scene’ is optional and requires only one-off involvement

by the human (by default it will stay as ‘new class 1’). The

final rule generated for this new class detected by the

proposed xClass classifier is given in Fig. 6.

3.2 Faces-1999 dataset

As a second example, we consider the Faces-1999 dataset

provided by Caltech [12]. For the faces recognition prob-

lem, the xClass classifier is trained with just one type of

face, differently from traditional approaches which are

primed with all available classes (20 different types of

faces). We used the fully connected layer of VGG–16 for

features extraction. For each image it produces 4096 values

that can be considered [to be] abstract features.

As the traditional approaches are not equipped with

exploratory mechanism, they are not able to discover dis-

cover new data patterns, and then, they classify new arrival

data samples as the trained class. The, the proposed

approach was presented to the new classes, and it was able

Fig. 3 Wrong classification

given by VGG–16 for a new

unknown class (Rainy Day)
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to detect these new types of faces through the drop of

confidence as illustrated in Fig. 7. After the detection of

these new classes, an extremely weak supervision (1%

training data labeled) and weak supervision (10% training

data labeled) is provided in order to label these newly

arrived. After, the labeling phase, the classification task

was performed. As one can see from Figs. 8 and 9, the

proposed xClass method can surpass its state-of-the-art

competitors as they require more labeled data to provide

good results. With just 1% of training data is clearly visible

the advantage of xClass. On real scenarios, the labeling

process is very time consuming and is not always possible.

The classification curve is given in Fig. 9.

Figure 7 illustrates the sudden drop in the confidence

when new unknown classes are presented to xClass clas-

sifier; the xClass uses the drop of confidence based on the

density of the data to discover new classes. Traditional

approaches are not equipped with exploratory mechanisms

as the proposed xClass method; therefore, they are not able

to detect new data patterns and adapt their structure to this

situation. It is notable that the proposed xClass classifier

can obtain better results without the necessity for huge

number of labeled data, differently from traditional

approaches. The performance curve is given in Fig. 9, as

illustrated, with xClass still producing better classification

rates when more training data are provided.

3.3 Caltech-101 dataset

As a third case, we consider the Caltech-101 dataset [13].

As in the other experiments the proposed xClass classifier

was primed with 80% of data samples from the first class

for training, and then, used its exploratory mechanism to

discover the other classes autonomously and learn from

them based on the data density according through the drop

of confidence as detailed in Fig. 10; as illustrated in

Fig. 11, traditional approaches are not able to detect new

data patterns after the training phase (traditional approa-

ches were trained with just 1 class), and then, tend to

Fig. 4 Sudden drop of

confidence due the presentation

of new unknown classes

Rnew: IF (Image ∼ ) THEN ‘New class’

Fig. 5 A new rule is proactively created when a sudden fall in the

confidence is detected through the inequality (13). The proposed

xClass classifier is highly interpretable due to its rule-based nature.

This advantage favors human experts analysis as it provides a

transparent structure, differently from the ‘black box’ approaches

such as deep neural networks

R7: IF (Image ∼ ) OR (Image ∼

) OR

... OR (Image ∼ ) THEN ‘Rainy day scene’

Fig. 6 Final rule given by the xClass classifer for the new detected

class. Label is attached during the validation phase. Differently from

‘black box’ approaches as deep neural networks, xClass provides

highly interpretable rules which can be used by human experts for

different analysis as necessary
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produce results with low accuracy. Unlike supervised

methods which are data hungry, the proposed xClass

approach could obtain high classification accuracy with

extremely weak supervision (Fig. 11), in order word, with

less training data as possible. The acquisition of labeled

data requires enormous human efforts and it is very time

consuming. Figure 12 gives the evolution of the perfor-

mance of the proposed exploratory classifier as more

training samples are provided. As it is illustrated in Fig. 12,

the xClass classifier is able to produce better results in

terms of accuracy, demonstrating its efficiency to detect

and learn from unknown effectively.

The Caltech-101 dataset is constituted of 101 different

classes. However, in the experiment only 10 classes were

used. Supervised methods such as Decision tree, k-nearest

neighbors (KNN), Adaboost, and SVM require information

about all the available classes beforehand, in order to

produce better results (the red bars in Fig. 11 illustrate the

results obtained when just one class is used in the training

phase). In comparison, the proposed extremely weakly

supervised approach requires just the knowledge about one

class beforehand as illustrated in Fig. 10 as the other

classes are discovered through its exploratory mechanism.

The blue bar in Fig. 11 illustrates the classification results

when just 1% of labeled training data is provided for all

classes. The proposed exploratory xClass classifier could

obtain almost 90% of classification accuracy. State-of-the-

art approached have the necessity for labeled training data

to produce acceptable results as illustrated in Fig. 12. Even

when more labeled training data are provided, the proposed

Fig. 7 Sudden drop of

confidence due the presentation

of new unknown classes for the

Faces-1999 dataset

Fig. 8 Accuracy for extremely

weak supervision classification

for the Faces-1999 dataset. red

bars illustrate the results

obtained by state-of-the-art

approaches when just one class

is provided during the training

phase. The blue bars indicate

the results when all the classes

are provided
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Fig. 9 Classification curve for

different number of training

samples for the Faces-1999

dataset

Fig. 10 Sudden drop when new

unknown are classes are

presented to the xClass

method—Caltech-101 dataset

Fig. 11 Accuracy for extremely

weak supervision classification

for the Caltech-101 dataset
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xClass classifier still produce better results in terms of

accuracy than its competitors. Furthermore, the ZSL

method proposed by [19] was reported to provide 57%

accuracy for the same problem which is significantly

poorer result than the one obtained by the proposed xClass

method. In addition to the significantly higher accuracy

than the ZSL method, the proposed xClass method also has

the advantage of allowing human inspection of the deci-

sion-making process (explainable).

3.4 Vehicles dataset

In the fourth case, we consider the vehicles dataset [31],

which is a non-image based dataset. xClass is, firstly,

trained with just one sample of the first class, and then, it

has to autonomously detect the other classes based on the

empirically observed data and the sudden drop of

confidence (Fig. 13). The inner parallel feature selector of

the proposed approach selected 7 out of the 18 original

features differently for each class. This is helpful to

improve the interpretability of the proposed classifier.

Results obtained by xClass and its competitors are given in

Fig. 15. It is important to highlight that SVM, KNN,

Decision Tree, Adaboost, Long short-term memory

(LSTM) are all supervised methods, and they were trained

with all available classes beforehand (red bars in Fig. 14

illustrate the results obtained by the traditional supervised

approaches if just one class is used in the training phase).

However, the proposed xClass approach could obtain better

results in terms of accuracy even though it uses an extre-

mely weak supervision (Fig. 14).

Figure 13 illustrates the drop of confidence when new

unseen classes are presented to the proposed classifier.

Differently from traditional approaches which require the

Fig. 12 Classification curve for

different number of training

samples for the Caltech-101

dataset

Fig. 13 Sudden drop of

confidence due the presentation

of new unknown classes—Cars

dataset
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knowledge of all available classes beforehand, the pro-

posed xClass uses its exploratory mechanism to autono-

mously discover this new class with basis just on the

empirical data. Red bars on Fig. 14 shows the results

obtained by state-of-the-art methods if just one class is

presented during the training phase, as they are not able to

detect new arrivals data patterns and adapt they structure to

this scenario, they wrongly classify the new arrived data

samples as the known class. Different types of supervision

(extremely weak, weak, full) is provided during experi-

ments, in all cases the proposed method could provide

better results in terms of classification performance than its

competitors as illustrated in Fig. 15. It is possible to note

through Fig. 14 that the results obtained for extremely

weak supervision with xClass surpass its competitors in

more than 25% in terms of classification performance,

which indicates the efficiency of the proposed method.

As given in Fig. 15, xClass is able to improve its results

if more training data and all classes are provided. For

validation purposes, 20% of the data samples were used in

all cases and labels for newly detected classes by xClass

are attached during this phase. The AnYa fuzzy rule [6] for

the newly identified class Rnew can be written as follows:

Rnew : IFðx�
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6

6
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6

6
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6

6
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7
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7

7
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7

7

7

7

5

ÞTHEN‘NewClass10

where x is the set of selected features given by the density-

based feature selector. x can be written as follows:

Fig. 14 Accuracy for extremely

weak supervision classification

for the Cars dataset

Fig. 15 Classification curve for

different number of training

samples for the Cars dataset
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During the validation stage labels are attached to the newly

identified rules. The final format for the first newly iden-

tified rule is given as follows:

R2 : IFðx�
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41

66

10

23

635

73

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

ÞORðx�

90

34

55

6

17

224

65

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

ÞOR

:::ORðx�

113

53

62

11

24

688

72

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

ÞTHEN‘SAAB0

4 Conclusion

In this paper, we break with the traditional approach to

supervised classification. We offer a new fully autonomous

extremely weakly supervised approach (xClass) which is

able to learn from just a single class and a handful of

labeled data samples. Then, as new classes, unknown to the

human user the trained classifier appear at a later stage, the

proposed xClass method is able to successfully discover

this and learn from the data autonomously as demonstrated

in the Results section. Furthermore, the features (inputs to

the classifier) are automatically sub-selected by the algo-

rithm based on the accumulated data density per feature per

class. Results demonstrated that the proposed approach

offers a high precision as compared with the top state-of-

the-art algorithms.

The proposed xClass approach could surpass its com-

petitors in terms of accuracy for all experiments using

extremely weak supervision, as well as, full supervision.

Moreover, the proposed algorithm produced highly trans-

parent interpretable results, which are helpful for human

experts analysis. No user- or problem-specific algorithmic

parameter (except for feature selection which can be done

by ad hoc decision) are required which is also an advantage

provided by the proposed xClass classifier.

To validate our proposal, we tested it on four chal-

lenging problems, including adversarial autonomous cars

scenarios classification, imbalanced faces detection, and

objects detection. Not only we achieved higher accuracy

(in one of the problems outperforming by 25% the other

methods), but, more significantly, we only used the

knowledge of just a single class beforehand and extremely

weakly labeled data and we generated interpretable models

with smaller number of features used. Furthermore, the

proposed xClass method demonstrated the ability to learn

from unknown without retraining, which is one of the

biggest problems of deep learning based on neural net-

works. As illustrated, the convolutional deep learning

misclassified an unknown class with high confidence; on

the other hand, the proposed approach was able to detect a

sudden drop in the confidence and learn from this unknown

data, and then it was able to proactively create a new class

for this new scenario. The proposed method is applicable to

a wide range of problems, especially for problems with

unknown dimension and for problems for which the con-

cept changes over time.

As a future work, we will investigate the occurrence of

more than one unknown class at the same time. Further-

more, we will also explore highly dynamic problems such

as video and other forms of data streams and address the

time needed to learn online.
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