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Abstract
Ceramic materials are an indispensable part of our lives. Today, ceramic materials are mainly used in construction and

kitchenware production. The fact that some deformations cannot be seen with the naked eye in the ceramic industry leads

to a loss of time in the detection of deformations in the products. Delays that may occur in the elimination of deformations

and in the planning of the production process cause the products with deformation to be excessive, which adversely affects

the quality. In this study, a deep learning model based on acoustic noise data and transfer learning techniques was designed

to detect cracks in ceramic plates. In order to create a data set, noise curves were obtained by applying the same magnitude

impact to the ceramic experiment plates by impact pendulum. For experimental application, ceramic plates with three

invisible cracks and one undamaged ceramic plate were used. The deep learning model was trained and tested for crack

detection in ceramic plates by the data set obtained from the noise graphs. As a result, 99.50% accuracy was achieved with

the deep learning model based on acoustic noise.

Keywords Acoustic noise curves � Pulse pendulum � Transfer learning � Deep convolutional neural network �
Alexnet

1 Introduction

Increasing the variety of quality products and reducing

costs in the ceramic industry is economically prioritized

and important. Different types of deformations are seen at

every stage of production due to multiple reasons. The

excess of deformed products affects the quality negatively.

In order to increase the product quality and production

capacity, it is necessary to plan the production process by

considering the causes of deformations and to carry out

elimination studies. For this, it is a necessity that the

detection of products with invisible deformations can be

done quickly [1–3].

Faults and cracks in ceramic materials may have various

reasons. These deformations can be determined by exam-

ining the structural properties of ceramic materials. In the

ceramic industry, test systems are rarely used to detect the

presence of defects in ceramic tiles. The defects in a

ceramic body [4, 5] are usually caused by faulty process

parameters or uncontrolled raw materials during the

pressing process [6]. Such defects generally include

delaminating heterogeneous materials or agglomerates

which reduce structural strength. Different methods are

used in the detection of cracks in ceramic, porcelain or

cemented materials. Kesharaju and Nagarajah used the PSP

(Particle Swarm Optimization) method for fault detection

in armor ceramics [7]. Morscher and Han examined the

differences in the acoustic emission waveform to predict
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the failure development for composite materials tested

under tensile stress fatigue conditions at different fre-

quencies. They concluded that failure development can be

estimated by differences in the acoustic emission (AE)

waveform [8]. Whitlow et al. predicted the final failure

location in ceramic composites using analysis of data

obtained with the combination of AE and digital image

correlation (DIC) [9]. Existing expensive inspection sys-

tems (such as X-ray methods), which can detect informa-

tion about the internal structures of ceramic materials,

determine the experimental selection of optimal production

parameters in most cases. In many technological sectors,

the infrared (IR) examination is used for the convenience,

full capacity, internal application and the continuously

declining costs of thermographic systems, for damage

detection and analysis. Thermographic techniques [10] are

generally applied to building inspections, process controls

and monitoring, predictive maintenance, assessment of

material properties and medical diagnosis [11].

Deep machine learning methods have emerged as a new

and effective alternative to the solution of classification and

estimation problems in recent years. The DCNN method,

one of the most effective methods of deep machine learn-

ing, has recently been used successfully in the diagnosis of

diseases in medicine, renewable energy sources, biomedi-

cal image and pattern recognition and classification prob-

lems [12–16]. Dung and Anh [17] used deep convolutional

neural network models for the detection of cracks in rein-

forced concrete structures and reached 90% accuracy.

Chetouani et al. [18], performed the classification of dif-

ferent types of ceramic particles using a convolutional

neural network with an accuracy of 83%. Konda et al. [19],

determined the microstructure properties of ceramics by

using convolutional neural networks and estimated ionic

conductivity in their study.

The convolutional neural network (CNN) method is

mentioned in the state of the art as one-dimensional CNN

(1D-CNN) or two-dimensional CNN (2D-CNN), depend-

ing on the size of the data set presented to the input layer.

The numbers that make up a graph (such as a noise graph)

are the data used for training and testing the 1D-CNN

model. In 1D-CNN, the operations take the form of a

sequence, and 1D-convolution sequences are only linear

weighted sums of 1D-data sequences. Any CPU (Central

Processing Unit) implementation in a standard computer is

sufficient and relatively fast to train compact 1D-CNNs

containing several hidden layers (e.g., 3 or less) and neu-

rons (e.g.,\ 30). On account of their low computing

requirements, compact 1D-CNNs are particularly appro-

priate for real-time and low-cost applications in mobile or

handheld devices [20]. Even though 1D-CNN models

exterminate the requirement of manual feature extraction,

they can only generate a trustworthy prediction only with a

larger number of data, because just like artificial neural

networks, input data consists of one-dimensional numerical

data.

The application of 2D-CNN is different compared to

1D-CNN as it needs more complex computation. The 2D-

CNN model is also known as deep CNN (DCNN) in the

state of the art. Since DCNN neurons are sparsely con-

nected with connected weights, DCNNs can operate major

inputs with large computational efficiency compared to

traditional fully connected MLP networks. DCNNs are

irresponsive to small transmutations in input data such as

translation, scaling, irregularity and twist, and can adapt to

dissimilar input sizes.

Each hidden neuron in a traditional MLP or a 1D-CNN

contains scalar weights, input and output. However,

because of the two-dimensional nature of the images, every

neuron in a DCNN includes 2D planes for weights known

as kernels and input and output known as a feature map.

Although DCNNs have performed very well in many fields

where visual data can be used, compact 1D-CNNs with low

calculation necessities have been preferred over DCNNs in

recent years. The main reason for this is usually the

requirement for private hardware setup [e.g., Cloud com-

puting or Graphics Processing Unit (GPU)] to train

DCNNs. Other significant reasons may be that mathemat-

ical expressions and computations in DCNNs are more

complicated in matrix form, and more significantly,

graphics such as noise signals are not convenient for

DCNNs [20].

It is not feasible to train and test DCNN directly with 1D

signal data. To do this, it is essential to transform 1D

signals to 2D signals. Effective use of DCNNs is essential

for important project studies such as 100% accuracy of

cracked plates and graphic monitoring and transition to

future online DCNN studies. However, choosing DCNNs

may not seem advantageous in terms of both the increased

workload that slows down the computer and the possible

long prediction process. It is preferable to make feature

extraction prior to classification rather than directly train-

ing the classifier model with raw signal data samples.

It is known that DCNN performs better than 1D CNN

even for one-dimensional data. However, in random weight

initiated 1D CNN, the accuracy of 1D CNN with 1D signal

input may be higher than a DCNN with 2D image input.

Since the number of input parameters in 1D-CNNs is much

less than DCNNs, the DCNN model with more parameters

and higher complications is more likely to encounter

overfitting trouble than 1D-CNNs. The overfitting trouble

all the time negatively influences the accuracy and stability

of DCNN models and this issue requires to be eliminated

[21]. For this reason, in this study, we are applying an

AlexNet-like network model, initializing with weights

trained on imageNet, to lighten this overfitting trouble
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encountered in DCNNs. In this way, we further increase

the accuracy and robustness of the DCNN model applied

for the classification by making the 1D signals (noise sig-

nals) compatible with DCNN and fine-tuning the model

with the transfer learning techniques. In this study, we use

the short-term recorded graphical images to convert one-

dimensional noise signal data (1-D) into two-dimensional

data (2D). To test the robustness of the pre-trained Alexnet

DCNN model, classification was performed in ten classes

(c1 to c9 and s1) and a tenfold cross-validation technique

was used. For this, a pre-trained DCNN Alexnet model was

used by using the transfer learning method. To our

knowledge, this is the first successful study where the

DCNN pre-trained Alexnet model has been trained and

tested with visual noise data using a transfer learning

technique.

Quality filtering of image data can provide high per-

formance in studies that can be performed with DCNN

models when filter design problems are overcome. There-

fore, it should be considered that scientific studies on filter

design problems contribute to the current success of DCNN

models. Zhang et al. [22] examined the finite-time asyn-

chronous consuming filter design problem for conical

nonlinear Markov jump systems. Another important issue

for deep learning algorithms is learning control, which

contributes to the development and performance of learn-

ing algorithms. Iterative learning control, which is used

continuously especially in deep learning methods, can

positively change the performance of the learning process.

Tao et al. [23] developed an iterative learning control

algorithm that is more efficient considering different initial

conditions. In another study by Tao et al., they developed

an iterative learning control algorithm for discrete systems

with multiple time delays exposed to polytopic uncertainty

and limited frequency domain [24]. In another study for the

development of the learning algorithm, Xin et al. [25]

designed an online modeless integral reinforcement learn-

ing algorithm to solve multiplayer nonzero-sum games.

After examining the studies in the literature, it is

understood that there is a need for further study and pro-

gress in the automatic crack detection of ceramic materials.

In this study, a pre-trained DCNN model is used for

automatic crack detection in ceramic plates. Impact noise

was produced first for cracks in ceramic plates. Impact

noise was then converted into numerical data and trans-

ferred to pc to achieve noise curves. A pendulum was used

to obtain impact noise. The pendulums, in accordance with

the dynamic system, have the same effect as the same

movements [26–28]. The rest of the article is organized as

follows: ın the second section, the method used in the

study, obtaining and arranging the data set and the archi-

tecture of the DCNN model are explained. In the third

section, the results obtained from the study are presented.

In the fourth section, the results are discussed. In the fifth

section, the results of the study, future studies and rec-

ommendations are presented.

2 Methodology

2.1 Obtaining the data set

In this study, an impact pendulum was used to produce a

stable impact. Impact pendulum is an advanced pendulum

model used to create equal effect magnitude [28, 29]. The

equation of motion of a pendulum can be obtained using

Eqs. (1), (2) and (3) using Fig. 1. Consider that the

damping and thrust forces are parallel to the movement of

the pendulum. Let the driving force be a function of time.

D = bv, the damping force therefore depends on the

velocity v or r _h.

C ¼ r � F ð1Þ

�dampingforce ¼ gravityforce þ drivingforce ¼ I€h ð2Þ

�bvrsinhþ�mgrsinhþ Frsinh ¼ I€h ð3Þ

By rearranging and modifying equality (4) and (5) are

obtained. Equation (5) is a quadratic differential equation

that identifies the dynamic system of interest [26–28].

mr2hþ €br2 _hþ mrgsinh ¼ F tð Þr ð4Þ

€hþ b

m
_hþ g

r
sin h ¼ F tð Þ

mr
ð5Þ

By means of a small plastic hammer attached to the end

of the impact pendulum, an equally large impact was

applied without damaging the ceramic plate and the sound

from the plate was analyzed. Measurement and data col-

lection are shown in Fig. 2.

Fig. 1 Scheme of a pendulum [24]
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In the study, POE 2000 type Impact Pendulum was used

and the same size impact effect was obtained on the

ceramic plate. Here, using the impact pendulum, the sound

produced as a result of equal impact on the same model

cracked or non-cracked plates was transferred to the data

acquisition system and then to the computer. Onyx 800R

sound system model was used for experimental application.

The output audio data of the amplifier were transmitted to

the computer via the Advantech 1716L multifunction PCI

card at a sampling rate of 0.0000125 s. Data analysis was

performed using MATLAB (Fig. 2).

A total of four ceramic plates were identified, one of

which was in good condition and the others with different

cracks, and in experimental application, equal impacts

were applied to these plates. According to the obtained

sound graphs, there is a sound absorption between the

crack openings in the crack plate after the impact operation

and the vibration does not continue. On the contrary, on the

undamaged plate, vibration continues for a longer period of

time. This shows a similar trend in other graphs, but varies

according to the size and shape of the cracks in the plates.

The plate used in each experiment has the same structural

characteristics and is the same brand product. However,

each cracked plate has invisible cracks which are different

in size. Undamaged plates were called ‘‘s’’ and cracked

plates were called ‘‘c’’.

The curves of the sound from the ceramic plates at the

same impact are shown in Figs. 3. The last graph in Fig. 3

belongs to the undamaged plate illustrated as s1. From

these graphs, a data set consisting of 2000 images was

created, which will be used for the training and testing of

the DCNN model by creating short-term instant graphic

images. The basic numbers related to this data set are

shown in Table 1.

Two hundred of the visual data were obtained from the

undamaged plate with the code name s1, and the remaining

1800 visual data were obtained from cracked plates with

the code names c1, c2, c3, c4, c5, c6, c7, c8 and c9. Since

there are nine types of cracks, ten group datasets were

created. For each group of this data set, 80% was used for

the training of the model and the rest was used for vali-

dation or evaluation purposes. All the images in the data set

are 547 9 1110 9 3 in the first stage. These visual data

were cropped to obtain dimensions of 227 9 227 9 3

calculated for the pre-trained Alexnet DCNN model.

2.2 Architecture of the DCNN model

In this study, we used the pre-trained DCNN AlexNet

model for fault detection in ceramic plates. For this

architecture, MATLAB has been preferred, providing an

efficient environment for deep learning. We used the

concept of transfer learning for deep neural network

architecture. Transfer learning is a machine learning tech-

nique in which a model trained for a particular task can be

used to learn the new task by transferring information.

When we do not have enough data to train the model from

scratch, this technique can be effective, fast and convinc-

ing. Input images for AlexNet were Red Green Blue (RGB)

color images with a resolution of 227 9 227 pixels. The

Alexnet model consists of three maxpolling layers and five

convolution layers. Each convolution layer in AlexNet

architecture is followed by a rectified linear unit (ReLU).

All parameters including filter size, number of filters,

padding and stride for each layer are shown in Fig. 4. After

removing these layers, we reorganized this architecture for

crack detection in ceramic plates. To this end, instead of

the fully connected layer with 1000 neurons removed,

another fully connected layer with ten neurons was added

by using the softmax function, to which all units were fully

connected to the ten neuronal outputs. The architecture

applied for the detection or classification of cracks in

ceramic plates is shown in Fig. 4. The network change rate

is usually carried out with a learning rate. In this network,

we have not changed the learning rate of the layers before

the last three layers; instead, we have increased the learn-

ing rate of the new layers to update faster than the original

layers, so we can learn the new weight of these layers

Fig. 2 Data acquisition and

measurement systems [28, 29]
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faster. Figure 4 illustrates the pre-trained Alexnet DCNN

model and the changes made. The study was carried out

with the NVIDIA GeForce 940MX, 6040 MB GPU note-

book. The training took about 23 min. Batch size 75,

maximum epoch 30 and maximum iteration set to 250. The

initial learning rate was chosen as 0.001. In this study, the

pre-trained Alexnet deep convolutional neural network

model was reorganized with a transfer learning approach.

2.3 Convolution layer

The process of filtering the input matrix with the filter

matrix (nk � nk) is called convolution. During the

Fig. 3 Noise plot of the plates
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convolution process, the number of steps the filter matrix

makes to the right and left in the input matrix (tensor) is

called the stride (s). The input matrix A is a square matrix

and the row and column size is greater than or equal to nk.

The matrix A, which is the input matrix to the convolution

layer, with dimensions nA � nA, is converted into a smaller

matrix B, after filtering with the filter matrix. According to

Eq. (6), K indicates the filter, A indicates the input matrix

and B indicates the filtered output matrix. The output

matrix B obtained after filtering is obtained in the following

way [30, 31].

Bij ¼ A � Kð Þij¼
XnK�1

f¼0

XnK�1

h¼0

Aiþf ;jþhKiþf ;jþh ð6Þ

Table 1 Data set summary
Plates names Situation Data number Training data Validation data

c1 Cracked 200 160 40

c2 Cracked 200 160 40

c3 Cracked 200 160 40

c4 Cracked 200 160 40

c5 Cracked 200 160 40

c6 Cracked 200 160 40

c7 Cracked 200 160 40

c8 Cracked 200 160 40

c9 Cracked 200 160 40

s1 Undamaged 200 160 40

Fig. 4 AlexNet architecture for defect detection in ceramic plates
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After convolution, the image size becomes smaller than

the original size. In another convolution process, the image

size can be increased to its original size if deemed neces-

sary. For this, it is necessary to increase the size of the

reduced image in pixels. This size increase process is

called padding (p). The blank pixel locations of the

enlarged image for padding are filled with near zero pixel

values or zero values. It can be applied in various different

strategies for padding process. One of the steps of

designing a DCNN architecture is to determine p values.

Another design step is to determine the s value, which is

the shifting step of the filter. After the p and s values are

determined, the output matrix B can be calculated as fol-

lows after the convolution and pooling processes [30, 31].

nB ¼ nA þ 2p� nK
s

þ 1

� �
ð7Þ

2.4 Classification and softmax layer

The cross-entropy loss is calculated in the classification

layer, the last layer of the network, connected to the soft-

max layer. For the probability distribution of multi-class

classification;0� yr � 1 and
Pk

j¼1 yj ¼ 1. ar, indicates the

conditional probability of the sample in class r. Softmax

function, which is the layer connected to the last fully

connected layer, is the output unit activation function used

for multiple classifications. In this study, the softmax

function used for decimal classification:

yr xð Þ ¼ exp ar xð Þð Þ
Pk

j¼1 exp aj xð Þ
� � ð8Þ

In the training process of the model, the input from the

softmax function in the classification layer is assigned to

one of the K classes that are mutually exclusive by means

of the ‘‘cross-entropy function’’. The model continues to be

trained until the loss function reaches its minimum value.

In the loss function, N indicates the sample number, K is

the class number, tij is the output for j class i sample, and yij
is the output for j class i sample [31, 32].

Loss ¼ �
XN

i¼1

XK

j¼1

tijlnyij ð9Þ

3 Results

The pre-trained DCNN Alexnet model was used for crack

detection in ceramic plates. We analyzed the results

obtained by training the proposed pre-trained Alexnet

DCNN model with the data set. Table 2 shows the results

obtained from the DCNN model. The pre-trained DCNN

model has provided satisfactory accuracy for crack detec-

tion in ceramic plates. The validation accuracy rate was

99.50%.

Figure 5 shows the process of accuracy rate for training

and validation obtained according to iteration. Also, the

loss curves in the training and validation process are

illustrated in Fig. 5. The success of the DCNN model can

be understood from the accuracy graphs showing the

training processes, and the confusion matrix in Fig. 6.

As can be seen from the confusion matrix, only two

images are incorrectly estimated. In fact, this image was s1

but it was estimated as c2. All other image data were

accurately predicted, resulting in a satisfactory success in

the cracked plate and undamaged plate detection.

4 Discussion

Using DCNN, we have performed the automatic detection

of invisible cracks in the ceramic plates and examined the

plate condition in ten classes. The proposed method has

been applied effectively. It is understood that the DCNN

model is more cost-effective compared to infrared (IR),

thermographics, X-ray methods for examining the internal

structures of ceramic materials, it gives more rapid results

and is more likely to be preferred in ceramic technology in

the future. Because other methods help in the optimal

selection of the production parameters of ceramic materials

in most cases. The convolution and other hidden layers in

the DCNN model used in the study are strong enough to

automatically detect and classify the graphical image data

set. Deep neural networks often required large amounts of

data for training. However, in this study, we were able to

obtain 99.50% accuracy in cracked plate detection by using

short-term graphical image data and fine-tuning of pre-

trained DCNN despite our limited data set. The absence of

a significant difference between the training accuracy and

validation accuracy indicates that the DCNN is strong

enough to detect cracks that cannot be seen in ceramic

materials based on graphics from noise data. A relatively

small amount of work in the art suggests detection tech-

niques for different ceramic cracks, but most studies have

also neglected the classification of crack subtypes.

Table 2 Classification results

Accuracy (%) Loss

Training 100 0.0002

Validation 99.50 0.0144
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Although these subtypes are difficult to use, they are of

great importance in deformation detection or prediction.

In this preliminary study, automatic detection of cracked

and undamaged ceramic plates by the effect of noise and

classification of them into ten classes based on instant

graphic images were performed. The system we have

investigated in this study is the model of DCNN which is

based on the instantaneous waveform image data without

requiring any processing of noise data, such as feature

extraction from the graph. The classification rate achieved

with the DCNN pre-trained model provides the highest

accuracy rate among all the methods discussed in the

literature.

In our previous study, using numerical data, two

undamaged and two cracked ceramic plates were predicted

with an accuracy rate of approximately 99% by way of

quad classifications. However, the number of crack plates

we used in this study was only two, and we used only

numerical vibration data of these two crack plates [33].

Therefore, the previous study needed improvement in

terms of both reliability and generalizability. This study, on

the other hand, was different from the previous one, using

nine crack plates instead of two, and the number of crack

types was increased by making ten classifications instead

of four classifications. Thus, with two-dimensional visual

data and deep learning, both the reliability of the study was

increased and the generalizability was improved by

increasing the number of crack types. Thus, we carried our

previous work to a further point.

One of the limitations of our study is that we skip noise

from images, but this has little effect on the performance of

our proposed system. However, there are different ways to

reduce noise from images that can improve the perfor-

mance of the model. Some of these methods are mean,

unsharp filters, Gaussian smoothing, conservative

smoothing and frequency filters. In addition, in this study,

we used a limited amount of training and validation data

that could affect the training process of deep neural net-

works. Therefore, in the future, we plan to use DCNN to

learn from scratch with larger image data sets to help

researchers and employees effectively detect defects in

ceramic or porcelain materials so that this identification

system can be used in the industry.

Another limitation of our study is that the classification

of cracked plates according to their causes of cracked

formation was neglected in our study. Because the cause of

the deformation on the plate may be due to production, raw

material selection or human-induced. In real applications,

we can use deep learning to reveal the cause of the crack.

Thus, we can directly contribute to production.

5 Conclusion and future direction

In this study, we investigated the pre-trained DCNN

AlexNet application for the detection of cracks in the

ceramic plates, the detection and classification of the sub-

types of different cracks. By performing data set creation

from short-term graphical visual images, we are able to

achieve 99.50% accuracy in the validation process, and

Fig. 5 Accuracy and loss curves

for training and validation

Fig. 6 Confusion matrix
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100% accuracy in the training process, for crack detection.

This automatic identification and classification system can

help to identify the early deformation of ceramic materials

so that an opportunity for effective early prevention is

achieved. In the future, one of the promising aspects for

researchers is to use different deep learning architectures to

classify and identify a variety of failures in ceramic

materials and to compare these architectures to check

which network performs well for deformation detection. In

addition, we can apply deep learning models to learn from

scratch with larger image data sets, so that we can help

researchers and industry workers better identify deforma-

tions in ceramic materials through this detection system.

This approach can also be developed into a fully automatic

deformation detection system by defining the input–output

parameters and integrating it with a fully automatic

deformation detection system as part of the sub-module.

Another aspect for researchers and the future is to develop

an automatic detection system for the phenomenon of

cracks and deformation so that all types of deformation can

be automated.
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