
DEGAS: Differentiable Efficient Generator Search

Sivan Doveh and Raja Giryes

Tel Aviv University, Israel

Abstract

Network architecture search (NAS) achieves state-of-the-
art results in various tasks such as classification and seman-
tic segmentation. Recently, a reinforcement learning-based
approach has been proposed for Generative Adversarial
Networks (GANs) search. In this work, we propose an al-
ternative strategy for GAN search by using a method called
DEGAS (Differentiable Efficient GenerAtor Search), which
focuses on efficiently finding the generator in the GAN. Our
search algorithm is inspired by the differential architecture
search strategy and the Global Latent Optimization (GLO)
procedure. This leads to both an efficient and stable GAN
search. After the generator architecture is found, it can be
plugged into any existing framework for GAN training. For
CTGAN, which we use in this work, the new model out-
performs the original inception score results by 0.25 for
CIFAR-10 and 0.77 for STL. It also gets better results than
the RL based GAN search methods in shorter search time.

1. Introduction
Generative Adversarial Networks (GANs) [9] have be-

come a very successful framework for image generation.
This scheme includes a generator that creates images and
a discriminator that tries to discriminate between real and
synthesized images. Both are trained together using a min-
max based optimization.

GANs are difficult to train, due to problems such as
mode collapse, non-convergence to the Nash equilibrium
and vanishing gradients. Overcoming these problems is
the focus of many recent works. Notable among them
is the Wasserstein GAN (WGAN) [1], which suggests re-
placing the KL-divergence loss with the earth mover’s dis-
tance (Wasserstein) loss for solving the diminishing gra-
dient problem, and is the basis for many other works
[10, 32, 21]. Another approach, GLO [2], changes the tra-
ditional adversarial framework, by removing the discrimi-

Corresponding author: Sivan Doveh
sivandoveh@mail.tau.ac.il

nator and using a reconstruction loss of the input instead,
which avoids many of the instabilities that appear in joint
generator-discriminator training [16, 29].

The architectures that are used for the generator in the
GAN works are usually inspired by DC-GAN [26] and
ResNet [11]. However, all of them are manually designed.
In recent years, neural architecture search (NAS) based ap-
proaches have successfully found models that outperform
the state-of-the-art in various tasks [14]. The first line of
works used reinforcement learning [35] and genetic algo-
rithms [27] to generate a target classifier for a certain task.
Yet, these approaches require a large number of compu-
tational resources, thus, making them computationally de-
manding. The second line of works manages to reduce the
computational cost significantly to only a few days on a sin-
gle GPU. Two notable works among them are Efficient NAS
[25] and Differentiable Architecture Search (DARTS) [18].

Contribution. In this work, we aim at finding a genera-
tor model using an efficient neural architecture search. Sim-
ilar to DARTS, we use the concept of learning the weights
of connections between feature maps and then performing
pruning to get the final network structure.

While we use the DARTS MixedOp to connect between
feature maps and the concept of connection based differen-
tiable search, we have four major differences from it:

a. Global search. DARTS uses the cell method, i.e.,
learning a repeating structure in the network and then con-
catenating the learned repeated structures to create the
whole large network. We do not use the cell method: Al-
though many generator models are built from several re-
peating operations, we exploit the relatively short length of
the generator network and the efficiency of the search algo-
rithm to make the search more flexible in finding new struc-
tures. Thus, we search for the whole network altogether.

b. Operation types. Instead of operations that reduce
the size of the data that are part of the DARTS search space,
we use up-sample operations that increase the size of their
input and are inspired by the DC-GAN and ResNet models.

c. Operations’ connections. DARTS concatenate the
outputs of cells to form the input of the next cell. To allow
having DC-GAN and ResNet type networks, we eliminate

1

ar
X

iv
:1

91
2.

00
60

6v
3

 [
cs

.C
V

]
 2

9
D

ec
 2

02
0

the concatenation and forward only operations that are se-
lected in the search. This is crucial to get the results we
present in our work. Yet, it requires changing the pruning
phase that is used in DARTS. More details on this issue and
the changes it requires, appear in Section 3.

d. The objective function. While DARTS uses classi-
fication losses in its training, we use a different objective.
Since their introduction, GANs have been very popular for
image generation. Yet, their training is considered to be
a difficult task. The GAN framework is composed of two
components: (i) a generator that tries to generate images
that look real, and (ii) a discriminator that discriminates be-
tween generated and real images. Learning both architec-
tures simultaneously can turn into a very hard problem. In
this work, we relax this problem by searching only for gen-
erator architecture. Moreover, to overcome the sensitivity
of the GAN training, we search for the generator model us-
ing the GLO training protocol, i.e., search for the generator
using a reconstruction loss. This gives us a very important
advantage: The generator search is decoupled from the dis-
criminator and thus we do not need to deal in the search
with an untrained discriminator that will have a negative in-
fluence on the learning of the generator.

While we use GLO for the search, we do not use it for the
final training of the generator since the visual results pro-
duced by GANs that have a discriminator are more favor-
able. Thus, to be on par with other existing GANs, we train
the found generator architecture using an existing frame-
work for GAN training. Specifically, we use the CTGAN
protocol [32] and show that our automatically designed gen-
erator improves the performance in this framework com-
pared to the original manually designed GAN used with it
both in terms of FID [12] and inception scores [29]. By
this, we show that a generator search that is based on image
reconstruction is a valid strategy for finding generators that
produce good images.

On all the datasets used in this work, the search took only
a couple of days on a single GPU, achieving better results
than [31] and [8] that use reinforcement learning. Moreover,
when we plug our generator to an existing GAN procedure,
we also improve the results compared to the vanilla gener-
ator (in CTGAN). This further demonstrates the advantage
of the proposed approach for the generator search.

2. Background
Generative Adversarial Networks. The Generative

Adversarial Networks (GANs) models [9] include a gener-
ator that synthesizes new data given a latent representation
and a discriminator, whose role is to discriminate between
real data and synthesized data. The generator and the dis-
criminator are trained together using an adversarial game
between the generator that tries to ‘fool’ the discriminator,
which on its side tries to discriminate between true and syn-

thesized examples. This is implemented by a min-max opti-
mization problem whose goal is to reach the optimal point,
which is the Nash equilibrium.

The common practice shows that training GANs is a dif-
ficult task. Frequent problems in their training include mode
collapse, diminishing gradients and non-convergence to the
Nash equilibrium. These hinders can cause significant dif-
ficulty in performing an automatic search for generator ar-
chitecture. Much attention has been given recently to find a
solution to these deficiencies.

The Wasserstein GAN (WGAN) [1] aims at reducing
the imbalance between the discriminator and the generator
in the training, in which the discriminator outperforms the
generator. When this happens, the generator gradients ac-
cording to the Jensen or KL divergence are zero, and thus
it does not learn anything. To solve this, the Wasserstein
loss function (known also as the earth mover’s distance) is
used. For using it, the discriminator function needs to be a
differentiable 1-Lipchitz function.

In the original WGAN paper, the 1-Lipchitz property has
been enforced by clipping the weights of the network using
a hyperparameter, which leads to a network that is very sen-
sitive to the tuning of this hyperparameter. To fix this, the
use of gradient penalty (GP) has been proposed [10], under
the assumption that the gradient of a 1-Lipchitz function
needs to be one almost everywhere. This condition is added
as a regularizer and leads to the WGAN-GP technique.

Another notable work is CAGAN [21], which introduced
the adversarial consistency loss. They used the training pro-
cess of WGAN-GP with a large number of critics (different
discriminators). Each critic was created by using a dropout
on the hidden layers of the discriminator. They presented a
consistency loss that reduced the redundancy between these
critics.

More recently, CTGAN has been proposed [32], which
adds regularization on the discriminator loss function. The
loss takes two random perturbations of the inputs to the
discriminator and adds a penalty on the distance between
their two outputs. In this work, we use the CTGAN train-
ing framework and discriminator for testing the generator
architecture we have found.

The Generative Latent Optimization (GLO) framework
[2] takes an alternative route for bypassing the challenge of
training both the generator and the discriminator networks.
It replaces the adversarial training that requires having a
discriminator, with another optimization strategy that only
trains a generator. This approach pairs to each image in the
training set a latent representation and then optimizes the
generator to decode each latent vector to its corresponding
image (see Fig. 1). This strategy allows training genera-
tive models very easily without the need for a discrimina-
tor training. Another related approach is NAM [13], which
is an unsupervised method for mapping without adversar-

Distribution

𝑍𝑛

𝑍2

𝑍1
𝑋𝑖 = 𝐺 𝑍𝑖

Generator 𝑋1
𝑋2

𝑋𝑛

Learnable latent
vectors

Images

Figure 1. GLO method: each randomly sampled Z is matched to
specific train image (X) and Z, G(z)=X are being learned

ial training. In this method, a pre-trained generative model
aligns each source image with a synthesized image from the
target domain. This optimization is done together with the
optimization of the domain mapping function.

Note that the overall performances of the GLO strat-
egy in terms of image quality are not as good as training
a generator with a discriminator. However, the simplicity of
this method is perfect for generator architecture search and
therefore we use it in our work in the search phase.

Architecture search techniques. Several methods have
been proposed for optimizing the parameters of neural net-
works and for finding new architectures. In [19, 5], it has
been shown that one may unfold a recurrent neural network
to approximate some given functionals in a better way than
other manually designed approaches. These strategies may
allow better tuning of the hyper-parameters of a given net-
work compared to Bayesian approaches. Yet, they are not
designed searching for new neural architectures.

Zoph et al. [35] used a reinforcement learning-based
approach for neural architecture search (NAS). A recur-
rent network was used to generate the model description
of a target neural network for a certain task. They showed
improvement in their resulted architecture (NASnet) com-
paring to existing hand-crafted network models at its time.
They were outperformed by AmoebaNet [27]. The work in
[28, 27] introduces a different technique for finding neural
architectures. Given a task, they use an evolutionary (ge-
netic) algorithm to find a neural structure.

Another approach for improving accuracy was proposed
in [6]. New data augmentation techniques for neural net-
work training have been sought for using reinforcement
learning. While this search process is computationally de-
manding, it has been demonstrated that the found augmen-
tation techniques, even when produced by a relatively small
dataset, are transferable across different problems (e.g.,
augmentation developed for CIFAR-10 were useful for Im-
ageNet).

All these methods require very large computational re-
sources (some needs thousands of GPU days!), therefore al-
though they achieve state-of-the-art performances, in prac-
tice it is unfeasible to use them.

Recent works have managed to overcome the high com-
putational cost, without reducing the neural architectures
performances significantly. Notable among them are the

Efficient NAS (ENAS) [25] and the Differentiable Archi-
tecture Search (DARTS) [18]. Both of these work manage
to search neural architectures in only a few GPU days.

ENAS is a reinforcement learning-based method. A sub-
graph (child model) is searched in a large graph and to re-
duce the search time, the child models share weights be-
tween the same operations.

DARTS consists of two phases. Its network is built from
a concatenation of cells, which are learned during the first
phase. Then, in the second phase, some of the graph con-
nections and operations are reduced according to a pruning
algorithm. Each operation has a learned weight multiplier,
which indicates connection importance. They are learned as
continues variables during the first phase. After the second
phase, the remaining weights after the pruning are the ones
with the highest weight multiplier magnitude.

DARTS uses a harsh pruning at the end, which makes
the found architecture sub-optimal. This problem may be
addressed by performing gradual pruning [23] or layer-wise
search [4], which leads to better results in less time.

A one-shot low memory-efficient solution has been sug-
gested in [3]. It uses a learned binary mask to select only
a single path of the network and load it on the GPU. Their
strategy searches global architecture and not cells.

NAS methods have been in used also for other problems
than classification. These include semantic image segmen-
tation [17], medical image segmentation [33], volumetric
medical image segmentation [34], object detection [22] and
active learning [7].

Very recently NAS approaches have been proposed for
GANs [31, 8]. These works, which are the closest to ours,
use reinforcement learning, which is very different from our
approach. An important advantage of our approach over
them is search time. The search time in [31], which targets
directly the inception score that requires class labels infor-
mation, is extremely high: they use 200 TITAN GPUs for 6
days to perform the search, which is significantly more than
the time and computations required by our search. The ap-
proach in [8], use RL with parameter sharing and dynamic-
resetting. The authors in this work do not perform a search
on STL due to search time, which is possible in our pro-
posed strategy due to its better efficiency. As we show here-
after, our achieved results are also better than the ones in
[31, 8] in terms of FID [12].

3. GAN search

Our goal here is to efficiently search for a suitable gen-
erator architecture. As mentioned above, in this work we
avoid the search for both a generator and a discriminator due
to the instabilities involved in their joint training. Instead,
we make the search simpler by using the GLO method,
which does not contain a discriminator.

Our assumption, which is demonstrated later empiri-
cally, is that a generator that is found based on an image re-
construction criterion can also be used to produce improved
images when plugged in an existing GAN procedure.

Our generator search method is inspired by the DARTS
algorithm [18]. It learns in an efficient way what operations
to use in each layer of the generator from a pre-fixed set of
operations that are all used at the beginning. Before we de-
scribe our strategy we briefly survey the DARTS technique
and then mention the innovation that allows us to have an
efficient search technique for generators.

3.1. DARTS

The DARTS strategy [18] contains two phases: In the
first one, the algorithm searches for the network architec-
ture; and in the second, the new architecture is evaluated
after training it from scratch. The work in [35] has noticed
that recent convolution neural networks are built from a re-
peating structure of operations that when concatenated to-
gether form a network. DARTS follows this routine and in
the search phase, it searches for this repeating structure of
operations, which is called a ’cell’. Each cell is composed
of a feed-forward graph of feature maps that are connected
between them by a mixture of operations. This Mixed Op-
eration denoted by ō(i,j) is equal to

ōi,j(x) =

∑
o∈O exp(α

(i,j)
o)o(x)∑

o′∈O exp(α
(i,j)
o′)

, (1)

where o(x) is an operation on x, O is the group of all oper-
ations in the search space, and αi,j

o is the learned weight for
the operation o. The α values in (1) are learned by optimiz-
ing the loss function w.r.t their values.

In DARTS, two types of cells are being learned - Nor-
mal and Reduction. Normal cell outputs a feature map of
the same size as the input. The reduction cell outputs a
feature map of a smaller size than the input. The opera-
tions o(i,j) can be average/max-pool or types of convolu-
tions with varying kernel sizes and strides. The kind of op-
erations that are used depend on the cell type. The complete
network is composed of a concatenation of several cells.

In the search phase, to make the process faster, the net-
work is smaller than the one that will be trained and evalu-
ated in the second phase. Because the search space is con-
tinuous, the optimization process is much faster than prior
NAS works.

At the end of the search, pruning is done to most of the
operations, based on their α values. The remaining opera-
tions (non-pruned ones) are the final cell structure that was
learned.

3.2. The generator search

In our search strategy, we do not use the cells method.
Since the commonly used generator networks are not as

deep as the ones used in classification, we can search for
the whole network altogether without using cells.

Search phase. In order to search only for a generator,
we employ the GLO approach. This strategy trains a gener-
ator alone without the use of a discriminator by optimizing
both with respect to the latent space input (z) and the gen-
erator weights. As we stated before, the advantage of using
GLO is its stability, its elimination of the need for a dis-
criminator and its smaller memory use in the search phase-
As we do not need to backpropagate gradients from the dis-
criminator. This allows us to find more complex models in a
shorter time. Also, its monotonic stable loss function helps
the search to converge.

The method works as follow: For each train image it
matches a random noise vector z in the latent space, in or-
der to train the generator to output for each z its correspond-
ing image. Then, a reconstruction loss w.r.t the train image
(compared to the generator output) is calculated. The recon-
struction loss is a combination of a squared-loss function
and a Laplacian pyramid (Lap1loss):

`2(x, x̀) = ‖ x− x̀ ‖22, (2)

Lap1(x, x̀) =
∑
j

22j | Lj(x)− Lj(x̀) |1,

where Lj(x) is the jth level of the Laplacian pyramid.
Using alternating optimization between the GLO and α

values, we perform one step of optimization with respect to
the latent space input (Z) and generator weights as in GLO,
and one step of optimization with respect to the α values
of the MixedOp. The loss function is a combination of the
losses in (2) as in GLO.

Searched network structure. The searched network
is divided into three parts. The first is fixed and inspired
by ResNet and contains a linear operation with reshape.
The second contains the architecture and operations that
we search for. The last part is also fixed and contains
bn+relu+conv+tanh, again, similar to ResNet.

As in DARTS, we use MixedOp to connect between fea-
ture maps but with different types of operations in each
MixedOp. We use two types: (i) Normal operations that
keep the size of their input; and (ii) up-sample operations
that increase the size of their input. We also prune connec-
tions at the end based on their value, as we explain hereafter.

The normal operations employed are inspired by DARTS
and ResNet architecture. They include a combination of
bn+Relu+conv with kernel sizes of 1 and 3, Max and Av-
erage pooling, skip connection, separate convolutions(see
[18]) and dilated convolution with kernel sizes of 3 or 5.

The up-sample operations used are inspired by
the DC-GAN and ResNet architectures and include
bn+Relu+deconvolution with kernel sizes of 4 and 6 and
bn+Relu+nearest neighbor up-sampling + convolution with
a kernel size of 1 or 3. Figure 2 presents the connections

𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6𝑍
𝐿𝑖𝑛𝑒𝑎𝑟 +
𝑅𝑒𝑠ℎ𝑎𝑝𝑒

𝐵𝑁
+ 𝑅𝑒𝑙𝑢
+ 𝐶𝑜𝑛𝑣
+ 𝑡𝑔ℎ

Figure 2. The network is built from two types of operations - nor-
mal and up-sample. The arrows between the feature maps are
learned and called MixedOps. The arrows that go into the blue
blocks are up-sample operations and the arrows that go into the
pink blocks are normal operations. The architecture of the big ar-
rows is constant

used in the search between the different feature maps. We
define normal and up-sampled feature maps as the feature
maps that are created using normal and up-sample opera-
tions respectively. In other words, the input MixedOp to
a normal/up-sampled feature map is a normal/up-sample
MixedOp. As can be seen in the figure, the up-sampled fea-
ture maps are connected between them with residual con-
nections and are connected to the normal feature map before
them. The number of normal feature maps between the up-
sample feature maps is determined by the hyperparameter
n. The figure shows the case of n=1, where there is only one
normal feature map between two up-sample feature maps.
In this case, each normal feature map is connected to the
up-sample feature map before it.

Pruning phase. At the end of the search phase, we per-
form pruning. The rationale behind our pruning strategy
is to allow having skip connections in the network struc-
ture but without enforcing them. Because we do not use
the same cell configuration as in DARTS (we do not con-
catenate the outputs), we have to change the pruning pro-
cedure. Otherwise, two close nodes may not be connected
if we keep using the DARTS pruning procedure. Our new
pruning does not enforce any macro architecture but lets the
search decide whether to select residual or not, based on the
found alpha value.

The pruning consists of two stages. In the first stage,
for each feature map, we keep only one connection to its
previous feature maps. The connection is selected to be the
operation with the largest value of α. In the second stage, if
the connection that was selected in the first stage is residual
(which may leave the previous feature map unconnected as
the operation skips it), we will also add another operation
by selecting from the direct connections the one with the
highest α. As shown in Figure 3, the search does choose
some residuals connections in some connections but not in
all of them.

Search space complexity. We turn to analyze the com-
plexity of the search space. From looking at Figure 2, note
that we have 3 MixedOps with 7 up-sample operations, 3 di-
rect MixedOps with 4 normal operations, and 5 MixedOps

on residual connection with 4+1 up-sample operations each
(+1 because they can have lack of connection). Thus, the
number of possible discretized networks (i.e. combination
of operations after pruning) is 43 · 73 · 5 · 92 ≈ 107.

The continuous search space (which is the search space
before the pruning) has 93 options for normal operations
and up-sample operations, 43 options for direct connection
and (4 + 1)5 residual connection (+1 includes the zero op-
eration, that stands for no connection). Overall, we have
1.458 ∗ 108 possible networks in this case.

GAN training. After finding the generator architecture
with our search, we can use it to replace the generator in
any given GAN framework, e.g., CTGAN [32]. Then, we
simply train the new generator with the discriminator of that
framework.

4. Experiments
We used CIFAR-10, CelebA and STL datasets for our

experiments. For having a quantitative evaluation, we mea-
sured the FID [12] and Inception score (IS) [29] on CIFAR-
10 and STL. A larger version of the figures presented here
appears in the supp. material.

For calculating the IS, we employed the same method
as in [24] and other works and for calculating the FID we
used the same method as in [12]. In their computation, we
generated random 50,000 images with the currently trained
model and then use 50,000 real images to calculate the IS
and FID. The inception score is calculated over 10 splits of
the generated images, then mean and std(± sign) are calcu-
lated from these splits.

4.1. Search results and generalization

We searched for a generator for CIFAR-10, STL, and
CelebA using the scheme described above. In all cases, we
do not use the labels provided with the data (in CIFAR-10
and STL) in the search. Yet, we show hereafter that the gen-
erator architecture that is found without labels shows good
performance also when the labels are added. We show also
the transferability of the model across datasets.

We use the DARTS [18] hyperparameters of CIFAR-10,
except for the learning rate that is set to 3e-1 for CIFAR-10,
and 3e-2 for CelebA and STL.

On 1 Nvidia TITAN-X, the search took 28 hours for
CIFAR-10, 100 hours for STL, and 57 hours for CelebA.
The unsupervised generator training time was 37 hours for
CIFAR-10, 85 hours for STL and 33 hours for CelebA.

Models size. The model size of the CIFAR10 generator
is 1.65 MB and the STL generator is 1.17 MB.

CIFAR-10. Figure 3 presents the network found for
CIFAR-10. Notice that different operations are selected in
each layer (both for the up-sample and normal operations),
which demonstrates the advantage of not forcing the net-
work into the cell structure. Note also that the found archi-

Sep_conv_5x5

Up_conv_3 Up_conv_3

Avg_pool_3x3

Deconv_4

Conv_3

Up_conv_1 Up_conv_3

Sep_conv_5x5

Up_conv_3 Up_conv_1

Sep_conv_3x3

Up_conv_3 Deconv_4

Conv_3

Deconv_6

Avg_pool_3x3

Up_conv_1 Deconv_4

Avg_pool_3x3

Up_conv_3

Dil_conv_3x3

Up_conv_1

(a) (b) (c)

Figure 3. The generators found for: (a) CIFAR-10 (n=1); (b) STL (n=1); (c) CelebA (n=1).

Figure 4. CIFAR-10: (left) unsupervised generated images. (right) supervised generated images

tecture does contains skip connections, which resemble the
current state-of-the-art generators. Table 1 compares the IS
and FID scores of our model to other existing works. Notice
that our results are on par with the state of the art methods
and better than the other searched GANs (we are on the
same scale like [31] in terms of IS but much better than it in
terms of FID, which is considered to be a better perceptual
measure [12]. Thus, we may claim that our result is better).

Supervised CIFAR-10. For CIFAR-10, we also train the
found architecture in a supervised way, following the pro-
cedure in [32]. By that, we demonstrate that the model we
have found is transferable to supervised training. The re-
sults of the supervised case appear in Table 2. Note that al-
though the generator was searched in an unsupervised form,
our supervised results are competitive with the other super-

vised generators and better as before than AGAN [31] (no
result was reported for this case for AutoGAN in [8]).

STL. For STL, we performed two experiments: (i)
searching on STL and then training on it; and (ii) taking
the network found on CIFAR-10 and training it on STL. As
the image size in CIFAR-10 and STL is different, we have
increased the latent vector size by a factor of the image size
ratio between CIFAR-10 and STL, in the CIFAR-10 net-
work, which leads to the desired size at the output for STL.

As Table 3 shows, the architecture we found on CIFAR-
10 transfers well to STL and even outperforms the one
searched on STL. We believe that the difference between
the results is due to the hyperparameters (initially designed
for CIFAR-10) used in the search. We expect that a better
hyperparameter setting will improve the STL search. Note

Figure 5. STL unsupervised generated images using: (left) CIFAR-10 based generator (right) STL based generator

Figure 6. CelebA unsupervised generated images using: (left) CIFAR-10 network (right) CelebA network

Method Inception
Score

FID Search
GPU
days

Real data 11.24 2.1 -
SN-GAN [20] 8.22 ± 0.5 11.8*
WGAN-GP [10] 7.86 ± 0.07 14.1* -
CTGAN [32] 8.12 ± 0.12 - -
CAGAN [21] 8.35 ± 0.09 - -
AGAN [31] 8.29 ± 0.9 30.5 1200
AutoGAN [8] 8.55 ± 0.1 12.42 n/a
DEGAS(ours) 8.37 ± 0.08 12.01 1.167

Table 1. CIFAR-10 unsupervised image generation. *FID taken
from [30]

Method Inception
Score

FID Search
GPU
days

Real data 11.24 2.1 -
WGAN-GP [10] 8.42 ± 0.1 - -
CAGAN [21] 8.89 ± 0.11 - -
CTGAN [32] 8.81 ± 0.13 - -
AGAN [31] 8.82 ± 0.9 23.8 1200
DEGAS(ours) 8.85 ± 0.07 9.83 1.167

Table 2. CIFAR-10 supervised image generation

that our FID score is better than the compared methods.
Note that the fact that we can search on STL makes us

conclude that our search time is better than the one of Au-

Method Inception
Score

FID Search
cost

GPU days
Real data 26.08 ± 0.26 3.5 -
SN-GAN [20] 9.10 ± 0.04 40.1 -
WGAN-GP [10] 9.05 ± 0.12 - -
CAGAN [21] 9.51 ± 0.14 - -
AGAN [31] 9.23 ± 0.08 52.7 1200
AutoGAN [8] 9.16 ± 0.12 31.01 n/a
DEGAS(ours) - searched 9.22 ± 0.08 40.25 4.167
DEGAS(ours) - CIFAR-10 net 9.71 ± 0.11 28.76 1.167

Table 3. STL unsupervised image generation. The first row indicates the score for a network searched on STL dataset. The second row
indicates the score for a network searched on CIFAR-10.

Method Inception
Score

Search with n = 2 7.24 ± 0.06
Images size 16x16 8.03 ± 0.012
Random block 8.127 ± 0.098
DEGAS(ours) 8.37 ± 0.08

Table 4. Ablation studies on CIFAR-10

toGAN. Although its search time is not reported, it was
claimed that they did not search on STL due to the search
time. Note that our search time on STL is just a few days
on a single GPU, which is a reasonable time.

CelebA. Similar to STL, also for CelebA we considered
two generators: One that was searched on CelebA images
of size 32x32; and one that was searched on CIFAR-10.
Figure 6 presents the 32x32 generated images. Notice that
the quality of images is similar for both generators, which
shows the transferability of the generator found on CIFAR-
10 to a different type of images.

4.2. Ablation study

Training random block. Taking random continues ar-
chitecture, pruning it and then applying it to CIFAR-10
leads to IS and FID of 8.127 ± 0.098, 15.312, which is sig-
nificantly inferior to our found network. This further con-
firms the effectiveness of DEGAS.

Effect of different n values. We evaluate the effect of
the number of normal feature maps (n) between up-sample
feature maps on the search. When searching on CIFAR-
10 using n=2, the IS is low (7.24 ± 0.06) and the FID is
high (48.83), which shows that n=1 is better suited for the
generator task. The found generator can be found in the
supp. material.

Effect of search with smaller image size. We also
check whether decreasing the size of the images in the
search affects the performance of the found architecture.
For CIFAR-10, we searched using images with a size 16x16

and trained on regular-sized images. On STL we searched
using images of size 32x32 and then trained the found gen-
erator on regular images (of size 48x48). Although the
search time was smaller, the IS was much lower for both
(8.03 ± 0.012 and 8.97 ± 0.02).

5. Conclusion

This paper introduced DEGAS, a method for search-
ing efficiently generator architectures without the need to
search for a discriminator. On CIFAR-10 and STL, DE-
GAS outperforms parallel works to us for automated GAN
search [31],[8] both in terms of the search cost and terms
of FID score. We have also demonstrated the transferabil-
ity of our found generator both across datasets and between
unsupervised and supervised training.

The paper’s main contribution is providing an efficient
generator search strategy. It avoids long search time by us-
ing a continuous search space and the GLO framework. We
believe our work has various interesting follow-up GAN-
related search directions. We mention two of them:

1. Most GANs generate low-resolution images. A solu-
tion to this problem is to train GAN progressively [15]. This
means that we start with a generator and discriminator for
small image output, and after stabilizing the network, we
progressively expand the network output. A possible future
work is combining our search with the progressive GAN
framework to create a search strategy for high-resolution
GANs and further improve results.

2. In this work, we did not select the discriminator,
which may have a great impact on the results. Future work
should explore also this important aspect of GAN training.
Discriminators are mostly built from down-sample and nor-
mal operations as in the DARTS searched classifiers and can
be added as another optimizing phase to our scheme, before
or together with the generator search.

Acknowledgment. This work was supported by Alibaba
and the NSF-BSF grant.

References
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein gan. In arXiv preprint arXiv:1701.07875, 2017.
1, 2

[2] Piotr Bojanowski, Armand Joulin, David Lopez Paz, and
Arthur Szlam. Optimizing the latent space of generative net-
works. In International Conference on Machine Learning
(ICML), 2018. 1, 2

[3] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. In
ICLR, 2019. 3

[4] X. Chen and J.and Tian Q Xie, L.and Wu. Progressive differ-
entiable architecture search: Bridging the depth gap between
search and evaluation. In arXiv:1904.12760, 2019. 3

[5] Yutian Chen, Matthew W. Hoffman, Sergio Gomez
Colmenarejo, Misha Denil, Timothy P. Lillicrap, Matt
Botvinick, and Nando de Freitas. Learning to learn with-
out gradient descent by gradient descent. In International
Conference on Machine Learning (ICML), 2017. 3

[6] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay
Vasudevan, and Quoc V. Le. Autoaugment: Learn-
ing augmentation policies from data. arXiv preprint
arXiv:1805.09501v2, 2018. 3

[7] Yonatan GEIFMAN and Ran EL-YANIV. Deep active learn-
ing with a neural architecture search. In NeurIPS, 2019. 3

[8] Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang
Wang. Autogan: Neural architecture search for generative
adversarial networks. In ICCV, 2019. 2, 3, 6, 7, 8

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Y Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 06 2014.
1, 2

[10] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron Courville. Improved training of
wasserstein gans. In arXiv preprint arXiv:1704.00028, 03
2017. 1, 2, 7, 8

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
arXiv:1512.03385, 2015. 1

[12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Advances in Neural Information, 12 2017. 2, 3, 5,
6

[13] Yedid Hoshen and Lior Wolf. Nam: Non-adversarial unsu-
pervised domain mapping. In ECCV, pages 455–470, 2018.
2

[14] Yanping Huang, Yonglong Cheng, Dehao Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V. Le, and Zhifeng
Chen. Gpipe: Efficient training of giant neural networks us-
ing pipeline parallelism. arXiv preprint arXiv:1811.06965,
11 2018. 1

[15] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. In ICLR, 10 2017. 8

[16] Karol Kurach, Mario Lučić, Xiaohua Zhai, Marcin Michal-
ski, and Sylvain Gelly. A large-scale study on regularization
and normalization in GANs. In International Conference on
Machine Learning, volume 97, pages 3581–3590, 2019. 1

[17] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan Yuille, and Fei Fei Li. Auto-deeplab:
Hierarchical neural architecture search for semantic image
segmentation. In CVPR, 01 2019. 3

[18] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable architecture search. In International Confer-
ence on Learning Representations (ICLR), 2019. 1, 3, 4, 5

[19] Andrychowicz Marcin, Misha Denil, Sergio Gomez Col-
menarejo, Matthew W. Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando de Freitas. Learning to
learn by gradient descent by gradient descent. In Advances
in Neural Information Processing Systems (NIPS), 2016. 3

[20] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. In ICLR, 02 2018. 7, 8

[21] Yao Ni, Dandan Song, Xi Zhang, Hao Wu, and Lejian Liao.
Cagan: Consistent adversarial training enhanced gans. In
International Joint Conference on Artificial Intelligence (IJ-
CAI), 2018. 1, 2, 7, 8

[22] Wang Ning, Gao Yang, Chen Hao, Wang Peng, Tian Zhi, and
Shen Chunhua. Nas-fcos: Fast neural architecture search for
object detection. In arXiv:1906.04423, 2019. 3

[23] Asaf Noy, Niv Nayman, Tal Ridnik, Nadav Zamir, Sivan
Doveh, Itamar Friedman, Raja Giryes, and Lihi Zelnik-
Manor. Asap: Architecture search, anneal and prune. In
arXiv:1904.04123, 2019. 3

[24] Augustus Odena, Christopher Olah, and Jonathon Shlens.
Conditional image synthesis with auxiliary classifier gans.
In ICML, 10 2016. 5

[25] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V. Le, , and
Jeff Dean. Efficient neural architecture search via parameter
sharing. In International Conference on Machine Learning
(ICML), 2018. 1, 3

[26] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gener-
ative adversarial networks. In arXiv:1511.06434, 2016. 1

[27] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc
V. Le. Regularized evolution for image classifier architecture
search. In International Conference on Machine Learning -
ICML AutoML Workshop, 2018. 1, 3

[28] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Sax-
ena, Yutaka Leon Suematsu, Jie Tan, Quoc V. Le, and Alexey
Kurakin. Large-scale evolution of image classifiers. In In-
ternational Conference on Machine Learning (ICML), 2017.
3

[29] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. In Advances in Neural Information Pro-
cessing Systems (pp. 2234–2242), 06 2016. 1, 2, 5

[30] Konstantin Shmelkov, Cordelia Schmid, and Karteek Ala-
hari. How good is my gan? In ECCV, 2018. 7

[31] Hanchao Wang and Jun Huan. Agan: Towards au-
tomated design of generative adversarial networks. In
arXiv:1906.11080, 2019. 2, 3, 6, 7, 8

[32] Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, and Liqiang
Wang. Improving the improved training of wasserstein gans:
A consistency term and its dual effect. In International Con-
ference on Learning Representation(ICLR), 03 2018. 1, 2, 5,
6, 7

[33] Yu Weng, Tianbao Zhou, Yujie Li, and Xiaoyu Qiu. Nas-
unet: Neural architecture search for medical image segmen-
tation. In IEEE Access (Volume: 7), 2019. 3

[34] Zhuotun Zhu, Chenxi Liu, Dong Yang, Alan Yuille, and
Daguang Xu. V-nas: Neural architecture search for volumet-
ric medical image segmentation. In arXiv:1906.0281, 2019.
3

[35] Barret Zoph and Quoc V. Le. Neural architecture search
with reinforcement learning. In International Conference on
Learning Representations (ICLR), 2017. 1, 3, 4

