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Abstract 
 

In the field of biomedicine, instance segmentation / individualization is important in analyzing the number, the morphology 
and the distribution of neurons for the whole slide images. Traditionally, biologists apply stereology technique to manually 
count the number of neurons in the regions of interest and estimate the number in anatomical regions or the entire brain. This 
is very tedious and time-consuming. In this paper, we propose a multiscale fully convolutional regression neural network 
combined with competitive region growing technique to individualize size-varying and touching neurons in major anatomical 
regions of macaque brain. Given that neuron instance or contour annotations are infeasible to obtain in certain regions, such 
as dentate gyrus where thousands of touching neurons are present, we ask expert to perform point annotations in the center 
location of neurons (noted as neuron centroids) for training. Thanks to the multiscale resolution achieved by parallel multiple 
receptive fields and different network depths, our proposed network succeeds in detecting the centroids of size-varying and 
touching neurons. Competitive region growing is then applied on these centroids to achieve neuron instance segmentation. 
Experiments on macaque brain data suggest that our proposed method outperform the state-of-the-art methods in terms of 
neuron instance segmentation performance.  To our knowledge, this is the first deep learning research work to individualize 
size-varying and touching neurons only using point annotations in major anatomical regions in the macaque brain. The 
cartographic representation of the number and the average orientation of neurons illustrates the synthesis of multi-gigabyte 
image information in the form of cartography, and shows the characteristics of different anatomical regions from mesoscopic 
level.  

1. Introduction 

Accurate neuron instance segmentation / individualization is important for neuron analysis, providing useful 
information of neurons, such as the number, the morphology and the distribution of neurons, that helps to study brain 
development, aging and cytoarchitecture (Andersen et al., 2016; Andrey et al., 2010; Karlsen and Pakkenberg, 2011; 
Larsen et al., 2006; Pakkenberg and Gundersen, 1997; Pelvig et al., 2008; Walløe et al., 2014; Williams and Herrup, 
1988). In pathological brains, for example, it helps to examine neuron loss (Thu et al., 2010; Vicar et al., 2020; 
Waldvogel et al., 2015). In practice, stereology technique (Gundersen, 1986; Jelsing et al., 2006; West et al., 1991) as 
the gold standard in the field of neuroscience is used to estimate the number of neurons in anatomical regions. However, 
this manual operation is cumbersome and time-consuming, and the accuracy of estimation depends on the experts’ 
experience. Moreover, in certain heterogeneous regions, such as hippocampus region, it is difficult to estimate. 
Therefore, accurate automated methods are requested. So far, a large number of methods have been proposed, but most 
of them cannot address the individualization problem of large number of size-varying (Figure 1 a1) and touching 
neurons (Figure 1 a2). Mathematical morphology (Nedzved et al., 2000; Shu et al., 2013) often leads to under-
individualization of numerous touching neurons because of the lack of background pixels within the neuron pixels. For 
instance, in the situation where different sizes of neurons are aggregated, neuron missing or neuron under-
individualization problems are often present due to the inappropriate structure element size. Approaches based on 
concavity detection (Bai et al., 2008; Kothari et al., 2009; Qi, 2014; Riccio et al., 2019; Zhang et al., 2013) cannot give 
accurate individualization results either, because noise present in neuron contours hamper the computation of clear 
concavity points. Graph cut methods (Al-Kofahi et al., 2010; Daněk et al., 2009; He et al., 2015; Lou et al., 2012) often 
cause problems over- and under-individualization problems since the relation between inter-pixels and intra-pixels in 
numerous touching neurons is difficult to investigate. Region growing methods (Adams and Bischof, 1994; Zucker, 



 

 

1976) can correctly separate touching cells if seeds are correctly defined. Watershed algorithm (Cousty et al., 2009; 
Yang et al., 2006) is often used to separate neurons, but it can also lead to over- and under-individualization due to the 
noise. In the past years, the emergence of deep learning techniques has led to several applications, such as cell counting 
(Xie et al., 2016; You et al., 2020) and segmentation (Li et al., 2019; Yoo et al., 2019) from histology sections. Since 
it is almost impossible to obtain highly accurate artificial labels in the field of cell segmentation, researchers tend to 
use point annotations for the cell training. Xie et al. (2016) proposed FCRN (Fully Convolutional Regression Network) 
to regress a cell spatial density map to detect cell centroids, but in roughly rounded cell clump, this method cannot give 
correct detection results. Yoo et al. (2019) proposed PseudoEdgeNet to guide the network recognize nuclei edges with 
point annotations. However, the nuclei edge information used for training is not optimal for numerous touching neurons. 
The examples displayed in their paper concerned merely single individual nuclei. Li et al. (2019) proposed a weakly 
supervised method for mitosis detection based on expansion of point annotations. They used FCN (Long et al., 2015) 
to extract mitosis features and designed a concentric loss function which considers mitosis pixels inside a disk with a 
radius r and background pixels outside a disk with radius R (R>r) for training. But this method cannot separate touching 
cells and tuning r and R is difficult for neurons with various sizes. U-net (Falk et al., 2019; Ronneberger et al., 2015), 
U-net++ (Zhou et al., 2020) can be applied for cell counting, detection and segmentation, but with only point 
annotations, their accuracies are limited in the case of size-varying and large number of touching neurons. 

In this paper, we propose a new image processing protocol which aims at automatically separating size-varying and 
touching neurons. First, the point annotations are in practice disks with a predefined radius in the center of neurons, as 
shown in Figure 1 b1 & b2. They are then processed by a Gaussian filter to obtain a probability map which describes 
the probability of pixels being neuron centroids. This map is used as ground truth to train the neural network, as shown 
in Figure 1 c1 & c2. The higher the intensity of a pixel in the probability map, the more probable it is the neuron 
centroid. Then, the predicted probability map of neuron centroids is obtained by applying the proposed multiscale fully 
convolutional regression neural network. Next, a post-processing step with a series of mathematical morphology 
operations (erosion, reconstruction, closing) are applied to locate neuron centroids. Finally, based on the neuron 
centroids, competitive region growing method proposed by You et al. (2019) is applied to obtain neuron 
individualization results. We applied our method on major anatomical regions in macaque brain. The results 
demonstrate that our method outperform the state-of-the-art methods, such as FCRN (Xie et al., 2016), U-net 
(Ronneberger et al., 2015), U-net++ (Zhou et al., 2020) and multiscale CNN (You et al., 2020).  

 
Figure 1. Example images of size-varying and touching neurons. a1 & a2) Example original images of cortex and 
hippocampus dentate gyrus. b1 & b2) Expert annotations (disks with a radius of 5 pixels in center location of neurons) on 
images of a1 & a2). c1 & c2) Preprocessing on expert annotations using a Gaussian filter (σ=3 pixels). 
 

2. Related work 

2.1. NeuN-stained neurons 

NeuN expression is observed in most neuronal cell types throughout the nervous system (Mullen et al., 1992). An 
image of NeuN-stained neurons in the cortex of a macaque brain is shown in Figure 2a and the contours based on 

a1)            b1)             c1)         a2)          b2)           c2) 



 

 

intensity of this image is shown in Figure 2b. Since the distribution of neuron pixel intensity is similar to the Gaussian 
distribution, a Gaussian filter is used for denoising (Figure 2c). It can be clearly seen that the neurons show obvious 
dark areas in their center positions. Meanwhile, the pixel intensity varies from high to low as from the edge of the 
neuron to its center. This kind of images allows to studying neuron number, morphology and distribution from 
microscopic level using macaque brain which is a model closer to the human brain compared to murine models 
(Passingham, 2009). In order to perform this study, neuron individualization is crucial and numerous algorithms have 
been proposed, mainly based on unsupervised segmentation methods, the fully supervised and weakly supervised 
learning methods. 

 
Figure 2. Characteristics of NeuN-stained neurons. a) Original color image in the cortex. b) Contour image based on pixel 
intensity of a). c) Denoising image of b) using a Gaussian filter (σ=3 pixels). 
 
2.2. Unsupervised cell segmentation methods 

Unsupervised methods perform instance segmentation through analyzing cell features (intensity, shape, texture, etc.). 
He et al. (2015) proposed to segment touching cells based on the features including cell size, spatial location, 
intervening contours and concavity detection. Zhang et al. (2016) used the spatial relationship of the non-overlapping 
and overlapping areas as well as Overlapping Translucency Light Transmission Model to segment overlapping cervical 
cells. Ma et al. (2018) proposed a saliency-based method to detect oligodendrocyte progenitor cells and then used a 
marker-controlled watershed algorithm to segment them. You et al. (2019) applied a multi-scale series of Gaussian 
filter for denoising and then performed neuron instance segmentation by applying min-max filter and competitive 
region growing. Through analyzing Dice values among a series of results, they selected the optimal Gaussian filter and 
reiterated the instance segmentation.  

2.3. Fully supervised learning-based methods 

For highly accurate cell segmentation, fully-supervised learning-based methods are the most important methods. U-
net is a classic method that once achieved top ranks in biomedical data-analysis benchmarks (Falk et al., 2019; 
Ronneberger et al., 2015; Ulman et al., 2017). The network can learn the pixels relies on cell instance segmentation 
marked by expert or contour pixels relies on cell outlines drawn by expert. Due to its classic U-shaped and skip 
connection design, numerous methods have been derived. Rad et al. (2018) proposed a multi-resolution ensemble of 
stacked dilated U-net for inner cell mass segmentation. Vuola et al. (2019) performed nuclei segmentation which 
combines the predictions of an ensemble model of U-net and Mask R-CNN. Huang et al. (2019) used U-net and 
improved level-set to segment overlapped cervical smear cells. There are also studies which learn cell characteristics 
from the perspective of transformation of ground truth. Naylor et al. (2019) address the cell segmentation as a 
regression task of the distance map, calculated for each foreground pixel as the chessboard distance to the closest 
background pixel. However, these methods require cell instance segmentation masks or cell contour masks for training 
which is time-consuming and labor-intensive work. Moreover, in the region where cells are highly aggregated, experts 
cannot identify cell instance or contours. 

2.4. Weakly supervised learning-based methods 

The staining of cells often shows a certain pattern, such as neurons, the intensity of NeuN staining gradually increases 
from the center location of the neuron to the edge. Therefore, experts can relatively easily mark the center location of 
neurons, i.e. neuron centroids. In the case of having centroid markers, researchers tried weakly supervised learning-
based methods for cell segmentation. Li et al. (2019) expanded the weak label of mitosis centroid to a novel label with 
concentric circles and designed a concentric loss to train the network to perform mitosis segmentation. The architecture 
proposed by Yoo et al. (2019) was composed of a segmentation network (FPN (Lin et al., 2017) + ResNet-50 (He et 
al., 2016)) and PseudoEdgeNet. The former was used to localize nuclei as blobs and the latter was used to extract fine 

a)        b)        c) 



 

 

boundary information without edge annotations by applying four convolution layers and an attention module of an 
FPN with a Resnet-18. The methods mentioned above are in fact more semantic segmentation than instance 
segmentation. It is in fact very difficult to achieve cell instance segmentation using weakly supervised learning-based 
methods, so there are not many methods. However, methods based on weakly supervised learning (Brabandere et al., 
2017; Sofiiuk et al., 2019; Wang et al., 2020) in the domain of natural image processing can be used for reference in 
the domain of medical image processing to achieve cell instance segmentation. 

2.5. Cell detection with point annotations 

Instead of directly performing cell instance segmentation using point annotations, researches from the point of view 
of cell detection can be first conducted. Xue et al. (2017) applied CNN to regress a fixed length vector which was 
encoded by a random Gaussian matrix and a k-sparse signal generated based on cell locations from a microscopy image. 
Cell locations were then recovered through L1 minimization / compressed sensing theory. Kainz et al. (2015), Xie et 
al. (2016), Raza et al. (2019) and You et al. (2020) regard cell detection as a regression problem. The former one uses 
Random Forest to regress a function of the distance to the center of the closest cell. The latter three design respectively 
a FCRN, a MapDe and a multiscale CNN to regress cell spatial density / heat map. They then identify cell centers by 
calculating the local extrema or performing deconvolution operation in the generated score map. With the detected cell 
centroids, methods like region growing can be applied to achieve cell instance segmentation.  

3. Materials and methods 

3.1. Biological datasets 

NeuN-stained 40-µm-thick serial coronal sections of a healthy macaque brain were digitized using an AxioScan.Z1 
(Zeiss) with an in-plane resolution of 0.22 µm/pixel (×20 magnification). Three datasets from You et al. (2019) were 
used in this study: 1) segmentation dataset, 2) individualization dataset, and 3) stereology dataset. The segmentation 

dataset is used to obtain neuron mask that can stand up to staining intensity difference existing in various brain sections. 
The individualization dataset is used to learn to detect neuron centroids and perform neuron individualization. In order 
to use deep learning methods, each image of size 5000 × 5000 pixels in the individualization dataset was cropped to 
144 small images of size 512 × 512 pixels as shown in Figure 3. There are 104 overlapped pixels between each two 
adjacent images in both horizontal and vertical directions. Fifty images of the individualization dataset were then 
cropped to a total of 7200 images. In this work, a first training data of 152 representative images (i.e. about 2% of the 
individualization dataset) from different anatomical regions were used to train the deep learning network and 50 images 
reconstructed from the 7200 predicted images were used to validate the network. Each neuron was identified by an 
expert by manually marking a disk (5 pixels in radius) in practice in its center location whose intensity is the lowest 
(darkest) among its neighbors, as shown in Figure 1 b1 & b2. The stereology dataset is used to generate cartography 
of features which reflect neuron morphology and distribution in different anatomical regions from mesoscopic level. 

 
Figure 3. Image cropping. Each image of size 5000×5000 pixels from individualization dataset from You et al. (2019) was 
cropped to 144 small images of size 512×512 pixels adapted for deep learning. There are 104 pixels overlapped between 
each two adjacent images in both horizontal and vertical direction. 



 

 

3.2. Preprocessing of point annotations 

Expert manually marked a disk (5 pixels in radius) in the center of neurons as shown in Figure 1 b1 & b2. In order 
to obtain more accurate detection results, the expert annotations were preprocessed by applying a Gaussian filter (σ=3 
pixels). A probability map was then obtained describing the probability of a pixel being the centroid, as shown in 
Figure 1 c1 & c2. These images are used as the ground truth of the proposed network. The input of the proposed 
network is the normalized grayscale images converted from the original color images, calculated as follows (Cheng et 
al., 2001): 𝐼 = (0.299𝑅 + 0.587𝐺 + 0.114𝐵)/255 (1) 

where I is the input of the proposed network, R, G and B are respectively the red, green and blue channel of the original 
image. 

3.3. Neuron centroids prediction 

The neuron diameter is between 5 and 30 μm (i.e. between 22 and 137 pixels with resolution of 0.22 µm/pixel) 
(Andersen et al., 2016). By using the classic U-net or its derivatives with deeper layers, neurons of various sizes can 
be detected. However, as layer of the network deepens, the features of small-sized neurons gradually disappear. 
Especially for a large number of aggregated small-sized neurons that are usually present in the region of dentate gyrus, 
a network with deeper layers will lead to numerous missed detections of such neurons. Research on the automated 
detection of highly aggregated neurons can effectively capture the features of small-sized neurons (You et al., 2020). 
Therefore, the module that learn the features of small-sized neurons through parallel multiple receptive fields are 
integrated into the shallow structure of deep learning model. In addition, using different decoders to the encoders in 
different network depths favorize supervision of different sizes of neurons. This motivates us to propose a network 
with parallel multiple receptive fields, optimal depth layer and multiple decoders to detect single individual neurons, 
size-varying and touching neurons.  

Figure 4 presents the architecture of the proposed network which is composed of convolution, ReLU (Rectified 
Linear Unit), max pooling, and sigmoid function. All the kernels used for convolution operations are of size 1 × 1, 2 × 
2 or 3 × 3 pixels. Lxy represent layers of different depths where x represents the layer along the vertical direction and 
y represents the layer along the horizontal direction.  

The proposed network consists of two parts: the parallel multiscale encoder network and decoder network. L11 and 
L21 are the modules of parallel multiple receptive fields to better learn features of numerous aggregated neurons which 
are inspired from You et al. (2020). The path L11  L21  L31  L22  L13 with skip connections can supervise 
neuron features in 17 receptive fields of sizes from 1 to 5 pixels in steps of 1 pixel, from 6 to 14 pixels and from 20 to 
32 pixels in steps of 2 pixels. As parallel multiple receptive field modules are constructed in the shallow structure, the 
deep structures are affected and also contain parallel multiple receptive field modules. The path L11  L21  L31  
L41  L32  L23  L14 with skip connections supervises larger neuron features in 7 more receptive field of sizes 
from 56 to 68 pixels in steps of 2 pixels. The path L11  L21  L31  L41  L51  L42  L33  L24  L15 
with skip connections supervises even larger neuron features in 7 more receptive field of sizes from 128 to 140 pixels 
in steps of 2 pixels. The path L11  L21  L31  L41  L51  L61  L52  L43  L34  L25  L16 with 
skip connections supervises the largest neuron features in 7 more receptive field of sizes from 272 to 284 pixels in 
steps of 2 pixels. The maximum size of receptive field is more than twice of the largest neuron which helps to supervise 
the relationship between adjacent touching neurons. 

This network was trained by combining four separate loss functions of four paths. We applied a sigmoid function to 
the outputs (i.e. L13, L14, L15 and L16) from the 4 paths. The detection loss was defined as their sum (equation  
 (2)). At the inference phase, the prediction from the 4 paths was averaged. Once the prediction results of 7200 images 
were obtained, we reconstructed 50 images of size 5000 × 5000 pixels from corresponding 144 images of size 512 × 
512 pixels by summing the prediction maps in the corresponding pixel positions (i.e. reverse process of Figure 3). ℒ = − 1𝑁 ∑ ∑ 𝑦𝑖,𝑛 log 𝑝𝑖,𝑛𝑁𝑛=14𝑖=1   (2) 

where 𝑦𝑖,𝑛 is the target labels and 𝑝𝑖,𝑛 is the predicted probability for the nth pixel being neuron centroid class in 
the ith path, N indicates the number of pixels in one batch. 



 

 

3.4. Neuron individualization 

Based on the segmentation dataset, the U-net model was generated (the learning rate was set to 1e-4, Adam optimizer 
was selected, cross entropy was chosen for the loss function and 300 epochs was performed for training). Neuron mask 
of the individualization dataset noted Im (Figure 5 b) was then obtained by using this U-net model. On the probability 
map (Figure 5 c) predicted by the proposed network, pixels with intensity greater than 0 were extracted as neuron 
centroid candidates, noted Ip (Figure 5 d). Since numerous small receptive fields were applied in the proposed network, 
mathematical operation should be used to reduce the noise. Ip was first eroded by using a structuring element with 5 
pixels in radius. Followed by erosion, reconstruction and closing operation, the sparse pixels were removed (Figure 5 
e). In order to remove all the non-neuronal class pixels, Ip was masked by Im (Figure 5 f), and then neuron centroids 
can be calculated as the mass center of connected component (Figure 5 g). Neuron contours were then initialized based 
on these centroids and neurons were separated by applying competitive region growing model (You et al. (2019)). 

3.5. Evaluation metrics 

The accuracy of neuron counting was evaluated by using the relative error ε which is defend as follows: 𝜀 = |𝑁𝑎−𝑁𝑒|𝑁𝑒                              (3) 

where Na is the number of neurons detected by the automated method and Ne is the number of neurons marked by 
expert. 
 The smaller the relative error, the better the performance of the automated method.  

In addition, another criterion considering the position of the individualized neurons and expert centroids was applied. 
For each individualized neuron, the number of expert centroids contained in the neuron is computed. If exactly one 
expert centroid is contained, this neuron is considered as correctly individualized. Else, it is either over-individualized 
(zeros expert centroids) or under-individualized (more than 1 expert centroids, considered as 1 correctly individualized 

 
Figure 4. Network structure for neuron centroid detection. The red figures noted as Lxy are the different layers. x represents 
the layer along the vertical direction and y represents the layer along the horizontal direction. The size of input and output 
images is 512×512 pixels. Arrows of different colors represent different operations as described at the left bottom of the 
figure. The size of images is denoted at the left bottom of the boxes and the number of channels is denoted at the top of the 
boxes. If there is nothing at the left bottom or on the top, it means the same size of images or the same number of channels 
as that of previous box.  



 

 

thanks to one-to-one correspondence). Recall (R), Precision (P) and F-score (F) are defined as follows: 𝑅 = 𝑁𝑡𝑁𝑒 ;    𝑃 = 𝑁𝑡𝑁𝑎 ;    𝐹 = 2 𝑅×𝑃𝑅+𝑃                     (4) 

where Nt is the number of correctly individualized neurons, Ne and Na is respectively the number of neurons annotated 
by expert and computed by automated method. 

The larger the value of F-score is, the better the performance of the automated method is. 

3.6. Calculation of descriptor parameters of neurons and generation of cartography of features 

A macaque brain contains millions of neurons of different sizes, shapes, distribution, etc. They can be characterized 
by a large number of descriptors which can be colorimetric but also morphological. We studied a set of descriptors 
which can be grouped in the form of several families of descriptors: 

- Colorimetric: average and standard deviation of the components of several colorimetric spaces (RGB, HSV, 
etc.). 

- Morphological: mass center, area, perimeter, mean radius, orientation of neurons, etc. 
This information is saved in the form of a “neuron vector” of size n × m (n being the number of individualized 

neurons and m being the number of descriptors calculated for each neuron). It can be used to quantify neuron features. 
The generation of a cartography can be seen as isotropic aggregation in X and Y direction from the original microscopic 
resolution. When we generate cartographies at mesoscopic level with an aggregation faction of p × q (aggregation of 
p pixels in X and q pixels in Y) from original image of microscopic level, each pixel in the cartography synthesizes the 
value of a descriptor of the population of neurons if their mass centers (saved in the “neuron vector”) after aggregation 
are located in that pixel. Figure 6 displays the flowchart of the cartography calculation of the hippocampus of macaque. 

 
Figure 5. Postprocessing of predicted probability map. a1) & a2) Example original images of cortex and hippocampus 
dentate gyrus. b1) & b2) Neuron mask Im. c1) & c2) Probability map obtained by using the proposed network. d1) & d2) 
Image Ip calculated from c1& c2) on which the intensity is greater than 0. e1) & e2) Denoised image based on d1) & d2) 
after erosion, reconstruction and closing operations. f1) & f2) Images of e1) & e2) masked by Im. g1) & g2) Original images 
overlapped with centroids, represented by red disks, calculated as mass center of connected component on f1) & f2). 

a1)      b1)      c1)      d1)      e1)      f1)      g1) 

 

 

 

 

 

 

 

 

 

 
 

 

a2)      b2)      c2)      d2)      e2)      f2)      g2) 



 

 

4. Results 

4.1. Implementation 

About the parameters used in the proposed network, the learning rate was set to 1e-5, Adam optimizer was selected 
and cross entropy was chosen for the loss function. The proposed network was trained on a computer with a NVIDIA 
GeForce RTX 2080 Ti GPU with 11GB memory. It took about 10 h when performing 500 epochs for training.  

4.2. Qualitative visual inspection 

We respectively applied the proposed network, unsupervised method proposed by You et al. (2019), deep learning 
methods of U-net (Ronneberger et al., 2015), U-net++ (Zhou et al., 2020), FCRN (Xie et al., 2016) and multiscale 
CNN (You et al., 2020) to obtain the prediction map of centroid. The final individualization results were calculated 
using the same postprocessing protocol as described in section 3.4. 

Figure 7 shows typical results obtained on 9 representative images by applying different automated methods. From 
the 1st row to the 9th, the images are obtained in the anatomical region of caudate, claustrum, cortex, hippocampus CA1 
(cornu ammonis), hippocampus CA3, hippocampus dentate gyrus, putamen, subiculum and thalamus, respectively. 
Red points in the 1st column overlapped with original color images are expert annotations of neuron centroids. It is 
obvious that the neuron characteristics in various anatomical regions are different. Figure 7 a1 represents simple images 
with a few isolated neurons of different sizes in caudate. Figure 7 a2 represents some elongated neurons in claustrum. 
Neurons in Figure 7 a3 from cortex are generally bigger than those in caudate and claustrum. Figure 7 a4 & a5 represent 
two different subregions of hippocampus in which neuron expressions are different from normal NeuN-stained neurons 
(darker in center and lighter in edge). Figure 7 a6 represents an extremely complex case where large numbers of neurons 
are aggregated and their edges are difficult to distinguish. Neurons in Figure 7 a7 & a8 are distributed sparse and 
relatively small. Moreover, the staining of neurons in Figure 7 a7 is lighter than that in Figure 7 a8. Neurons in Figure 
7 a9 are distributed sparser and are with a wide range of sizes.  

The probability maps of candidate pixels of neuron centroid obtained by the proposed network are shown in 

 

Figure 6. Strategy to generate features cartographies of hippocampus at mesoscopic scale. 



 

 

 

 
Figure 7. Comparison results of neuron centroid detection and neuron individualization obtained on images from different 
anatomical regions. From the 1st row to the 9th, the images are from caudate, claustrum, cortex, hippocampus CA1 (cornu 
ammonis), hippocampus CA3, hippocampus dentate gyrus, putamen, subiculum and thalamus. a1-a9) Original images 
overlapped with expert annotations marked by red points. b1-b9) Estimated probability map of neuron centroid. c1-c9) 
Individualization results obtained by applying the proposed network. Centroids marked by white points are post-
processed based on b1-b9). Red contours are obtained by applying competitive region growing method You et al. (2019). 
d1-d9) Individualization results obtained based on You et al. (2019). e1-e9) Individualization results obtained by applying 
U-net (Ronneberger et al., 2015). f1-f9) Individualization results obtained by applying U-net++ (Zhou et al., 2020). g1-
g9) Individualization results obtained by applying FCRN (Xie et al., 2016). h1-h9) Individualization results obtained 
based on You et al. (2020). 
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Figure 7 b1-b9. Pixels with greater intensities are more probable to be the neuron centroids. After post-processing and 
competitive region growing, neuron individualization results obtained by the proposed network are shown in Figure 7 
c1-c9. Figure 7 d1-d9, e1-e9, f1-f9, g1-g9 and h1-h9 display neuron individualization results obtained by using 
unsupervised method proposed by You et al. (2019), deep learning methods of U-net (Ronneberger et al., 2015), U-
net++ (Zhou et al., 2020), FCRN (Xie et al., 2016) and multiscale CNN (You et al., 2020), respectively. Thereinto, 
You’s method (2019) and U-net++ are not good at individualizing elongated neuron (Figure 7 d2 & f2). You’s method 
(2019) leads easily over-individualization when neuron expression does not obey hypothesis based on Figure 7 d2, d4, 
d7 and d9. U-net and multiscale CNN often lead to neuron missed detection (Figure 7 e3, e4 & h4). The phenomenon 
of neuron under-individualization often presents in the situation similar to Figure 7 e3, e5-e7 and f3, f5-f9. Moreover, 
U-net and U-net++ cannot well detect and individualize highly aggregated neurons based on Figure 7 e6 and f6. FCRN 
introduces under-individualization in  Figure 7 g1 and over-individualization in Figure 7 g3 and g5. Missed detection 
and under-individualization presents in Figure 7 h4, h6 and h7 by using Multiscale CNN. Using the proposed network 
can usually get good performance, but there may be neuron miss detection in the highly aggregated region like Figure 
7 c6. On the whole, in such a complex brain structure, the proposed network visually provides more accurate neuron 
detection and individualization performance. 

4.3. Comparison experiments of manual and automated neuron counting 

Neuron counting is important information in the field of biomedicine, so we count the number of neurons on the 
individualization dataset using unsupervised methods proposed by You et al. (2019) and deep learning methods of the 
proposed network, U-net (Ronneberger et al., 2015), U-net++ (Zhou et al., 2020), FCRN (Xie et al., 2016) and 
multiscale CNN (You et al., 2020). They respectively detect 111542, 106076, 85532, 94842, 101819, and 87320 
neurons while a total of 111971 neurons were marked by expert (Table 1). The total number of neurons detected by 
the unsupervised method (You et al., 2019) and the proposed method are respectively the first and second method close 
to the expert’s counting.  

 

4.4. Comparison of automated neuron individualization 

Besides the number of neurons, the quality of neuron individualization is important. Therefore, an evaluation by 

using different methods based on F-score (equation 𝑅 = 𝑁𝑡𝑁𝑒 ;    𝑃 = 𝑁𝑡𝑁𝑎 ;    𝐹 = 2 𝑅×𝑃𝑅+𝑃              

       (4)) was performed.  
Figure 8 shows the F-scores obtained by different automated methods applied on the individualization dataset. We 

observe that in the regions of caudate and subiculum, all the automated methods have good performance, almost all 
the F-scores are greater than 0.8. In the regions of claustrum, putamen, thalamus and cortex, the performance of 
different automated methods differs because both light- and dark- stained neurons, size-varying and touching neurons 
and neurons of different shapes are present which increase the difficulty in correctly detecting neurons. As for the 
challenging heterogeneous hippocampus region in neuroscience, the performance of all the methods are decreased. 
However, in general, we can still find that the proposed network can provide excellent individualization performance 
for any anatomical region. 

Table 1. Neuron counting and relative error by using different methods. 

 
Expert 

counting 
Proposed 
method 

Unsupervised 
method  

(You et al., 
2019) 

U-net 
(Ronneberger 
et al., 2015) 

U-net++  
(Zhou et al., 

2020) 

FCRN  
(Xie et al., 

2016) 

Multiscale 
CNN  

(You et al., 
2020) 

Number of neurons 111971 106076 111542 85532 94842 101819 87320 

Relative error (%) / 5.26 0.38 23.61 15.30 9.07 22.02 

 



 

 

 
Figure 8. F-score calculated using the proposed method on 50 images of the individualization dataset. L (respectively, R) 
means that this image is extracted from the left (respectively, right) side of the section. 
 

The average F-score for each anatomical region is presented in Table 2. We observe that the average F-score of the 
proposed method is the highest in any anatomical region. Except for the complex heterogenous hippocampus region, 
the average F-score values are all greater than 0.8577. Particularly, in the regions of caudate, putamen and subiculum, 
the average F-score values are greater than 0.9. The F-scores of hippocampus region varying from 0.7793 to 0.8896 
are lower than other anatomical regions, which is due to the fact that hippocampus is a very complex heterogenous 
region. It contains different kinds and distributions of neurons which do not follow general NeuN-stained pattern. Like 
in Figure 7 a4 & a5, different staining of these kinds of neurons (lighter staining in neuron center position) may be due 
to unsuitable staining marker (Mullen et al., 1992) corresponding to different levels of antigen expression. Nevertheless, 
the proposed network successfully individualized most neurons in hippocampus, and the calculated average F-score of 
0.8287 improved respectively 1.5%, 28.4%, 27.9%, 1.6% and 15.3% compared to the unsupervised method proposed 
by You et al. (2019), deep learning techniques of U-net (Ronneberger et al., 2015), U-net++ (Zhou et al., 2020), FCRN 

Table 2. Average F-score (average value ± standard deviation) computed using different automated methods on the 
individualization dataset. 

Anatomical 
regions 

Proposed 
method 

Unsupervised 
method  

(You et al., 
2019) 

U-net 
(Ronneberger 
et al., 2015) 

U-net++  
(Zhou et al., 

2020) 

FCRN  
(Xie et al., 

2016) 

Multiscale 
CNN  

(You et al., 
2020) 

Caudate 0.9014±0.0068 0.8745±0.0029 0.7997±0.0036 0.8198±0.0082 0.8921±0.0050 0.8767±0.0217 

Claustrum 0.8577±0.0238 0.8508±0.0145 0.7067±0.0069 0.8545±0.0297 0.8479±0.0327 0.8073±0.0393 

Cortex 0.8840±0.0131 0.8767±0.0135 0.7743±0.0220 0.7805±0.0280 0.8757±0.0139 0.8519±0.0208 

Hippocampus 0.8287±0.0331 0.8165±0.0616 0.6454±0.0906 0.6477±0.1350 0.8156±0.0444 0.7187±0.1123 

Putamen 0.9094±0.0215 0.8811±0.0417 0.7648±0.0356 0.8783±0.0209 0.8927±0.0332 0.8430±0.0507 

Subiculum 0.9196±0.0046 0.9046±0.0015 0.8221±0.0150 0.8196±0.0081 0.8976±0.0032 0.9023±0.0050 

Thalamus 0.8789±0.0265 0.8408±0.0344 0.7114±0.0184 0.8527±0.0274 0.8497±0.0145 0.7869±0.0049 

Average 0.8694±0.0377 0.8559±0.0478 0.7298±0.0830 0.7554±0.1112 0.8564±0.0411 0.8070±0.0924 

 



 

 

(Xie et al., 2016) and multiscale CNN (You et al., 2020)). In addition, the average F-score value of all the anatomical 
regions obtained by the proposed network is also the highest (respectively 1.6%, 19.1%, 15.1%, 1.5%, and 7.7% 
improvement compared to reference methods). Combined with the smallest standard deviation, the proposed network 
provides the best and the most robust performance of neuron individualization for both simple and complex cases in 
macaque brain data. 

4.5. Individualization results with different number of images in the training set 

The influence of different number of images in the training set to the individualization performance of automated 
methods is studied. The average F-score of all the images of the individualization dataset is presented in Table 3. The 
number of training set is respectively 152, 304, 456 and 608, i.e. 2%, 4%, 6% and 8% of the dataset size. Since You et 
al. (2019) proposed unsupervised method to individualize neurons, their F-score has no correlation with the number of 
training set. For the remaining deep learning methods except multiscale CNN (You et al., 2020), the average F-scores 
are increased with the number of training set. The F-score of multiscale CNN increased first and then decreased, that 
is because this method is specially designed for the detection of highly aggregated neurons. It cannot correctly extract 
features of neurons of different sizes. The individualization dataset is composed of the major anatomical regions of 
macaque brain data which concerns not only highly aggregated neurons but also size-varying neurons. Therefore, it 
leads to a performance decrease when the number of training set increases. Overall, we observe that among all the 
methods in Table 3, the proposed network consistently provides the best (the largest average F-score) and the most 
robust (the smallest standard deviation) individualization performance. 

 

4.6. Representation of neuron features in anatomical region 

Based on “neuron vector” computed at neuron level, several types of cartography can be generated. The number of 
neurons in anatomical regions of the brain is a major focus of interest for biologists. Figure 9 b1-b8 show the 
cartographies of the number of neurons in 6 regions of interest (stereology dataset shown in Figure 9 a1-a8) reflecting 
the density of neurons. The pixel aggregation has been fixed at 512 × 512 pixels which produces a new resolution of 
0.11264 mm/pixel in both horizontal and vertical directions. Visually, the regions from higher densities to lower 
densities are in order: dentate gyrus, cortex, subiculum, caudate, claustrum, and thalamus. In the cortex, especially the 
Figure 9 b1, we observe very dense bands of neurons that correspond to different known layers of the cerebral cortex 
(Kolb et al., 1995). Figure 9 c1-c8 show the cartographies of the average orientation in 6 regions of interest. It is 
interesting to note that in the cortex (Figure 9 c1) we do not find the very thin and intense bands like Figure 9 a1 or b1, 
the orientation of the neurons is stable and varies continuously. The orientations of neurons inside and around the 
caudate are different (Figure 9 c2). In the claustrum (Figure 9 c8), neurons present obvious directionality, which is 
corresponding to Figure 7 a2. The orientation of neurons is much more variable in the thalamus (Figure 9 c3 & c6) 
which is known to consist of many sub-neurons with different organizations (Dauguet et al., 2009). 

 

Table 3. Average F-score (average value ± standard deviation) computed on the individualization dataset using different 
automated methods with different numbers of training set. 

Number of 
images in the 

training set (%) 

Proposed 
method 

Unsupervised 
method  

(You et al., 
2019) 

U-net 
(Ronneberger 
et al., 2015) 

U-net++  
(Zhou et al., 

2020) 

FCRN  
(Xie et al., 

2016) 

Multiscale 
CNN  

(You et al., 
2020) 

152 (2%) 0.8694±0.0377 

0.8559±0.0478 

0.7298±0.0830 0.7554±0.1112 0.8564±0.0411 0.8070±0.0924 

304 (4%) 0.8699±0.0416 0.7414±0.0750 0.7692±0.1059 0.8625±0.0405 0.8367±0.0605 

456 (6%) 0.8715±0.0393 0.7507±0.0641 0.7784±0.1038 0.8628±0.0511 0.7997±0.0657 

608 (8%) 0.8763±0.0422 0.7587±0.0639 / 0.8679±0.0463 0.7332±0.0856 

average 0.8718±0.0031 0.8559±0.0478 0.7452±0.0124 0.7677±0.0116 0.8624±0.0047 0.7942±0.0437 

 



 

 

 

5. Discussion 

We proposed a novel scheme of multiscale fully convolutional regression neural network combined with competitive 
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Figure 9. Representation of cartography of two descriptors (the number of neurons and the average of orientation of 
neurons) in 6 anatomical regions of interest. The aggregation faction is 512 pixels in both horizontal and vertical 
directions. The resolution at mesoscopic level is 0.11264 mm/pixel. a1) S1_cortex. a2) S2_caudate. a3) S3_thalamus. 
a4) S7_cortex. a5) S4_subiculum. a6) S5_thalamus. a7) S6_dentate_gyrus. a8) S8_claustrum. b1-b8) are respectively 
the cartography of the number of neurons and c1-c8) are respectively the cartography of the average of orientation of 
neurons. The range of the value of descriptors represented by each pixel is listed at right bottom of the image. 

a1) S1_cortex       a2) S2_caudate       a3) S3_thalamus      a4) S7_cortex 
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region growing technique to individualize size-varying and touching neurons in major anatomical regions of macaque 
brain using only point annotations for training. Thanks to the multiscale resolution achieved by parallel multiple 
receptive fields and different network depths, our proposed network succeeds in detecting the centroids of size-varying 
and touching neurons. Competitive region growing applied on these centroids achieves neuron individualization which 
will help study the morphology and distribution of neurons in the entire brain. 

The proposed method provides satisfying individualization performance both qualitatively and quantitatively. Figure 
7 shows examples of excellent individualization results obtained by the proposed method in different anatomical 
regions. Based on Figure 8, the proposed method can best individualize neurons in most images compared to the 
reference methods. However, in the image of hippocampus_L_2, hippocampus_L_6, hippocampus_L_7, 
hippocampus_L_8, hippocampus_R_6, hippocampus_R_7 and hippocampus_R_8, neurons individualized by the 
proposed method are not as good as unsupervised method proposed by You et al. (2019). That is because dentate gyrus, 
a special anatomical region containing thousands of small-sized touching neurons, exist in these images. The 
unsupervised method proposed by You et al. (2019) concluded that the size of the neurons in dentate gyrus is stable, 
so they fixed a parameter specially for neuron individualization of this region resulting in better individualization 
results than those obtained by deep learning methods which use the unique architecture for all anatomical regions. 
Nevertheless, the F-scores of the proposed method are still competitive in regard of those calculated by using the 
unsupervised method. They are respectively 0.8548 vs. 0.8748 for hippocampus_L_2, 0.8680 vs. 0.8856 for 
hippocampus_L_6, 0.8618 vs. 0.8954 for hippocampus_L_7, 0.8271 vs. 0.8404 for hippocampus_L_8, 0.8896 vs. 
0.8976 for hippocampus_R_6, 0.8259 vs. 0.8845 for hippocampus_R_7 and 0.8784 vs. 0.8782 for hippocampus_R_8. 
The average F-score of 0.8287 in hippocampus region calculated by the proposed method reaches a 1.5% performance 
improvement compared to the unsupervised method, demonstrating better individualization results in the other 
hippocampus subregions (CA1-CA4) though containing different kinds and distributions of neurons. In any case, the 
hippocampus has always been the most challenging anatomical region in neuroscience. It is still worth studying this 
region. 

According to Table 2, the average F-scores of the proposed method is the highest in any anatomical region. Such 
satisfying results must be attributed to the design of parallel multiple receptive fields and appropriate network depth. 
The proposed network implementing a total of 38 receptive fields with the size from 1 × 1 to 284 × 284 pixels 
successfully extracts the features of different sizes of neurons (30 μm in diameter in maximum, i.e. 137 pixels). The 
extraction of richer features of neurons succeeds in individualizing single individual, size-varying and touching neurons. 

Table 3 reflects the influence of different numbers of training set to the individualization performance of automated 
methods. The proposed method always presents the best and the most robust individualization performances. As the 
number of training set doubles, neuron individualization performance increases by 0.55% at most. Therefore, we can 
use small samples to train the network model to perform satisfying neuron individualization of the entire brain and/or 
perform data augmentation to improve the individualization performance. This can alleviate the marking work of 
experts. 

Light-sheet microscopy allowing for very high spatial resolution down to the cellular level has been a good 
alternative to image large samples. However, it also generates very heavy data. The cartography makes it possible to 
synthesize the relevant information, to transform this massive qualitative data into quantitative data that is more 
informative and easier to analyze. Figure 9 provides an initial impression of the cartography of the number and the 
average orientation of neurons of different anatomical regions. The combination of these different information can, for 
example, be used to segment the cortical layers which constitute a very active field of research in neuroscience. In 
addition, it provides possibility of comparison with other types of imaging modalities such as Magnetic Resonance 
Imaging. 

Neuron individualization is still an essential and challenging research in neuroscience. Various unsupervised 
methods and deep learning methods have demonstrated their efficiency over the past years. However, most of them 
only focused on special anatomical regions where both of the neuron expression and distribution are simple. This is 
because that the 2D images are obtained through a single scanning focus plan which makes it difficult to individualize 
touching neurons, especially touching neurons of different sizes. In order to get a better and more general 
individualization method, it may be better to work in 3D. But there will be new problems, that is, 3D imaging modalities 
are limited in the field of view of light-sheet imaging and the performance of most computers cannot afford to handle 
such large 3D volume data (Renier et al., 2014). 

The proposed network can help address major biological challenges, such as improving our understanding of brain 



 

 

development or aging, deciphering pathology mechanisms, or evaluating novel therapies in neurodegenerative diseases. 

6. Conclusion 

This paper presents a new image processing protocol to individualize size-varying and touching neurons in major 
anatomical regions in macaque brain based on deep learning approach. The performance of neuron detection and 
individualization obtained by the proposed protocol outperforms state-of-the-art methods in both qualitative and 
quantitative assessment. Since the automated neuron individualization in macaque brain is challenging, an in-depth 
comparison of strengths and complementarities between stereology and image processing methods should be carefully 
addressed in the future. In terms of perspectives, this work will be exploited to perform neuron individualization at 
large scale in entire brain section in order to analyze neurons morphology and distribution. It will provide new tools to 
explore brain development, aging and neurodegenerative diseases. 
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Figures

Figure 1

Example images of size-varying and touching neurons. a1 & a2) Example original images of cortex and
hippocampus dentate gyrus. b1 & b2) Expert annotations (disks with a radius of 5 pixels in center
location of neurons) on images of a1 & a2). c1 & c2) Preprocessing on expert annotations using a
Gaussian �lter (σ=3 pixels).

Figure 2

Characteristics of NeuN-stained neurons. a) Original color image in the cortex. b) Contour image based
on pixel intensity of a). c) Denoising image of b) using a Gaussian �lter (σ=3 pixels).



Figure 3

Image cropping. Each image of size 5000×5000 pixels from individualization dataset from You et al.
(2019) was cropped to 144 small images of size 512×512 pixels adapted for deep learning. There are 104
pixels overlapped between each two adjacent images in both horizontal and vertical direction.



Figure 4

Network structure for neuron centroid detection. The red �gures noted as Lxy are the different layers. x
represents the layer along the vertical direction and y represents the layer along the horizontal direction.
The size of input and output images is 512×512 pixels. Arrows of different colors represent different
operations as described at the left bottom of the �gure. The size of images is denoted at the left bottom
of the boxes and the number of channels is denoted at the top of the boxes. If there is nothing at the left
bottom or on the top, it means the same size of images or the same number of channels as that of
previous box.



Figure 5

Postprocessing of predicted probability map. a1) & a2) Example original images of cortex and
hippocampus dentate gyrus. b1) & b2) Neuron mask Im. c1) & c2) Probability map obtained by using the
proposed network. d1) & d2) Image Ip calculated from c1& c2) on which the intensity is greater than 0.
e1) & e2) Denoised image based on d1) & d2) after erosion, reconstruction and closing operations. f1) &
f2) Images of e1) & e2) masked by Im. g1) & g2) Original images overlapped with centroids, represented
by red disks, calculated as mass center of connected component on f1) & f2).



Figure 6

Strategy to generate features cartographies of hippocampus at mesoscopic scale.



Figure 7

Comparison results of neuron centroid detection and neuron individualization obtained on images from
different anatomical regions. From the 1st row to the 9th, the images are from caudate, claustrum, cortex,
hippocampus CA1 (cornu ammonis), hippocampus CA3, hippocampus dentate gyrus, putamen,
subiculum and thalamus. a1-a9) Original images overlapped with expert annotations marked by red
points. b1-b9) Estimated probability map of neuron centroid. c1-c9) Individualization results obtained by



applying the proposed network. Centroids marked by white points are post-processed based on b1-b9).
Red contours are obtained by applying competitive region growing method You et al. (2019). d1-d9)
Individualization results obtained based on You et al. (2019). e1-e9) Individualization results obtained by
applying U-net (Ronneberger et al., 2015). f1-f9) Individualization results obtained by applying U-net++
(Zhou et al., 2020). g1-g9) Individualization results obtained by applying FCRN (Xie et al., 2016). h1-h9)
Individualization results obtained based on You et al. (2020).

Figure 8

F-score calculated using the proposed method on 50 images of the individualization dataset. L
(respectively, R) means that this image is extracted from the left (respectively, right) side of the section.



Figure 9

Representation of cartography of two descriptors (the number of neurons and the average of orientation
of neurons) in 6 anatomical regions of interest. The aggregation faction is 512 pixels in both horizontal
and vertical directions. The resolution at mesoscopic level is 0.11264 mm/pixel. a1) S1_cortex. a2)
S2_caudate. a3) S3_thalamus. a4) S7_cortex. a5) S4_subiculum. a6) S5_thalamus. a7)
S6_dentate_gyrus. a8) S8_claustrum. b1-b8) are respectively the cartography of the number of neurons



and c1-c8) are respectively the cartography of the average of orientation of neurons. The range of the
value of descriptors represented by each pixel is listed at right bottom of the image.


