Skip to main content

Advertisement

Log in

New ranking model with evidence theory under probabilistic hesitant fuzzy context and unknown weights

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a novel ranking model under probabilistic hesitant fuzzy set (PHFS) by extending the idea of evidence theory (ET). PHFS is a strong variant of hesitant fuzzy set that associates occurrence probabilities to multiple membership grades. This offers flexibility to experts during preference elicitation and aids proper handling of uncertainty. Evidence theory is also a powerful concept for managing uncertainty/hesitation. By integrating Bayesian approximation with ET, a flexible ranking model is developed that complements ET. Due to the partial availability of evidences for decision-making under uncertainty, an approximation strategy is combined. Previous studies on PHFS have not handled hesitation of experts better and to alleviate the issue, a new regret-rejoice approach is put forward that calculates weights of criteria by handling hesitation efficiently. Ranking values from each expert are obtained that are further fused by the Maclaurin operator to get the final ranking order. These approaches are integrated into a framework and its usefulness is exemplified using renewable energy technology selection for Tamil Nadu. Finally, comparative analysis with other approaches reveals the strengths and weaknesses of the proposed work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bashir Z, Rashid T, Watróbski J, Salabun W, Malik A (2018) Hesitant probabilistic multiplicative preference relations in group decision making. Appl. Sci. (Switzerland) 8(3):1–31. https://doi.org/10.3390/app8030398

    Article  Google Scholar 

  2. Bell DE (1982) Regret in decision making under uncertainty. Oper Res 30(5):961–981

    Article  Google Scholar 

  3. Certa A, Hopps F, Inghilleri R, La Fata CM (2017) A dempster-shafer theory based approach to the failure mode, effects and criticality Analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel. Reliab Eng Syst Saf 159:69–79. https://doi.org/10.1016/j.ress.2016.10.018

    Article  Google Scholar 

  4. Chen L, Zhou Z, Hu C, Yue R, Feng Z (2020) Performance evaluation of complex systems using evidential reasoning approach with uncertain parameters. Chin J Aeronaut. https://doi.org/10.1016/j.cja.2020.09.044

    Article  Google Scholar 

  5. Chen W, Goh M, Zou Y (2018) Logistics provider selection for omni-channel environment with fuzzy axiomatic design and extended regret theory. Appl Soft Comput 71:353–363

    Article  Google Scholar 

  6. Deng Y, Sadiq R, Jiang W, Tesfamariam S (2011) Risk analysis in a linguistic environment: a fuzzy evidential reasoning-based approach. Exp Syst Appl 38(12):15438–15446. https://doi.org/10.1016/j.eswa.2011.06.018

    Article  Google Scholar 

  7. Fang H, Li J, Song W (2018) Sustainable site selection for photovoltaic power plant: an integrated approach based on prospect theory. Energy Convers Manage 174:755–768

    Article  Google Scholar 

  8. Farhadinia B, Aickelin U, Khorshidi HA (2020) Uncertainty measures for probabilistic hesitant fuzzy sets in multiple criteria decision making. Int J Intell Syst. https://doi.org/10.1002/int.22266

    Article  MATH  Google Scholar 

  9. Farhadinia B, Herrera-Viedma E (2020) A modification of probabilistic hesitant fuzzy sets and its application to multiple criteria decision making. Iran J Fuzzy Syst 17(4):151–166

    MathSciNet  MATH  Google Scholar 

  10. Fu C, Xue M, Chang W, Xu D, Yang S (2020) An evidential reasoning approach based on risk attitude and criterion reliability. Knowl-Based Syst 199:105947. https://doi.org/10.1016/j.knosys.2020.105947

    Article  Google Scholar 

  11. Fülöp J (2001) Introduction to decision making methods. Operat Res https://doi.org/10.1.1.86.6292

  12. Garg H, Kaur G (2019) A robust correlation coefficient for probabilistic dual hesitant fuzzy sets and its applications. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04362-y

    Article  Google Scholar 

  13. Garg H, Kaur G (2020) Quantifying gesture information in brain hemorrhage patients using probabilistic dual hesitant fuzzy sets with unknown probability information. Comput Ind Eng 140:106211. https://doi.org/10.1016/j.cie.2019.106211

    Article  Google Scholar 

  14. Gong X, Yu C, Wu Z (2019) An extension of regret theory based on probabilistic linguistic cloud sets considering dual expectations: an application for the stock market. IEEE Access 7:171046–171060. https://doi.org/10.1109/ACCESS.2019.2956065

    Article  Google Scholar 

  15. Guo J, Yin J, Zhang L, Lin Z, Li X (2020) Extended TODIM method for CCUS storage site selection under probabilistic hesitant fuzzy environment. Appl Soft Comput J 93:106381. https://doi.org/10.1016/j.asoc.2020.106381

    Article  Google Scholar 

  16. Guo S, Liu S, Fang Z (2015) Multi-objective grey target decision model based on regret theory. Control Decis 30(9):1635–1640

    MATH  Google Scholar 

  17. Hao Z, Xu Z, Zhao H, Su Z (2017) Probabilistic dual hesitant fuzzy set and its application in risk evaluation. Knowl Based Syst 127:16–28. https://doi.org/10.1016/j.knosys.2017.02.033

    Article  Google Scholar 

  18. He Y, Xu Z (2019) Multi-attribute decision making methods based on reference ideal theory with probabilistic hesitant information. Exp Syst Appl 118:459–469. https://doi.org/10.1016/j.eswa.2018.10.014

    Article  Google Scholar 

  19. Huang W, Liu Y, Zhang Y, Zhang R, Xu M, Dieu GJD, Antwi E, Shuai B (2020) Fault tree and fuzzy D-S evidential reasoning combined approach: an application in railway dangerous goods transportation system accident analysis. Inf Sci 520:117–129. https://doi.org/10.1016/j.ins.2019.12.089

    Article  Google Scholar 

  20. Ji P, Zhang HY, Wang JQ (2018) A fuzzy decision support model with sentiment analysis for items comparison in e-Commerce: the case study of PC online.com. IEEE Trans Syst Man Cybernet Syst. https://doi.org/10.1109/TSMC.2018.2875163

    Article  Google Scholar 

  21. John A, Paraskevadakis D, Bury A, Yang Z, Riahi R, Wang J (2014) An integrated fuzzy risk assessment for seaport operations. Saf Sci 68:180–194. https://doi.org/10.1016/j.ssci.2014.04.001

    Article  Google Scholar 

  22. Kao C (2010) Weight determination for consistently ranking alternatives in multiple criteria decision analysis. Appl Math Model 34(7):1779–1787. https://doi.org/10.1016/j.apm.2009.09.022

    Article  MathSciNet  MATH  Google Scholar 

  23. Kiani R, No G, Niroomand S, Didehkhani H, Mahmoodirad A (2020) Modified interval EDAS approach for the multi-criteria ranking problem in banking sector of Iran. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-02550-6

    Article  Google Scholar 

  24. Koksalmis E, Kabak Ö (2018) Deriving decision makers’ weights in group decision making: an overview of objective methods. Inform Fusion. https://doi.org/10.1016/J.INFFUS.2018.11.009

    Article  Google Scholar 

  25. Kong G, Xu DL, Yang JB, Ma X (2015) Combined medical quality assessment using the evidential reasoning approach. Exp Syst Appl 42:5522–5530

    Article  Google Scholar 

  26. Kong G, Xu DL, Yang JB, Yin X, Wang T, Jiang B, Hu Y (2016) Belief rule-based inference for predicting trauma outcome. Knowl-Based Syst 95:35–44

    Article  Google Scholar 

  27. Li J, Chen Q, Niu LL, Wang ZX (2020) An ORESTE approach for multi-criteria decision-making with probabilistic hesitant fuzzy information. Int J Mach Learn Cybern 11(7):1591–1609. https://doi.org/10.1007/s13042-020-01060-3

    Article  Google Scholar 

  28. Li J, Niu LL, Chen Q, Wu G (2020) A consensus-based approach for multi-criteria decision making with probabilistic hesitant fuzzy information. Soft Comput. https://doi.org/10.1007/s00500-020-04886-9

    Article  Google Scholar 

  29. Li J, Wang JQ (2017) Multi-criteria outranking methods with hesitant probabilistic fuzzy sets. Cogn Comput 9(5):611–625. https://doi.org/10.1007/s12559-017-9476-2

    Article  Google Scholar 

  30. Li J, Wang JQ (2019) Multi-criteria decision-making with probabilistic hesitant fuzzy information based on expected multiplicative consistency. Neural Comput Appl 31(12):8897–8915. https://doi.org/10.1007/s00521-018-3753-1

    Article  Google Scholar 

  31. Li J, Wang JQ, Hu JH (2019) Multi-criteria decision-making method based on dominance degree and BWM with probabilistic hesitant fuzzy information. Int J Mach Learn Cybern 10(7):1671–1685. https://doi.org/10.1007/s13042-018-0845-2

    Article  Google Scholar 

  32. Liang Y, Ju Y, Qin J, Pedrycz W (2021) Multi-granular linguistic distribution evidential reasoning method for renewable energy project risk assessment. Inform Fusion 65:147–164. https://doi.org/10.1016/j.inffus.2020.08.010

    Article  Google Scholar 

  33. Liao H, Zhang Z, Xu Z, Banaitis A (2020) A Heterogeneous regret-theory-based method with choquet integral to multiattribute reverse auction. IEEE Trans Eng Manage. https://doi.org/10.1109/TEM.2020.3004501

    Article  Google Scholar 

  34. Liu J, Yang JB, Wang J, Sii HS (2005) Engineering system safety analysis and synthesis using the fuzzy rule-based evidential reasoning approach. Qual Reliab Eng Int 21:387–411. https://doi.org/10.1002/qre.668

    Article  Google Scholar 

  35. Liu L, Bin Z, Shi B, Cao W (2020) Sustainable supplier selection based on regret theory and QUALIFLEX method. Int J Comput Intell Syst 13(1):1120–1133. https://doi.org/10.2991/ijcis.d.200730.001

    Article  Google Scholar 

  36. Liu X, Wang Z, Zhang S, Liu J (2020) Probabilistic hesitant fuzzy multiple attribute decision-making based on regret theory for the evaluation of venture capital projects. Econom Res-Ekonomska Istraživanja 33(1):672–697. https://doi.org/10.1080/1331677X.2019.1697327

    Article  Google Scholar 

  37. Mardani A, Nilashi M, Zakuan N, Loganathan N, Soheilirad S, Saman MZM, Ibrahim O (2017) A systematic review and meta-Analysis of SWARA and WASPAS methods: theory and applications with recent fuzzy developments. Appl Soft Comput J 57:265–292. https://doi.org/10.1016/j.asoc.2017.03.045

    Article  Google Scholar 

  38. Mishra AR, Rani P, Mardani A, Pardasani KR, Govindan K, Alrasheedi M (2020) Healthcare evaluation in hazardous waste recycling using novel interval-valued intuitionistic fuzzy information based on complex proportional assessment method. Comput Ind Eng 139:106140. https://doi.org/10.1016/j.cie.2019.106140

    Article  Google Scholar 

  39. Mishra AR, Rani P (2019) Shapley divergence measures with VIKOR method for multi-attribute decision making problems. Neural Comput Appl 31(2):1299–1316. https://doi.org/10.1007/s00521-017-3101-x

    Article  Google Scholar 

  40. Mishra AR (2016) Intuitionistic fuzzy information with application in rating of township development. Iran J Fuzzy Syst 13:49–70

    MathSciNet  MATH  Google Scholar 

  41. Mokhtari K, Ren J, Roberts C, Wang J (2012) Decision support framework for risk management on sea ports and terminals using fuzzy set theory and evidential reasoning approach. Exp Syst Appl 39(5):5087–5103. https://doi.org/10.1016/j.eswa.2011.11.030

    Article  Google Scholar 

  42. Ouadah A, Hadjali A, Nader F, Benouaret K (2018) SEFAP: an efficient approach for ranking skyline web services. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-018-0721-7

    Article  Google Scholar 

  43. Peng HG, Shen KW, He SS, Zhang HY, Wang JQ (2019) Investment risk evaluation for new energy resources: an integrated decision support model based on regret theory and ELECTRE III. Energy Convers Manage 183:332–348. https://doi.org/10.1016/j.enconman.2019.01.015

    Article  Google Scholar 

  44. Peng X, Yang Y (2017) Algorithms for interval-valued fuzzy soft sets in stochastic multicriteria decision making based on regret theory and prospect theory with combined weight. Appl Soft Comput 54:415–430

    Article  Google Scholar 

  45. Polat G, Cetindere F, Damci A, Bingol B (2016) Smart home subcontractor selection using the integration of AHP and evidential reasoning approaches. Procedia Eng 164:347–353

    Article  Google Scholar 

  46. Qian L, Liu S, Fang Z, Liu Y (2017) Method for grey-stochastic multi-criteria decision-making based on regret theory. Control and Decision 32(6):1069–1074

    MATH  Google Scholar 

  47. Qin J, Xi Y, Pedrycz W (2020) Failure mode and effects analysis (FMEA) for risk assessment based on interval type-2 fuzzy evidential reasoning method. Appl Soft Comput J 89:106134. https://doi.org/10.1016/j.asoc.2020.106134

    Article  Google Scholar 

  48. Qu G, Li T, Qu W, Xu L, Ma X (2019) Algorithms for regret theory and group satisfaction degree under interval-valued dual hesitant fuzzy sets in stochastic multiple attribute decision making method. J Intell Fuzzy Syst 37(3):3639–3653

    Article  Google Scholar 

  49. Ren H, Gao Y, Yang T (2020) A novel regret theory-based decision-making method combined with the intuitionistic fuzzy Canberra distance. Discret Dynam Nature and Soc. https://doi.org/10.1155/2020/8848031

    Article  MathSciNet  MATH  Google Scholar 

  50. Rodríguez RM, Martínez L, Torra V, Xu ZS, Herrera F (2014) Hesitant fuzzy sets: state of the art and future directions. Int J Intell Syst 29(2):495–524. https://doi.org/10.1002/int

    Article  Google Scholar 

  51. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:623–656

    Article  MathSciNet  Google Scholar 

  52. Song C, Xu Z, Zhao H (2018) A novel comparison of probabilistic hesitant fuzzy elements in multi-criteria decision making. Symmetry 10(5):1–12. https://doi.org/10.3390/sym10050177

    Article  Google Scholar 

  53. Tian X, Xu Z, Fujita H (2018) Sequential funding the venture project or not? A prospect consensus process with probabilistic hesitant fuzzy preference information. Knowl-Based Syst 161:172–184. https://doi.org/10.1016/j.knosys.2018.08.002

    Article  Google Scholar 

  54. Torra V (2010) Hesitant Fuzzy Sets. Int J Intell Syst 25(2):529–539. https://doi.org/10.1002/int

    Article  MATH  Google Scholar 

  55. Voorbraak F (1989) A computationally efficient approximation of Dempster-Shafer theory. Int J Man Mach Stud 30(5):525–536. https://doi.org/10.1016/S0020-7373(89)80032-X

    Article  MATH  Google Scholar 

  56. Wei D, Xu D, Zhang Y (2020) A fuzzy evidential reasoning-based approach for risk assessment of deep foundation pit. Tunn Undergr Space Technol 97:103232. https://doi.org/10.1016/j.tust.2019.103232

    Article  Google Scholar 

  57. Wu B, Zong L, Yan X, Soares CG (2018) Incorporating evidential reasoning and TOPSIS into group decision-making under uncertainty for handling ship without command. Ocean Eng 164:590–603. https://doi.org/10.1016/j.oceaneng.2018.06.054

    Article  Google Scholar 

  58. Wu J, Liu XD, Wang ZW, Zhang ST (2019) Dynamic emergency decision-making method with probabilistic hesitant fuzzy information based on GM(1,1) and TOPSIS. IEEE Access 7:7054–7066. https://doi.org/10.1109/ACCESS.2018.2890110

    Article  Google Scholar 

  59. Xia MM, Xu ZS (2011) Hesitant fuzzy information aggregation in decision making. Int J Approx Reason 52:395–407

    Article  MathSciNet  Google Scholar 

  60. Xu X, Zheng J, Yang JB, Xu DL, Chen YW (2017) Data classification using evidence reasoning rule. Knowl-Based Syst 116:144–151

    Article  Google Scholar 

  61. Xu Z, Zhou W (2016) Consensus building with a group of decision makers under the hesitant probabilistic fuzzy environment. Fuzzy Optim Decis Making 16(4):1–23. https://doi.org/10.1007/s10700-016-9257-5

    Article  MathSciNet  Google Scholar 

  62. Xue W, Xu Z, Wang H, Ren Z (2019) Hazard assessment of landslide dams using the evidential reasoning algorithm with multi-scale hesitant fuzzy linguistic information. Appl Soft Comput J 79:74–86. https://doi.org/10.1016/j.asoc.2019.03.032

    Article  Google Scholar 

  63. Yang JB, Xu DL (2002) On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty. In IEEE Trans. Systems, Man Cybern. Part A: Syst. Humans 32:289–304

    Article  Google Scholar 

  64. Yang JB, Xu DL, Chin KS (2006) The evidential reasoning approach for MADA under both probabilistic and fuzzy uncertainties. Eur J Oper Res 171:309–343

    Article  MathSciNet  Google Scholar 

  65. Yang Y, Xu DL, Yang JB, Chen YW (2018) An evidential reasoning-based decision support system for handling customer complaints in mobile telecommunications. Knowl-Based Syst 162:202–210. https://doi.org/10.1016/j.knosys.2018.09.029

    Article  Google Scholar 

  66. Yang Z, Wang J (2015) Use of fuzzy risk assessment in FMEA of offshore engineering systems. Ocean Eng 95:195–204. https://doi.org/10.1016/j.oceaneng.2014.11.037

    Article  Google Scholar 

  67. Yuan J, Luo X (2019) Approach for multi-attribute decision making based on novel intuitionistic fuzzy entropy and evidential reasoning. Comput Ind Eng 135:643–654. https://doi.org/10.1016/j.cie.2019.06.031

    Article  Google Scholar 

  68. Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  69. Zhang D, Yan X, Zhang J, Yang Z, Wang J (2016) Use of fuzzy rule-based evidential reasoning approach in the navigational risk assessment of inland waterway transportation systems. Saf Sci 82:352–360

    Article  Google Scholar 

  70. Zhang S, Xu Z, He Y (2017) Operations and integrations of probabilistic hesitant fuzzy information in decision making. Inform Fusion 38:1–11. https://doi.org/10.1016/j.inffus.2017.02.001

    Article  Google Scholar 

  71. Zhang S, Zhu J, Liu X (2014) Group decision-making method based on regret theory under multidimensional preference information of pair-wise alternatives. Chinese J Manag Sci 22(S1):33–41

    Google Scholar 

  72. Zhang S, Zhu J, Liu X, Chen Y (2016) Regret theory-based group decision-making with multidimensional preference and incomplete weight information. Inform Fusion 31:1–13

    Article  Google Scholar 

  73. Zhang W, Du J, Tian X (2018) Finding a promising venture capital project with TODIM under probabilistic hesitant fuzzy circumstance. Technol Econ Dev Econ 24(5):2026–2044. https://doi.org/10.3846/tede.2018.5494

    Article  Google Scholar 

  74. Zhang XX, Wang YM, Chen SQ, Chu JF, Chen L (2018) Gini coefficient-based evidential reasoning approach with unknown evidence weights. Comput Ind Eng 124:157–166. https://doi.org/10.1016/j.cie.2018.07.022

    Article  Google Scholar 

  75. Zhou W, Xu Z (2017) Expected hesitant VaR for tail decision making under probabilistic hesitant fuzzy environment. Appl Soft Comput J 60:297–311. https://doi.org/10.1016/j.asoc.2017.06.057

    Article  Google Scholar 

  76. Zhou W, Xu ZS (2017) Probability calculation and element optimization of probabilistic hesitant fuzzy preference relations based on expected consistency. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2017.2723349

    Article  Google Scholar 

  77. Zhu B (2014) Decision method for research and application based on preference relations. Dissertation for the Doctoral Degree. Southeast University, Nanjing

    Google Scholar 

  78. Zhu L (2017) Hesitant fuzzy decision-making method based on regret theory and evidence theory. Comput Appl 37(2):540–545

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Ravichandran.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1: (Idempotent)

$$ \begin{aligned} RV_{i}^{{\left( {g,\lambda _{1} ,\lambda _{2} , \ldots ,\lambda _{g} } \right)}} = & \left( {\left( {1 - \left( {\left( {1 - \prod\limits_{{ll = 1}}^{g} {BAX_{{lj}}^{{\lambda _{{ll}} }} } } \right)^{{ewt^{l} }} } \right)} \right)} \right)^{{\frac{1}{{\sum\limits_{{ll}} {\lambda _{{ll}} } }}}} \\ = & \left( {\prod\limits_{{ll = 1}}^{g} {BAX_{{lj}}^{{\lambda _{{ll}} }} } } \right)^{{\frac{1}{{\sum\limits_{{ll}} {\lambda _{{ll}} } }}}} = BAXr \\ \end{aligned} $$

By expanding, we get

(Commutative)

$$ \begin{aligned} RV_{i}^{{\left( {g,\lambda _{1} ,\lambda _{2} , \ldots ,\lambda _{g} } \right)}} \left( {BAX_{l}^{'} } \right) = & \left( {\left( {1 - \left( {\left( {1 - \mathop \prod \limits_{{ll = 1}}^{g} BAX_{{lj}}^{{'\lambda _{{ll}} }} } \right)^{{ewt^{l} }} } \right)} \right)} \right)^{{\frac{1}{{\mathop \sum \nolimits_{{ll}} \lambda _{{ll}} }}}} \\ = & \left( {\left( {1 - \left( {\left( {1 - \prod\limits_{{ll = 1}}^{g} {BAX_{{lj}}^{{\lambda _{{ll}} }} } } \right)^{{ewt^{l} }} } \right)} \right)} \right)^{{\frac{1}{{\sum\limits_{{ll}} {\lambda _{{ll}} } }}}} = RV_{i}^{{\left( {g,\lambda _{1} ,\lambda _{2} , \ldots ,\lambda _{g} } \right)}} (BAX_{l} ) \\ \end{aligned} $$

Since \({BAX}_{l}^{^{\prime}}\) is any permutation of \({BAX}_{l}\), we get

(Monotonicity).

It is given that \( BAX_{'}^{{''}} \) is greater than or equal \({BAX}_{l}\) and hence, score of \( BAX_{'}^{{''}} \) is greater than or equal to the score of \({BAX}_{l}\) for all \(l=\mathrm{1,2},\dots ,s\). In case of equal scores, deviation is determined and it can be seen that deviation of \( BAX_{'}^{{''}} \) is less than the deviation of \({BAX}_{l}\) for all \(l=\mathrm{1,2},\dots s\). The formula for score \(s\) and deviation \(d\) are adapted from [61]. Without loss of generality, it is also true that \( s(BAX^{{''}} ) \ge s(BAX) \) and when scores are equal, deviation is calculated and \( d\left( {BAX^{{''}} } \right) < d\left( {BAX} \right) \). Thus,

$$ \begin{aligned} RV_{i}^{{\left( {g,\lambda _{1} ,\lambda _{2} , \ldots ,\lambda _{g} } \right)}} \left( {BAX_{l} } \right) = & \left( {\left( {1 - \left( {\left( {1 - \mathop \prod \limits_{{ll = 1}}^{g} BAX_{{lj}}^{{\lambda _{{ll}} }} } \right)^{{ewt^{l} }} } \right)} \right)} \right)^{{\frac{1}{{\mathop \sum \nolimits_{{ll}} \lambda _{{ll}} }}}} \le RV_{i}^{{\left( {g,\lambda _{1} ,\lambda _{2} , \ldots ,\lambda _{g} } \right)}} \left( {BAX_{l}^{{''}} } \right)\_ \\ = & \left( {\left( {1 - \left( {\left( {1 - \mathop \prod \limits_{{ll = 1}}^{g} BAX_{{lj}}^{{''\lambda _{{ll}} }} } \right)^{{ewt^{l} }} } \right)} \right)} \right)^{{\frac{1}{{\mathop \sum \nolimits_{{ll}} \lambda _{{ll}} }}}} \\ \end{aligned} $$

(Bounded).

Based on the monotonicity and idempotent properties, it is clear that \({RV}_{i}^{\left(g,{\lambda }_{1},{\lambda }_{2},\dots ,{\lambda }_{g}\right)}({BAX}_{l})>{RV}_{i}^{\left(g,{\lambda }_{1},{\lambda }_{2},\dots ,{\lambda }_{g}\right)}\left({BAX}^{-},{BAX}^{-},\dots .,{BAX}^{-}\right)\) and

$${RV}_{i}^{\left(g,{\lambda }_{1},{\lambda }_{2},\dots ,{\lambda }_{g}\right)}({BAX}_{l})\le {RV}_{i}^{\left(g,{\lambda }_{1},{\lambda }_{2},\dots ,{\lambda }_{g}\right)}\left({BAX}^{+},{BAX}^{+},\dots .,{BAX}^{+}\right)$$

Proof of Theorem 2:

Let us consider \({v}_{lj}\left(hf\right)={v}_{lj}=\frac{{\sigma }_{j}^{l}}{\sum_{j}{\sigma }_{j}^{l}}\) for proof purpose.

Given that \({v}_{lj}(0)=0\) and \({v}_{lj}(1)=1\). Based on Eq. (17), we get values in the unit interval. Also, \({SE}_{l}\left(0\right)={SE}_{l}\left(1\right)=0\). Thus, \({SE}_{l}\left(0(1)\right)={SE}_{l}\left(1(1)\right)={SE}_{l}\left(0\left(p\right),1(1-p)\right)=0\).

Given that \({v}_{lj}(0.5)=0.5\) and according to the binary entropic, \({ASE}_{l}\left(1(1)\right)=\mathrm{max}({SE}_{l})\).

If \({\gamma }_{lj}^{(1)}\le {\gamma }_{lj}^{\left(2\right)}\le 0.5\), \({v}_{i}^{(1)}\le {v}_{i}^{\left(2\right)}\le 0.5\). From the formulation, it is evident that \({v}_{lj}^{(1)}ln{v}_{lj}^{(1)}\le {v}_{lj}^{(2)}ln{v}_{lj}^{(3)}\) and hence, \({SE}_{l}\left({hf}^{(1)}\right)\le {SE}_{l}\left({hf}^{(2)}\right)\). Similarly, we can also be prove in a similar fashion.

By binary entropic measure, it is observe that

$$ \begin{aligned} SE_{l} \left( {hf\left( {p,1 - p} \right)} \right) = & - \sum {v_{{lj}} } ln(v_{{lj}} ) + ( - \sum (1 - v_{{lj}} )ln(1 - v_{{lj}} )) - \sum {(1 - v_{{lj}} )} ln(1 - v_{{lj}} ) \\ + ( - \sum 1 - (1 - v_{{lj}} )ln1 - (1 - v_{{lj}} ) = ASE_{l} \left( {hf(p)^{{(c)}} } \right). \\ \end{aligned} $$

By taking complement, we get . Thus, \({ASE}_{l}\left(hf\right)={ASE}_{l}\left({hf}^{c}\right)\). All four axioms are satisfied. Axioms (P2) and (P4) adopt binary entropic measure formulation for deriving efficient proofs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishankumaar, R., Mishra, A.R., Gou, X. et al. New ranking model with evidence theory under probabilistic hesitant fuzzy context and unknown weights. Neural Comput & Applic 34, 3923–3937 (2022). https://doi.org/10.1007/s00521-021-06653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06653-9

Keywords

Navigation