Skip to main content
Log in

Memristor-based circuit implementation of Competitive Neural Network based on online unsupervised Hebbian learning rule for pattern recognition

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, a Competitive Neural Network circuit based on voltage-controlled memristors is proposed, of which the synapse structure is one memristor (1M). The designed circuit consists of the forward calculation part and the weight updating part. The forward calculation part is designed according to the winner-take-all mechanism, in which the m-LIF model and PMOS transistors with switching characteristics are combined to achieve the lateral inhibition. The weight updating part is designed based on the Hebbian learning rule. By using the voltage controlled switches, only the synaptic memristors connected to the winner output neuron obtained from the forward calculation part are adjusted. The whole circuit does not require the participation of CPU, FPGA or other microcontrollers, providing the possibility to realize computing-in-memory and parallel computing. We perform simulation experiments of unsupervised online learning of 5*3 pixels patterns and 28*28 pixels patterns based on the designed circuit in PSPICE. The changing trend of the network weights during the training phase and the high recognition accuracy in the recognition phase  verify the network can effectively learn and recognize different patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85

    Article  Google Scholar 

  2. Ji Y, Zhang H, Zhang Z, Liu M (2021) CNN-based encoder-decoder networks for salient object detection: A comprehensive review and recent advances. Inf Sci 546:835

    Article  MathSciNet  Google Scholar 

  3. Poulos J, Valle R (2021) Character-based handwritten text transcription with attention networks. Neural Comput Appl 33(16):10563–10573

    Article  Google Scholar 

  4. Chen HY, Chen CC, Hwang WJ (2017) An efficient hardware circuit for spike sorting based on competitive learning networks. Sensors 17(10):2232. https://doi.org/10.3390/s17102232

    Article  Google Scholar 

  5. Hasan R, Taha TM (2017) Memristor crossbar based winner take all circuit design for self-organization. In: Proceedings of the neuromorphic computing symposium. ACM, pp 1–4. https://doi.org/10.1145/3183584.3183622

  6. Wu LS, Jain L (2007) Size invariant shape recognition by modulated competitive neural circuit. Int J Inf Commun Technol 1(1):76. https://doi.org/10.1504/IJICT.2007.013319

    Article  Google Scholar 

  7. Chang CY, Lin SY, Jeng M (2005) Using a two-layer competitive hopfield neural network for semiconductor wafer defect detection. In: IEEE international conference on automation science and engineering. IEEE, pp 301–306. https://doi.org/10.1109/coase.2005.1506786

  8. Gong S, Yang S, Guo Z, Huang T (2019) Global exponential synchronization of memristive competitive neural networks with time-varying delay via nonlinear control. Neural Process Lett 49(1):103. https://doi.org/10.1007/s11063-017-9777-1

    Article  Google Scholar 

  9. Merolla PA, Arthur JV, Alvarez-Icaza R et al (2014) A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197):668. https://doi.org/10.1126/science.1254642

    Article  Google Scholar 

  10. Eberhardt SP, Daud T, Kerns D, Brown TX, Thakoor A (1991) Competitive neural architecture for hardware solution to the assignment problem. Neural Netw 4(4):431. https://doi.org/10.1016/0893-6080(91)90039-8

    Article  Google Scholar 

  11. Oniga S, Tisan A, Attila B, Lung C (2007) Hardware implementation of simple competitive artificial neural networks with neuron parallelism. In: Proceedings of regional conference on embedded and ambient systems, RCEAS, pp 27–32

  12. Asai T, Ohtani M, Yonezu H (1999) Analog integrated circuits for the Lotka–Volterra competitive neural networks. IEEE Trans Neural Networks 10(5):1222. https://doi.org/10.1109/72.788661

    Article  Google Scholar 

  13. Fang Y, Cohen MA, Kincaid TG (2010) Dynamic analysis of a general class of winner-take-all competitive neural networks. IEEE Trans Neural Networks 21(5):771. https://doi.org/10.1109/TNN.2010.2041671

    Article  Google Scholar 

  14. Hollis PW, Paulos JJ (1990) Artificial neural networks using MOS analog multipliers. IEEE J Solid-State Circuits 25(3):849. https://doi.org/10.1109/4.102684

    Article  Google Scholar 

  15. Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507. https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  16. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453(7191):80. https://doi.org/10.1038/nature06932

    Article  Google Scholar 

  17. Zhou Z, Yan X, Zhao J et al (2019) Synapse behavior characterization and physical mechanism of a TiN/SiO x/p-Si tunneling memristor device. J Mater Chem C 7(6):1561. https://doi.org/10.1039/C8TC04903C

    Article  Google Scholar 

  18. Cantley KD, Subramaniam A, Stiegler HJ, Chapman RA, Vogel EM (2011) Hebbian learning in spiking neural networks with nanocrystalline silicon TFTs and memristive synapses. IEEE Trans Nanotechnol 10(5):1066. https://doi.org/10.1109/TNANO.2011.2105887

    Article  Google Scholar 

  19. Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski JK, Aono M (2011) Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater 10(8):591. https://doi.org/10.1038/nmat3054

    Article  Google Scholar 

  20. Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10(4):1297. https://doi.org/10.1021/nl904092h

    Article  Google Scholar 

  21. Zhao L, Hong Q, Wang X (2018) Novel designs of spiking neuron circuit and STDP learning circuit based on memristor. Neurocomputing 314:207. https://doi.org/10.1016/j.neucom.2018.06.062

    Article  Google Scholar 

  22. Pedretti G, Milo V, Ambrogio S et al (2017) Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity. Sci Rep 7(1):1. https://doi.org/10.1038/s41598-017-05480-0

    Article  Google Scholar 

  23. Hu S, Liu Y, Liu Z, Chen T, Wang J, Yu Q, Deng L, Yin Y, Hosaka S (2015) Associative memory realized by a reconfigurable memristive Hopfield neural network. Nat Commun 6(1):1. https://doi.org/10.1038/ncomms8522

    Article  Google Scholar 

  24. Garbin D, Vianello E, Bichler O, Rafhay Q, Gamrat C, Ghibaudo G, DeSalvo B, Perniola L (2015) HfO 2-based OxRAM devices as synapses for convolutional neural networks. IEEE Trans Electron Devices 62(8):2494. https://doi.org/10.1109/TED.2015.2440102

    Article  Google Scholar 

  25. Li C, Wang Z, Rao M, Belkin D, Song W, Jiang H, Yan P, Li Y, Lin P, Hu M et al (2019) Long short-term memory networks in memristor crossbar arrays. Nat Mach Intell 1(1):49. https://doi.org/10.1038/s42256-018-0001-4

    Article  Google Scholar 

  26. Prezioso M, Mahmoodi M, Bayat FM, Nili H, Kim H, Vincent A, Strukov D (2018) Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits. Nat Commun 9(1):1. https://doi.org/10.1038/s41467-018-07757-y

    Article  Google Scholar 

  27. Qu L, Zhao Z, Wang L, Wang Y (2020) Efficient and hardware-friendly methods to implement competitive learning for spiking neural networks. Neural Comput  Appl 32:13479–13490. https://doi.org/10.1007/s00521-020-04755-4

    Article  Google Scholar 

  28. Hong Q, Yan R, Wang C, Sun J (2020) Memristive circuit implementation of biological nonassociative learning mechanism and its applications. IEEE Trans Biomed Circuits Syst. https://doi.org/10.1109/TBCAS.2020.3018777

    Article  Google Scholar 

  29. Yan X, Wang J, Zhao M, Li X, Wang H, Zhang L, Lu C, Ren D (2018) Artificial electronic synapse characteristics of a Ta/Ta2O5-x/Al2O3/InGaZnO4 memristor device on flexible stainless steel substrate. Appl Phys Lett 113(1):013503. https://doi.org/10.1063/1.5027776

    Article  Google Scholar 

  30. Hansen M, Zahari F, Kohlstedt H, Ziegler M (2018) Unsupervised Hebbian learning experimentally realized with analogue memristive crossbar arrays. Sci Rep 8(1):1. https://doi.org/10.1038/s41598-018-27033-9

    Article  Google Scholar 

  31. Yu S, Gao B, Fang Z, Yu H, Kang J, Wong HSP (2013) Stochastic learning in oxide binary synaptic device for neuromorphic computing. Front Neurosci 7:186. https://doi.org/10.3389/fnins.2013.00186

    Article  Google Scholar 

  32. Serb A, Bill J, Khiat A, Berdan R, Legenstein R, Prodromakis T (2016) Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat Commun 7(1):1. https://doi.org/10.1038/ncomms12611

    Article  Google Scholar 

  33. Jiang Y, Huang P, Zhu D et al (2018) Design and hardware implementation of neuromorphic systems with RRAM synapses and threshold-controlled neurons for pattern recognition. IEEE Trans Circuits Syst I Regul Pap 65(9):2726. https://doi.org/10.1109/TCSI.2018.2812419

    Article  Google Scholar 

  34. Biolek Z, Biolek D, Biolkova V (2009) SPICE model of memristor with nonlinear dopant drift. Radioengineering 18(2):210

    MATH  Google Scholar 

  35. Kvatinsky S, Friedman EG, Kolodny A, Weiser UC (2012) TEAM: threshold adaptive memristor model. IEEE Trans Circuits Syst I Regul Pap 60(1):211. https://doi.org/10.1109/TCSI.2012.2215714

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang Y, Wang X, Li Y, Friedman EG (2016) Memristive model for synaptic circuits. IEEE Trans Circuits Syst II Express Briefs 64(7):767. https://doi.org/10.1109/TCSII.2016.2605069

    Article  Google Scholar 

  37. Li Y, Zhong Y, Xu L, Zhang J, Xu X, Sun H, Miao X (2013) Ultrafast synaptic events in a chalcogenide memristor. Sci Rep 3:1619. https://doi.org/10.1038/srep01619

    Article  Google Scholar 

  38. Li Y, Zhong Y, Zhang J, Xu L, Wang Q, Sun H, Tong H, Cheng X, Miao X (2014) Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci Rep 4:4906. https://doi.org/10.1038/srep04906

    Article  Google Scholar 

  39. Hebb DO (2005) The organization of behavior: a neuropsychological theory. Taylor and Francis, London

  40. Chu M, Kim B, Park S, Hwang H, Jeon M, Lee BH, Lee BG (2015) Neuromorphic hardware system for visual pattern recognition with memristor array and CMOS neuron. IEEE Trans Ind Electron 62(4):2410–2419. https://doi.org/10.1109/TIE.2014.2356439

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China under Grant 61876209 and in part by the National Key R&D Program of China under Grant 2017YFC1501301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Hong, Q. & Wang, X. Memristor-based circuit implementation of Competitive Neural Network based on online unsupervised Hebbian learning rule for pattern recognition. Neural Comput & Applic 34, 319–331 (2022). https://doi.org/10.1007/s00521-021-06361-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06361-4

Keywords

Navigation