Skip to main content

Advertisement

Log in

An integration framework of topology method, enhanced adaptive neuro-fuzzy inference system, water cycle algorithm with evaporation rate for design optimization for a flexure gripper

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Design and analysis for flexure-based mechanisms are a challenging task thanks to their movements relied on elastic linkages. Hence, this paper presents a new optimization framework to provide a systematic design method for a flexure gripper. The optimization strategy includes the topology, modeling, and size optimization phases. In the first phase, the topology scheme for the gripper is proposed via the solids isotropic material with penalization method in terms of a full consideration of stress constraint and equal forces of both hands. In the next phase, modeling of the performances is implemented via an enhanced adaptive neuro-fuzzy inference system (EANFIS). The EANFIS’s architectures are optimized by the Taguchi. The EANFIS’s optimization is aimed to search the best parameters and improve the modeling accuracy. It showed that the EANFIS models have a good precision with root mean square error and standard deviation being close to zero, and coefficient of determination around one. In the last phase, the size optimization is performed by the evaporate rate-based water cycle algorithm. Two cases of the flexure gripper are considered in this phase. The results of case 1 found the hand’s stroke of 0.0078 mm, the strain energy of 0.0354 mJ, the stress of 65.332 MPa, and the safety factor of 3.169. The results of case 2 identified the hand’s stroke of 0.0075 mm, the stress of 66.208 MPa, and the safety factor of 3.795. Additionally, the optimized values are close to the finite element verifications. In comparison with the other methods, the results showed that the proposed framework is a best optimizer for the flexure gripper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ling M, Cao J, Jiang Z et al (2019) Optimal design of a piezo-actuated 2-DOF millimeter-range monolithic flexure mechanism with a pseudo-static model. Mech Syst Signal Process 115:120–131. https://doi.org/10.1016/j.ymssp.2018.05.064

    Article  Google Scholar 

  2. Zhang X, Xu Q (2019) Design and testing of a novel 2-DOF compound constant-force parallel gripper. Precis Eng. https://doi.org/10.1016/j.precisioneng.2018.09.004

    Article  Google Scholar 

  3. Ding B, Yang ZX, Zhang G, Xiao X (2017) Optimum design and analysis of flexure-based mechanism for non-circular diamond turning operation. Adv Mech Eng 9:1–10. https://doi.org/10.1177/1687814017743353

    Article  Google Scholar 

  4. Van Tran H, Ngo TH, Tran NDK et al (2018) A threshold accelerometer based on a tristable mechanism. Mechatronics. https://doi.org/10.1016/j.mechatronics.2018.05.013

    Article  Google Scholar 

  5. George BL, Bharanidaran R (2020) Design of multifunctional compliant forceps for medical application. Aust J Mech Eng. https://doi.org/10.1080/14484846.2020.1747151

    Article  Google Scholar 

  6. Chen W, Zhang X, Li H et al (2017) Nonlinear analysis and optimal design of a novel piezoelectric-driven compliant microgripper. Mech Mach Theory 118:32–52. https://doi.org/10.1016/j.mechmachtheory.2017.07.011

    Article  Google Scholar 

  7. Ho NL, Dao TP, Le Chau N, Huang SC (2019) Multi-objective optimization design of a compliant microgripper based on hybrid teaching learning-based optimization algorithm. Microsyst Technol. https://doi.org/10.1007/s00542-018-4222-6

    Article  Google Scholar 

  8. Das TK, Shirinzadeh B, Ghafarian M, Al-Jodah A (2020) Design, analysis, and experimental investigation of a single-stage and low parasitic motion piezoelectric actuated microgripper. Smart Mater Struct. https://doi.org/10.1088/1361-665X/ab79b6

    Article  Google Scholar 

  9. Dao T-P, Huang S-C, Le Chau N (2017) Robust parameter design for a compliant microgripper based on hybrid Taguchi-differential evolution algorithm. Microsyst Technol. https://doi.org/10.1007/s00542-017-3534-2

    Article  Google Scholar 

  10. Nguyen DN, Ho NL, Dao T-P, Le Chau N (2019) Multi-objective optimization design for a sand crab-inspired compliant microgripper. Microsyst Technol. https://doi.org/10.1007/s00542-019-04331-4

    Article  Google Scholar 

  11. Liang J, Zhang X, Zhu B (2019) Nonlinear topology optimization of parallel-grasping microgripper. Precis Eng. https://doi.org/10.1016/j.precisioneng.2019.08.004

    Article  Google Scholar 

  12. Bharanidaran R, Ramesh T (2017) A modified post-processing technique to design a compliant based microgripper with a plunger using topological optimization. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-015-7801-z

    Article  Google Scholar 

  13. Chen X, Deng Z, Hu S et al (2020) Research on three-stage amplified compliant mechanism-based piezo-driven microgripper. Adv Mech Eng. https://doi.org/10.1177/1687814020911470

    Article  Google Scholar 

  14. Zhang D, Zhang Z, Gao Q et al (2015) Development of a monolithic compliant SPCA-driven micro-gripper. Mechatronics. https://doi.org/10.1016/j.mechatronics.2014.11.006

    Article  Google Scholar 

  15. Yu YQ, Howell LL, Lusk C et al (2005) Dynamic modeling of compliant mechanisms based on the pseudo-rigid-body model. J Mech Des Trans ASME doi 10(1115/1):1900750

    Google Scholar 

  16. Chen G, Ma F, Hao G, Zhu W (2019) Modeling large deflections of initially curved beams in compliant mechanisms using chained beam constraint model. J Mech Robot. https://doi.org/10.1115/14041585

    Article  Google Scholar 

  17. Ling M, Cao J, Pehrson N (2019) Kinetostatic and dynamic analyses of planar compliant mechanisms via a two-port dynamic stiffness model. Precis Eng 57:149–161. https://doi.org/10.1016/j.precisioneng.2019.04.004

    Article  Google Scholar 

  18. Le ZhuW, Zhu Z, Guo P, Ju BF (2018) A novel hybrid actuation mechanism based XY nanopositioning stage with totally decoupled kinematics. Mech Syst Signal Process 99:747–759. https://doi.org/10.1016/j.ymssp.2017.07.010

    Article  Google Scholar 

  19. Gorji MR, Debbaut C, Ghorbaniasl G et al (2021) Electrostatic precipitation pressurized intraperitoneal aerosol chemotherapy (ePIPAC): finding the optimal electrical potential. Eur J Surg Oncol 47:e30. https://doi.org/10.1016/j.ejso.2020.11.222

    Article  Google Scholar 

  20. Farmani S, Ghaeini-Hessaroeyeh M, Javaran SH (2018) The improvement of numerical modeling in the solution of incompressible viscous flow problems using finite element method based on spherical Hankel shape functions. Int J Numer Methods Fluids 87:70–89. https://doi.org/10.1002/fld.4482

    Article  MathSciNet  Google Scholar 

  21. Pannu HS, Singh D, Malhi AK (2019) Multi-objective particle swarm optimization-based adaptive neuro-fuzzy inference system for benzene monitoring. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3181-7

    Article  Google Scholar 

  22. Wang D, He T, Li Z et al (2018) Image feature-based affective retrieval employing improved parameter and structure identification of adaptive neuro-fuzzy inference system. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2512-4

    Article  Google Scholar 

  23. Chau N Le, Le HG, Dao T, et al (2019) Efficient hybrid method of FEA-based RSM and PSO algorithm for multi-objective optimization design for a compliant rotary joint for upper limb assistive device. 2019:https://www.springer.com/engineering/electronics/j

  24. Li Z, Shi K, Dey N et al (2017) Rule-based back propagation neural networks for various precision rough set presented KANSEI knowledge prediction: a case study on shoe product form features extraction. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2707-8

    Article  Google Scholar 

  25. Le Chau N, Tran NT, Dao TP (2020) A multi-response optimal design of bistable compliant mechanism using efficient approach of desirability, fuzzy logic, ANFIS and LAPO algorithm. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2020.106486

    Article  Google Scholar 

  26. Karakatič S (2021) Optimizing nonlinear charging times of electric vehicle routing with genetic algorithm. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.114039

    Article  Google Scholar 

  27. Bonyadi MR, Michalewicz Z (2017) Particle swarm optimization for single objective continuous space problems: a review. Evol Comput. 25(1):1–54

    Article  Google Scholar 

  28. Binh HTT, Hanh NT, Van Quan L, Dey N (2018) Improved Cuckoo Search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2823-5

    Article  Google Scholar 

  29. Li S, Gu Q, Gong W, Ning B (2020) An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2019.112443

    Article  Google Scholar 

  30. Sadollah A, Eskandar H, Bahreininejad A, Kim JH (2015) Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2015.01.050

    Article  Google Scholar 

  31. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  32. Feng LQ, Iqbal MF, Yang J et al (2021) Prediction of chloride diffusivity in concrete using artificial neural network: modelling and performance evaluation. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.121082

    Article  Google Scholar 

  33. Talaat M, Gobran MH, Wasfi M (2018) A hybrid model of an artificial neural network with thermodynamic model for system diagnosis of electrical power plant gas turbine. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2017.10.014

    Article  Google Scholar 

  34. Wong EWC, Kim DK (2018) A simplified method to predict fatigue damage of TTR subjected to short-term VIV using artificial neural network. Adv Eng Softw 126:100–109. https://doi.org/10.1016/j.advengsoft.2018.09.011

    Article  Google Scholar 

  35. Eswari JS, Majdoubi J, Naik S et al (2020) Prediction of stenosis behaviour in artery by neural network and multiple linear regressions. Biomech Model Mechanobiol 19:1697–1711. https://doi.org/10.1007/s10237-020-01300-z

    Article  Google Scholar 

  36. Sethukkarasi R, Ganapathy S, Yogesh P, Kannan A (2014) An intelligent neuro fuzzy temporal knowledge representation model for mining temporal patterns. J Intell Fuzzy Syst 26:1167–1178. https://doi.org/10.3233/IFS-130803

    Article  MATH  Google Scholar 

  37. Thangaramya K, Kulothungan K, Logambigai R et al (2019) Energy aware cluster and neuro-fuzzy based routing algorithm for wireless sensor networks in IoT. Comput Netw 151:211–223. https://doi.org/10.1016/j.comnet.2019.01.024

    Article  Google Scholar 

  38. Purwanto Eswaran C, Logeswaran R (2011) Improved adaptive neuro-fuzzy inference system for HIV/AIDS time series prediction. Commun Comput Inf Sci 253:1–13. https://doi.org/10.1007/978-3-642-25462-8_1

    Article  Google Scholar 

  39. Davat B (2014) European. J Electr Eng 12:2014

    Google Scholar 

  40. Hao G, Li H (2015) Conceptual designs of multi-degree of freedom compliant parallel manipulators composed of wire-beam based compliant mechanisms. Proc Inst Mech Eng Part C J Mech Eng Sci. https://doi.org/10.1177/0954406214535925

    Article  Google Scholar 

  41. Hao G, He X, Awtar S (2019) Design and analytical model of a compact flexure mechanism for translational motion. Mech Mach Theory. https://doi.org/10.1016/j.mechmachtheory.2019.103593

    Article  Google Scholar 

  42. Karaboga D, Kaya E (2019) Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artif Intell Rev 52:2263–2293

    Article  Google Scholar 

  43. Liu M, Zhan J, Zhu B, Zhang X (2020) Topology optimization of compliant mechanism considering actual output displacement using adaptive output spring stiffness. Mech Mach Theory. https://doi.org/10.1016/j.mechmachtheory.2019.103728

    Article  Google Scholar 

  44. Kazakis G, Kanellopoulos I, Sotiropoulos S, Lagaros ND (2017) Topology optimization aided structural design: Interpretation, computational aspects and 3D printing. Heliyon. https://doi.org/10.1016/j.heliyon.2017.e00431

    Article  Google Scholar 

  45. Liu J, Ma B, Zhao H (2020) Combustion parameters optimization of a diesel/natural gas dual fuel engine using genetic algorithm. Fuel 260:116365. https://doi.org/10.1016/j.fuel.2019.116365

    Article  Google Scholar 

  46. Lin SC, Chang CK, Lin NW (2008) Automatic selection of GCC optimization options using a gene weighted genetic algorithm. In: 13th IEEE Asia-Pacific computer systems architecture conference, 2008. https://doi.org/10.1109/APCSAC.2008.4625477

  47. Deng W, Yao R, Zhao H et al (2019) A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Comput 23:2445–2462. https://doi.org/10.1007/s00500-017-2940-9

    Article  Google Scholar 

  48. Chen G, Zhang K, Xue X et al (2020) Surrogate-assisted evolutionary algorithm with dimensionality reduction method for water flooding production optimization. J Pet Sci Eng. https://doi.org/10.1016/j.petrol.2019.106633

    Article  Google Scholar 

  49. Zhang X, Duan H (2015) An improved constrained differential evolution algorithm for unmanned aerial vehicle global route planning. Appl Soft Comput J 26:270–284. https://doi.org/10.1016/j.asoc.2014.09.046

    Article  Google Scholar 

  50. Zhang Y, Jin Z, Chen Y (2020) Hybrid teaching–learning-based optimization and neural network algorithm for engineering design optimization problems. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2019.07.007

    Article  Google Scholar 

  51. Korashy A, Kamel S, Youssef AR, Jurado F (2019) Modified water cycle algorithm for optimal direction overcurrent relays coordination. Appl Soft Comput J 74:10–25. https://doi.org/10.1016/j.asoc.2018.10.020

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Industrial University of Ho Chi Minh City (IUH) under Grant Number 126/HD-DHCN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Phong Dao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, V.B., Tran, N.T. & Dao, TP. An integration framework of topology method, enhanced adaptive neuro-fuzzy inference system, water cycle algorithm with evaporation rate for design optimization for a flexure gripper. Neural Comput & Applic 34, 349–374 (2022). https://doi.org/10.1007/s00521-021-06374-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06374-z

Keywords

Navigation