Skip to main content
Log in

Adaptive neural control for a tilting quadcopter with finite-time convergence

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper addresses the tracking control problem of the tilting quadcopter with unknown nonlinearities. A novel tilting quadcopter conception is proposed with a fully actuated version, which suggests that the translational and rotational movements can be controlled independently. Based on the Euler-Lagrange equations, the dynamics of tilting quadcopter is developed with uncertainties, where Neural Networks (NNs) are utilized to approximate the unknown nonlinearities in systems. We construct a novel auxiliary filter to obtain the estimation errors explicitly to achieve better approximation ability of NNs. By introducing new leakage terms in the adaptive scheme, the weights of identifier of NNs can converge to their optimal values. And a simple online verification is provided to test the parameter estimation convergence, which relaxes the requirement of persistent excitation condition. Moreover, we propose an Adaptive Finite-time Neural Control for the tilting quadcopter, where all the tracking errors can converge to a small neighborhood around zero in finite time as well as the estimation errors. Finally, comparative simulation results are presented to illustrate the effectiveness and superiority of our proposed control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yao H, Qin R, Chen X (2019) Unmanned aerial vehicle for remote sensing applications-a review. Remote Sens 11(12):1443

    Article  Google Scholar 

  2. Yu H, Li G, Zhang W, Huang Q, Du D, Tian Q, Sebe N (2020) The unmanned aerial vehicle benchmark: Object detection, tracking and baseline. Int J Comput Vis 128(5):1141–1159

    Article  Google Scholar 

  3. Zhou F, Hu RQ, Li Z, Wang Y (2020) Mobile edge computing in unmanned aerial vehicle networks. IEEE Wirel Commun 27(1):140–146

    Article  Google Scholar 

  4. Zhao W, Liu H, Lewis FL, Wang X (2021) Data-driven optimal formation control for quadrotor team with unknown dynamics. IEEE Trans Cybern

  5. Labbadi M, Cherkaoui M (2020) Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor uav subjected to disturbances. ISA Trans 99:290–304

    Article  Google Scholar 

  6. Zhang X, Wang Y, Zhu G, Chen X, Li Z, Wang C, Su CY (2020) Compound adaptive fuzzy quantized control for quadrotor and its experimental verification. IEEE Trans Cybern

  7. Xu H, Ge SS, Liu Q, Jiang WY and Ji RH (2020) Adaptive neural network control of an airborne robotic manipulator system, 2020 2nd International Conference on Industrial Artificial Intelligence (IAI), pp 1–6. https://doi.org/10.1109/IAI50351.2020.9262230

  8. Nemati A, Kumar M (2014) Modeling and control of a single axis tilting quadcopter. In: American Control Conf. IEEE pp. 3077–3082

  9. Ji R, Ma J, Ge SS (2019) Modeling and control of a tilting quadcopter. IEEE Trans Aerosp Electron Syst 56(4):2823–2834

    Article  Google Scholar 

  10. Ji RH, Ma J, Ge SS, Ji RM (2020) Adaptive Second-Order Sliding Mode Control for a Tilting Quadcopter with Input Saturations. IFAC-PapersOnLine 53(2):3910–3915. https://doi.org/10.1016/j.ifacol.2020.12.2223

  11. Romero H, Salazar S, Sanchez A, Lozano R (2007) A new uav configuration having eight rotors: dynamical model and real-time control. In: 2007 46th IEEE conference on decision and control. IEEE, pp. 6418–6423

  12. Giménez R (2020) Research on a quad tilt wing uav, Ph.D. dissertation

  13. Anderson RB, Marshall JA, L’Afflitto A (2020) Constrained robust model reference adaptive control of a tilt-rotor quadcopter pulling an unmodeled cart. IEEE Trans Aerosp Electron Syst

  14. Simmons BM, Murphy PC (2021) Wind tunnel-based aerodynamic model identification for a tilt-wing, distributed electric propulsion aircraft. In: AIAA SciTech 2021 Forum, 2021, p. 1298

  15. Ryll M, Bülthoff HH, Giordano PR (2012) Modeling and control of a quadrotor uav with tilting propellers. In: IEEE international conference on robotics and automation. IEEE, pp. 4606–4613

  16. Ryll M, Bülthoff HH, Giordano PR (2013) First flight tests for a quadrotor uav with tilting propellers. In: 2013 IEEE International Conference on Robotics and Automation. IEEE, pp. 295–302

  17. Oosedo A, Abiko S, Narasaki S, Kuno A, Konno A, Uchiyama M (2016) Large attitude change flight of a quad tilt rotor unmanned aerial vehicle. Adv. Robotics 30(5):326–337

    Article  Google Scholar 

  18. Segui-Gasco P, Al-Rihani Y, Shin H-S, Savvaris A (2014) A novel actuation concept for a multi rotor uav. J. Intell. Robotic Syst. 74(1–2):173–191

    Article  Google Scholar 

  19. Elfeky M, Elshafei M, Saif A-WA, Al-Malki MF (2016) Modeling and simulation of quadrotor uav with tilting rotors. Int J Control Autom Syst 14(4):1047–1055

    Article  Google Scholar 

  20. Bin Junaid A, Diaz De Cerio, Sanchez A, Betancor Bosch J, Vitzilaios N, Zweiri Y (2018) Design and implementation of a dual-axis tilting quadcopter. Robotics 7(4):65

    Article  Google Scholar 

  21. Freddi A, Lanzon A, Longhi S (2011) A feedback linearization approach to fault tolerance in quadrotor vehicles. IFAC Proc Vol 44(1):5413–5418

    Article  Google Scholar 

  22. Ji RH, Ma J (2018) Mathematical modeling and analysis of a quadcopter with tilting propellers, 2018 37th Chinese Control Conference (CCC), pp 1718–1722. https://doi.org/10.23919/ChiCC.2018.8482899

  23. Badr S, Mehrez O, Kabeel A (2016) A novel modification for a quadrotor design. In: 2016 international conference on unmanned aircraft systems. IEEE, pp. 702–710

  24. Nemati A, Kumar M (2014) Non-linear control of tilting-quadcopter using feedback linearization based motion control. In: ASME dynamic systems and control conference. American Society of Mechanical Engineers, pp. V003T48A005–V003T48A005

  25. Alkamachi A, Ercelebi E (2018) H\(\infty\) control of an overactuated tilt rotors quadcopter. J Cent South Univ 25(3):586–599

    Article  Google Scholar 

  26. Yih CC (2016) Flight control of a tilt-rotor quadcopter via sliding mode. In: 2016 international automatic control conference (CACS). IEEE, pp. 65–70

  27. Nemati A, Kumar R, Kumar M (2020) Stability and control of tilting-rotor quadcopter in case of a propeller failure. In: American control conference (ACC)

  28. Wang T, Wang J, Wu C, Zhao M, Ge T (2018) Disturbance-rejection control for the hover and transition modes of a negative-buoyancy quad tilt-rotor autonomous underwater vehicle. Appl Sci 8(12):2459

    Article  Google Scholar 

  29. Papachristos C, Alexis K, Tzes A (2016) Dual-authority thrust-vectoring of a tri-tiltrotor employing model predictive control. J Intell Robotic Syst 81(3–4):471–504

    Article  Google Scholar 

  30. Tran AT, Sakamoto N, Sato M, Muraoka K (2017) Control augmentation system design for quad-tilt-wing unmanned aerial vehicle via robust output regulation method. IEEE Trans Aerosp Electron Syst 53(1):357–369

    Article  Google Scholar 

  31. Ryll M, Bülthoff HH, Giordano PR (2014) A novel overactuated quadrotor unmanned aerial vehicle: Modeling, control, and experimental validation. IEEE Trans Control Syst Technol 23(2):540–556

    Article  Google Scholar 

  32. Ioannou PA, Sun J (2012) Robust adaptive control. Courier Corporation

  33. Slotine JJE, Li W et al (1991) Applied nonlinear control. Prentice hall Englewood Cliffs, NJ

    MATH  Google Scholar 

  34. Wang S, Na J (2020) Parameter estimation and adaptive control for servo mechanisms with friction compensation. IEEE Trans Industr Inf 16(11):6816–6825

    Article  Google Scholar 

  35. Mofid O, Mobayen S (2018) Adaptive sliding mode control for finite-time stability of quad-rotor uavs with parametric uncertainties. ISA Trans 72:1–14

    Article  Google Scholar 

  36. Tran T-T, Ge SS, He W (2018) Adaptive control of a quadrotor aerial vehicle with input constraints and uncertain parameters. Int J Control 91(5):1140–1160

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang B, Yu X, Mu L, Zhang Y (2019) Disturbance observer-based adaptive fault-tolerant control for a quadrotor helicopter subject to parametric uncertainties and external disturbances. Mech Syst Signal Process 120:727–743

    Article  Google Scholar 

  38. Tong S, Li Y, Shi P (2012) Observer-based adaptive fuzzy backstepping output feedback control of uncertain mimo pure-feedback nonlinear systems. IEEE Trans Fuzzy Syst 20(4):771–785

    Article  Google Scholar 

  39. Ding S, Li S, Zheng WX (2012) Nonsmooth stabilization of a class of nonlinear cascaded systems. Automatica 48(10):2597–2606

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang C, Jiang Y, Na J, Li Z, Cheng L, Su C-Y (2018) Finite-time convergence adaptive fuzzy control for dual-arm robot with unknown kinematics and dynamics. IEEE Trans Fuzzy Syst 27(3):574–588

    Article  Google Scholar 

  41. Wang H, Liu PX, Zhao X, Liu X (2019) Adaptive fuzzy finite-time control of nonlinear systems with actuator faults. IEEE Trans Cybern

  42. Wu J, Chen W, Li J (2016) Global finite-time adaptive stabilization for nonlinear systems with multiple unknown control directions. Automatica 69:298–307

    Article  MathSciNet  MATH  Google Scholar 

  43. Chen B, Liu XP, Ge SS, Lin C (2012) Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach. IEEE Trans Fuzzy Syst 20(6):1012–1021

    Article  Google Scholar 

  44. Yang Y, Hua C, Guan X (2013) Adaptive fuzzy finite-time coordination control for networked nonlinear bilateral teleoperation system. IEEE Trans Fuzzy Syst 22(3):631–641

    Article  Google Scholar 

  45. Xu P, Li Y, Tong S (2019) Fuzzy adaptive finite time fault-tolerant control for multi-input and multi-output nonlinear systems with actuator faults. Int J Control Autom Syst 17(7):1655–1665

    Article  Google Scholar 

  46. Jiang F, Pourpanah F, Hao Q (2019) Design, implementation and evaluation of a neural network based quadcopter uav system. IEEE Trans Indu Electron 67(3):2076–2085

    Article  Google Scholar 

  47. He W, Sun Y, Yan Z, Yang C, Li Z, Kaynak O (2019) Disturbance observer-based neural network control of cooperative multiple manipulators with input saturation. IEEE Trans Neural Netw Learn Syst 1(5):1735–1746

    Article  MathSciNet  Google Scholar 

  48. Na J, Wang S, Liu YJ, Huang Y, Ren X (2019) Finite-time convergence adaptive neural network control for nonlinear servo systems. IEEE Trans Cybern 50(6):2568–2579

    Article  Google Scholar 

  49. Liu Q, Li DY, Ge SS, Ji RH, Ouyang Z, Tee KP, Tee (2021) Adaptive bias RBF neural network control for a robotic manipulator. Neurocomputing 447:213-223. https://doi.org/10.1016/j.neucom.2021.03.033

  50. Ji R, Ma J, Li D, Ge SS (2020) Finite-time adaptive output feedback control for mimo nonlinear systems with actuator faults and saturations. IEEE Trans Fuzzy Syst

  51. Han Y, Yu J, Zhao L, Yu H, Lin C (2018) Finite-time adaptive fuzzy control for induction motors with input saturation based on command filtering. IET Control Theory Appl 12(15):2148–2155

    Article  MathSciNet  Google Scholar 

  52. Zhang J, Ren Z, Deng C, Wen B (2019) Adaptive fuzzy global sliding mode control for trajectory tracking of quadrotor uavs. Nonlinear Dyn 1–19

  53. Chowdhary G, Yucelen T, Mühlegg M, Johnson EN (2013) Concurrent learning adaptive control of linear systems with exponentially convergent bounds. Int J Adapt Control Signal Process 27(4):280–301

    Article  MathSciNet  MATH  Google Scholar 

  54. Hsu L, Costa R (1987) Bursting phenomena in continuous-time adaptive systems with a \(\sigma\)-modification. IEEE Trans Autom Control 32(1):84–86

    Article  MathSciNet  MATH  Google Scholar 

  55. Liu YJ, Lu S, Tong S, Chen X, Chen CP, Li D-J (2018) Adaptive control-based barrier lyapunov functions for a class of stochastic nonlinear systems with full state constraints. Automatica 87:83–93

    Article  MathSciNet  MATH  Google Scholar 

  56. Wu J, Hu Y, Huang Y (2021) Indirect adaptive robust control of nonstrict feedback nonlinear systems by a fuzzy approximation strategy. ISA Trans 108:10–17

    Article  Google Scholar 

  57. Zhao D, Wang Y, Xu L, Wu H (2021) Adaptive robust control for a class of uncertain neutral systems with time delays and nonlinear uncertainties. Int J Control Autom Syst 1–13

  58. Zhang X, Lu Z, Yuan X, Wang Y, Xuejun S (2020) L2-gain adaptive robust control for hybrid energy storage system in electric vehicles. IEEE Trans Power Electron

  59. Sun W, Wu YQ, Sun ZY (2020) Command filter-based finite-time adaptive fuzzy control for uncertain nonlinear systems with prescribed performance. IEEE Trans Fuzzy Syst 28(12):3161–3170

    Article  Google Scholar 

  60. Zhao NN, Ouyang XY, Wu LB, Shi FR (2021) Event-triggered adaptive prescribed performance control of uncertain nonlinear systems with unknown control directions. ISA Trans 108:121–130

    Article  Google Scholar 

  61. Zhang G, Chen J, Li Z (2009) An adaptive robust control for linear motors based on composite adaptation. Control Theory Appl 26(8):833–837

    Google Scholar 

  62. Adetola V, Guay M (2008) Finite-time parameter estimation in adaptive control of nonlinear systems. IEEE Trans Autom Control 53(3):807–811

    Article  MathSciNet  MATH  Google Scholar 

  63. Adetola V, Guay M (2010) Performance improvement in adaptive control of linearly parameterized nonlinear systems. IEEE Trans Autom Control 55(9):2182–2186

    Article  MathSciNet  MATH  Google Scholar 

  64. Xia Y, Zhang J, Lu K, Zhou N (2019) Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Finite time and cooperative control of flight vehicles. Springer, New York, pp 51–69

    MATH  Google Scholar 

  65. Owolabi KM, Atangana A, Akgul A (2020) Modelling and analysis of fractal-fractional partial differential equations: application to reaction-diffusion model. Alex Eng J 59(4):2477–2490

    Article  Google Scholar 

  66. Akgül A (2018) A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals 114:478–482

    Article  MathSciNet  MATH  Google Scholar 

  67. Atangana A, Akgül A, Owolabi KM (2020) Analysis of fractal fractional differential equations. Alex Eng J 59(3):1117–1134

    Article  Google Scholar 

  68. Atangana A, Akgül A (2020) Can transfer function and bode diagram be obtained from sumudu transform. Alex Eng J 59(4):1971–1984

    Article  Google Scholar 

  69. Akgül EK (2019) Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives. Chaos Interdiscip J Nonlinear Sci 29(2):023108

    Article  MathSciNet  MATH  Google Scholar 

  70. Atangana A, Akgül A (2020) Analysis of new trends of fractional differential equations. Fract Order Anal Theory Methods Appl 91–111, 2020

  71. Atangana A, Akgül A (2020) On solutions of fractal fractional differential equations. Discrete Contin Dyn Syst-S

  72. Sun ZY, Shao Y, Chen CC, Meng Q (2018) Global output-feedback stabilization for stochastic nonlinear systems: a double-domination approach. Int J Robust Nonlinear Control 28(15):4635–4646

    MathSciNet  MATH  Google Scholar 

  73. Du H, Li S (2012) Finite-time attitude stabilization for a spacecraft using homogeneous method. J. Guidance Control Dyn 35(3):740–748

    Article  Google Scholar 

  74. Venkataraman S, Gulati S (1991) Terminal sliding modes: a new approach to nonlinear control synthesis. In: Fifth international conference on advanced robotics’ robots in unstructured environments. IEEE, pp. 443–448

  75. Feng Y, Yu X, Man Z (2002) Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12):2159–2167

    Article  MathSciNet  MATH  Google Scholar 

  76. Yu X, Zhihong M (2002) Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Trans Circuits Syst I Fundam Theory Appl 49(2):261–264

    Article  MathSciNet  MATH  Google Scholar 

  77. Lu K, Xia Y (2013) Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12):3591–3599

    Article  MathSciNet  MATH  Google Scholar 

  78. Moulay E, Perruquetti W (2008) Finite time stability conditions for non-autonomous continuous systems. Int J Control 81(5):797–803

    Article  MathSciNet  MATH  Google Scholar 

  79. Sun ZY, Shao Y, Chen CC (2019) Fast finite-time stability and its application in adaptive control of high-order nonlinear system. Automatica 106:339–348

    Article  MathSciNet  MATH  Google Scholar 

  80. Yu S, Yu X, Shirinzadeh B, Man Z (2005) Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11):1957–1964

    Article  MathSciNet  MATH  Google Scholar 

  81. Badr S, Mehrez O, Kabeel A (2019) A design modification for a quadrotor uav: modeling, control and implementation. Adv Robot 33(1):13–32

    Article  Google Scholar 

  82. Odelga M, Stegagno P, Bülthoff HH (2016) A fully actuated quadrotor uav with a propeller tilting mechanism: modeling and control. In 2016 IEEE international conference on advanced intelligent mechatronics (AIM). IEEE, pp. 306–311

  83. Diogenes HB, dos Santos DA (2016) Modelling, design and simulation of a quadrotor with tilting rotors actuated by a memory shape wire. In: Congresso brasileiro de engenharia mecnica (CONEM)

  84. Xia J, Zhang J, Sun W, Zhang B, Wang Z (2018) Finite-time adaptive fuzzy control for nonlinear systems with full state constraints. IEEE Trans Syst Man Cybern Syst 99:1–8

    Google Scholar 

  85. Qian C, Lin W (2001) A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans Autom Control 46(7):1061–1079

    Article  MathSciNet  MATH  Google Scholar 

  86. Ge SS, Wang C (2004) Adaptive neural control of uncertain mimo nonlinear systems. IEEE Trans Neural Netw 15(3):674–692

    Article  Google Scholar 

  87. Lv W, Wang F (2018) Finite-time adaptive fuzzy tracking control for a class of nonlinear systems with unknown hysteresis. Int J Fuzzy Syst 20(3):782–790

    Article  MathSciNet  Google Scholar 

  88. Na J (2013) Adaptive prescribed performance control of nonlinear systems with unknown dead zone. Int J Adapt Control Signal Process 27(5):426–446

    Article  MathSciNet  MATH  Google Scholar 

  89. Skjetne R, Fossen TI (2004) On integral control in backstepping: analysis of different techniques. In: Proceedings of the 2004 American control conference, vol 2. IEEE, pp. 1899–1904

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Ruihang Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The matrices \(J(\eta )\) and \(C(\eta ,{\dot{\eta }})\) are given as follows:

$$\begin{aligned} J(\eta )=[j_{ij}]\in {\mathbb {R}}^{3\times 3},\quad C(\eta ,{\dot{\eta }})=[c_{ij}]\in {\mathbb {R}}^{3\times 3}, \end{aligned}$$
(51)

with

$$\begin{aligned}&j_{11}=I_{xx};~ j_{12}=0; ~ j_{13}=-I_{xx}\mathrm{s}\theta ;j_{21}=0;~ j_{22}=I_{yy}{\mathrm{c}^2\phi }+I_{zz}\mathrm{s}^2\phi \nonumber \\&j_{23}=(\textit{I}_{yy}-\textit{I}_{zz})\mathrm{c}\phi \mathrm{s}\phi \mathrm{c}\theta ;~j_{31}=-I_{xx}\mathrm{s}\theta ;\ j_{32}=(\textit{I}_{yy}-\textit{I}_{zz})\mathrm{c}\phi \mathrm{s}\phi \mathrm{c}\theta ;\nonumber \\&j_{33}=I_{xx}\mathrm{s}^2\theta +I _{yy}\mathrm{s}^2\phi \mathrm{c}^2\theta +I _{zz}\mathrm{c}^2\phi \mathrm{c}^2\theta ;\nonumber \\&c_{11}=0;\ c_{12}=\frac{1}{2}(I_{yy}-I_{zz})({\dot{\theta }}\mathrm{s}2\phi -{\dot{\psi }}\mathrm{c}2\phi \mathrm{c}\theta ) \nonumber \\&c_{13}=-I_{xx}{\dot{\theta }}\mathrm{c}\theta -\frac{1}{2}(I _{yy}-I _{zz})({\dot{\theta }}\mathrm{c}2\phi \mathrm{c}\theta +{\dot{\psi }}\mathrm{s}2\phi \mathrm{c}^2\theta ); \nonumber \\&c_{21}=\frac{1}{2}I_{xx}{\dot{\psi }}\mathrm{c}\theta ;~c_{31}=-I_{xx}{\dot{\theta }}\mathrm{c}\theta ;\nonumber \\&c_{22}=-(I_{yy}-I_{zz}){\dot{\phi }}\mathrm{s}2\phi +\frac{1}{2}(I _{yy}-I _{zz}){\dot{\psi }}\mathrm{c}\phi \mathrm{s}\phi \mathrm{s}\theta ; \nonumber \\&c_{23}=(I_{yy}-I_{zz})({\dot{\phi }}\mathrm{c}2\phi \mathrm{c}\theta -\frac{1}{2}{\dot{\theta }}\mathrm{s}\phi \mathrm{c}\phi \mathrm{s}\theta )+\frac{1}{2}{} I _{xx}{\dot{\phi }}\mathrm{c}\theta -(I _{xx}\nonumber \\&\quad \quad -I _{yy}\mathrm{s}^2\phi -I _{zz}\mathrm{c}^2\phi ){\dot{\psi }}\mathrm{c}\theta \mathrm{s}\theta ;\nonumber \\&c_{32}=(I_{yy}-I_{zz})({\dot{\phi }}\mathrm{c}2\phi \mathrm{c}\theta -{\dot{\theta }}\mathrm{s}\phi \mathrm{c}\phi \mathrm{s}\theta ); \nonumber \\&c_{33}=I_{xx}{\dot{\theta }}\mathrm{s}2\theta +(I _{yy}-I _{zz}){\dot{\phi }}\mathrm{s}2\phi \mathrm{c}^2\theta -(I _{yy}\mathrm{s}^2\phi +I _{zz}\mathrm{c}^2\phi ){\dot{\theta }}\mathrm{s}2\theta . \end{aligned}$$
(52)

Appendix B

The matrix P is positive-definite such that \(P=\int _0^te^{-\delta (t-r)}{S}_f{S}_f^{\text {T}}\text {dr}\ge \lambda _f I\) where \(\lambda _f>0\). Then we have,

$$\begin{aligned} \int _0^te^{-\delta (t-r)}{S}_f{S}_f^{\text {T}}\text {dr}&=\int _0^{t-T}e^{-\delta (t-r)}{S}_f{S}_f^{\text {T}}\text {dr}\nonumber \\&\quad +\int _{t-T}^te^{-\delta (t-r)}{S}_f{S}_f^{\text {T}}\text {dr}\nonumber \\&\le \frac{e^{-\delta T}}{\delta }\Vert {S}_f\Vert _\infty ^2+\int _{t-T}^t{S}_f{S}_f^{\text {T}}\text {dr}. \end{aligned}$$
(53)

We can further have,

$$\begin{aligned} \int _{t-T}^t{S}_f{S}_f^{\text {T}}\text {dr}\ge \left( \lambda _f-\frac{e^{-\delta T}}{\delta }\Vert {S}_f\Vert _\infty ^2\right) I. \end{aligned}$$
(54)

If we set T and \(\delta\) in reason, \(\lambda _f-\frac{e^{-\delta T}}{\delta }\Vert {S}_f\Vert _\infty ^2\) can be positive. Since the filter in (13) is stable, then the regressor S is PE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Ji, R., Ge, S.S. et al. Adaptive neural control for a tilting quadcopter with finite-time convergence. Neural Comput & Applic 33, 15987–16004 (2021). https://doi.org/10.1007/s00521-021-06215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06215-z

Keywords

Navigation