Skip to main content
Log in

Angular regularization for unsupervised domain adaption on person re-identification

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

State-of-the-art Re-ID methods based on unsupervised domain adaption transferred the domain knowledge by pre-training model on labeled source domain and fine-tuned the pre-trained model with pseudo labels generated by clustering samples on unlabeled target domain. Unfortunately, compared with supervised Re-ID methods, the performance of exiting clustering-based UDA Re-ID methods dropped sharply, since these methods utilized a not good enough baseline and seldom handled the noisy pseudo labels generated by clustering algorithm. In this paper, we try to address the UDA problem by designing a Strong Clustering-based Unsupervised Re-ID (SCURID) baseline for further research at first. Then, we integrate the hard labels and soft multilabels to learn more discriminative features on a unified angular regularized metric space. Specifically, we design the angular margin losses consisting of Hard Angular Margin Identification (HAMI) loss and Soft Angular Margin Identification (SAMI) loss. The HAMI loss can learn generalizable and discriminative features through hard pseudo labels generated by clustering on unlabeled target domain. The SAMI loss is proposed to refine the hard noisy pseudo labels through the soft multilabels obtained from peer network. Benefited from SCURID baseline and two angular margin losses, it enables the clustering-based UDA Re-ID model to alleviate the negative effect of noisy labels and toward more discriminability. Comprehensive and extensive experiments on three public available Re-ID datasets, e.g., Matket-1501, DukeMTMC-reID and MSMT17, demonstrate that our proposed method can outperform the state-of-the-art results on UDA Re-ID task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Motiian S, Piccirilli M, Adjeroh DA, Doretto G (2017) Unified deep supervised domain adaptation and generalization. In: ICCV, pp. 5715–5725

  2. Chen Y, Li W, Sakaridis C, Dai D, Van Gool L (2018) Domain adaptive faster r-cnn for object detection in the wild. In: CVPR, pp. 3339–3348

  3. Chen Y, Li W, Van Gool L (2018) Road: reality oriented adaptation for semantic segmentation of urban scenes. In: CVPR, pp. 7892–7901

  4. Fan H, Zheng L, Yan C, Yang Y (2018) Unsupervised person re-identification: clustering and fine-tuning. TOMM 14(4):1–18

    Article  Google Scholar 

  5. Zhang X, Cao J, Shen C, You M (2019) Self-training with progressive augmentation for unsupervised cross-domain person re-identification. In: ICCV, pp. 8222–8231

  6. Fu Y, Wei Y, Wang G, Zhou Y, Shi H, Huang TS (2019) Self-similarity grouping: a simple unsupervised cross domain adaptation approach for person re-identification. In: ICCV, pp. 6112–6121

  7. Wu J, Liao S, Wang X, Yang Y, Li SZ et al. (2019) Clustering and dynamic sampling based unsupervised domain adaptation for person re-identification. In: 2019 IEEE International conference on multimedia and expo (ICME).IEEE, pp. 886–891

  8. Yang F, Li K, Zhong Z, Luo Z, Sun X, Cheng H, Guo X, Huang F, Ji R, Li S (2020) Asymmetric co-teaching for unsupervised cross-domain person re-identification. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34, no. 07, pp. 12 597–12 604

  9. Zhai Y, Lu S, Ye Q, Shan X, Chen J, Ji R, Tian Y (2020) Ad-cluster: augmented discriminative clustering for domain adaptive person re-identification. In: CVPR, pp. 9021–9030

  10. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, pp. 770–778

  11. Pan X, Luo P, Shi J, Tang X (2018) Two at once: enhancing learning and generalization capacities via ibn-net. In: ECCV, pp. 464–479

  12. Arthur D, Vassilvitskii S (2006) k-means++: The advantages of careful seeding. Tech. Rep, Stanford

  13. Zhang C, Bengio S, Hardt M, Recht B, Vinyals O (2016) Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530

  14. Deng J, Guo J, Xue N, Zafeiriou S (2019) Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4690–4699

  15. Liu W, Wen Y, Yu Z, Yang M (2016) Large-margin softmax loss for convolutional neural networks. In: ICML, vol. 2, no. 3, p. 7

  16. Ranjan R, Bansal A, Xu H, Sankaranarayanan S, Chen J-C, Castillo CD, Chellappa R (2018) Crystal loss and quality pooling for unconstrained face verification and recognition. arXiv preprint arXiv:1804.01159

  17. Liu W, Wen Y, Yu Z, Li M, Raj B, Song L (2017) Sphereface: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 212–220

  18. Fan X, Jiang W, Luo H, Fei M (2019) Spherereid: deep hypersphere manifold embedding for person re-identification. J Vis Commun Image Represent 60:51–58

    Article  Google Scholar 

  19. Hao Y, Wang N, Li J, Gao X (2019) Hsme: hypersphere manifold embedding for visible thermal person re-identification. Proc AAAI Conf Artif Intell 33(01):8385–8392

    Google Scholar 

  20. Zhu Z, Jiang X, Zheng F, Guo X, Huang F, Sun X, Zheng W (2020) Aware loss with angular regularization for person re-identification. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34, no. 07, pp. 13 114–13 121

  21. Sovrasov V, Sidnev D (2020) Building computationally efficient and well-generalizing person re-identification models with metric learning. arXiv preprint arXiv:2003.07618

  22. Zhang Y, Xiang T, Hospedales TM, Lu H (2018) Deep mutual learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4320–4328

  23. Zhong Z, Zheng L, Cao D, Li S (2017) Re-ranking person re-identification with k-reciprocal encoding. In: CVPR, pp. 1318–1327

  24. Zhang X, Luo H, Fan X, Xiang W, Sun Y, Xiao Q, Jiang W, Zhang C, Sun J (2017) Alignedreid: surpassing human-level performance in person re-identification. arXiv preprint arXiv:1711.08184

  25. Bai X, Yang M, Huang T, Dou Z, Yu R, Xu Y (2020) Deep-person: learning discriminative deep features for person re-identification. Pattern Recognit 98:107036

    Article  Google Scholar 

  26. Zheng L, Huang Y, Lu H, Yang Y (2019) Pose-invariant embedding for deep person re-identification. IEEE Trans Image Process 28(9):4500–4509

    Article  MathSciNet  Google Scholar 

  27. Sarfraz MS, Schumann A, Eberle A, Stiefelhagen R (2018) A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking. In: CVPR, pp. 420–429

  28. Sun Y, Zheng L, Yang Y, Tian Q, Wang S (2018) Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In: ECCV, pp. 480–496

  29. Wang G, Yuan Y, Chen X, Li J, Zhou X (2018) Learning discriminative features with multiple granularities for person re-identification. In: ACM MM, pp. 274–282

  30. Zhang W, Huang L, Wei Z, Nie J (2021) Appearance feature enhancement for person re-identification. Expert Syst Appl 163:113771

    Article  Google Scholar 

  31. Li S, Liu X, Liu W, Ma H, Zhang H (2016) “A discriminative null space based deep learning approach for person re-identification. In: 2016 4th International conference on cloud computing and intelligence systems (CCIS). IEEE, pp. 480–484

  32. He L, Wang Y, Liu W, Zhao H, Sun Z, Feng J (2019) Foreground-aware pyramid reconstruction for alignment-free occluded person re-identification. In: Proceedings of the IEEE/CVF international conference on computer vision, ,pp. 8450–8459

  33. Xie H, Fang S, Zha Z-J, Yang Y, Li Y, Zhang Y (2019) Convolutional attention networks for scene text recognition. ACM Trans Multimed, Comput, Commun Appl (TOMM) 15(1s):1–17

    Article  Google Scholar 

  34. Gray D, Tao H (2008) Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: ECCV. Springer, pp. 262–275

  35. Liao S, Hu Y, Zhu X, Li SZ (2015) Person re-identification by local maximal occurrence representation and metric learning. In: CVPR, pp. 2197–2206

  36. Farenzena M, Bazzani L, Perina A, Murino V, Cristani M (2010) Person re-identification by symmetry-driven accumulation of local features. In: CVPR, pp. 2360–2367

  37. Matsukawa T, Okabe T, Suzuki E, Sato Y (2016) Hierarchical gaussian descriptor for person re-identification. In: CVPR, pp. 1363–1372

  38. Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q (2015) Scalable person re-identification: a benchmark. In: ICCV, pp. 1116–1124

  39. Peng P, Xiang T, Wang Y, Pontil M, Gong S, Huang T, Tian Y (2016) Unsupervised cross-dataset transfer learning for person re-identification. In: CVPR, pp. 1306–1315

  40. Deng W, Zheng L, Ye Q, Kang G, Yang Y, Jiao J (2018)Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: CVPR, pp. 994–1003

  41. Wei L, Zhang S, Gao W, Tian Q (2018) Person transfer gan to bridge domain gap for person re-identification. In: CVPR, pp. 79–88

  42. Wang J, Zhu X, Gong S, Li W (2018) Transferable joint attribute-identity deep learning for unsupervised person re-identification. In: CVPR, pp. 2275–2284

  43. Zhong Z, Zheng L, Li S, Yang Y (2018) Generalizing a person retrieval model hetero-and homogeneously. In: Proceedings of the European conference on computer vision (ECCV), pp. 172–188

  44. Liu J, Zha Z-J, Chen D, Hong R, Wang M (2019) Adaptive transfer network for cross-domain person re-identification. In: CVPR, pp. 7202–7211

  45. Huang Y, Wu Q, Xu J, Zhong Y (2019) Sbsgan: suppression of inter-domain background shift for person re-identification. In: ICCV, pp. 9527–9536

  46. Qi L, Wang L, Huo J, Zhou L, Shi Y, Gao Y (2019) A novel unsupervised camera-aware domain adaptation framework for person re-identification. In: ICCV, pp. 8080–8089

  47. Li Y-J, Lin C-S, Lin Y-B, Wang Y-CF (2019) Cross-dataset person re-identification via unsupervised pose disentanglement and adaptation. In: ICCV, pp. 7919–7929

  48. Chen Y, Zhu X, Gong S (2019) Instance-guided context rendering for cross-domain person re-identification. In: ICCV, pp. 232–242

  49. Zhong Z, Zheng L, Luo Z, Li S, Yang Y (2019) Invariance matters: exemplar memory for domain adaptive person re-identification. In: CVPR, pp. 598–607

  50. Yu H-X, Zheng W-S, Wu A, Guo X, Gong S, Lai J-H (2019) Unsupervised person re-identification by soft multilabel learning. In: CVPR, pp. 2148–2157

  51. Zhang W, Wei Z, Huang L, Xie K, Qin Q (2020) Adaptive attention-aware network for unsupervised person re-identification. Neurocomputing 411:20–31

    Article  Google Scholar 

  52. Lin Y, Dong X, Zheng L, Yan Y, Yang Y (2019) A bottom-up clustering approach to unsupervised person re-identification. AAAI 33(01):8738–8745

    Article  Google Scholar 

  53. Zheng L, Zhang H, Sun S, Chandraker M, Yang Y, Tian Q (2017) Person re-identification in the wild. In: CVPR, pp. 1367–1376

  54. Xiao T, Li H, Ouyang W, Wang X (2016) Learning deep feature representations with domain guided dropout for person re-identification. In: CVPR, pp. 1249–1258

  55. Ahmed E, Jones M, Marks TK (2015) An improved deep learning architecture for person re-identification. In: CVPR, pp. 3908–3916

  56. Zheng Z, Zheng L, Yang Y (2017) A discriminatively learned cnn embedding for person reidentification. TOMM 14(1):1–20

    Article  Google Scholar 

  57. Hermans A, Beyer L, Leibe B (2017) In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737

  58. Yuan Y, Chen W, Yang Y, Wang Z (2020) In defense of the triplet loss again: Learning robust person re-identification with fast approximated triplet loss and label distillation. In: CVPRW, pp. 354–355

  59. Salimans T, Kingma DP (2016) Weight normalization: a simple reparameterization to accelerate training of deep neural networks. arXiv preprint arXiv:1602.07868

  60. Tarvainen A, Valpola H (2017) Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. arXiv preprint arXiv:1703.01780

  61. Ristani E, Solera F, Zou R, Cucchiara R, Tomasi C (2016) Performance measures and a data set for multi-target, multi-camera tracking. In: ECCV, pp. 17–35

  62. Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2009) Object detection with discriminatively trained part-based models. TPAMI 32(9):1627–1645

    Article  Google Scholar 

  63. Ren S, He K, Girshick R, Sun J (2016) Faster r-cnn: towards real-time object detection with region proposal networks. TPAMI 39(6):1137–1149

    Article  Google Scholar 

  64. Zhong Z, Zheng L, Kang G, Li S, Yang Y (2020) Random erasing data augmentation. In: AAAI, vol. 34, no. 07, pp. 13 001–13 008

  65. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980

  66. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: CVPR. IEEE pp. 248–255

  67. Yang Q, Yu H-X, Wu A, Zheng W-S (2019) Patch-based discriminative feature learning for unsupervised person re-identification. In: CVPR, pp. 3633–3642

  68. Wu A, Zheng W-S, Lai J-H (2019) Unsupervised person re-identification by camera-aware similarity consistency learning. In: ICCV, pp. 6922–6931

  69. Huang Y, Peng P, Jin Y, Li Y, Xing J (2020) Domain adaptive attention learning for unsupervised person re-identification. In: AAAI, vol. 34, no. 07, pp. 11 069–11 076

  70. Mekhazni D, Bhuiyan A, Ekladious G, Granger E (2020) Unsupervised domain adaptation in the dissimilarity space for person re-identification. In: ECCV, pp. 159–174

  71. Zou Y, Yang X, Yu Z, Kumar B, Kautz J (2020) Joint disentangling and adaptation for cross-domain person re-identification. arXiv preprint arXiv:2007.10315

  72. Ester M, Kriegel H-P, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96(34):226–231

    Google Scholar 

  73. Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(11):2579–2605

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61872326, No.61672475); Shandong Provincial Natural Science Foundation (ZR2019MF044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Huang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Huang, L., Wei, Z. et al. Angular regularization for unsupervised domain adaption on person re-identification. Neural Comput & Applic 33, 17041–17056 (2021). https://doi.org/10.1007/s00521-021-06297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06297-9

Keywords

Navigation