Skip to main content
Log in

Swarm-based optimally selected histogram computation system for image enhancement

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, two newly proposed evolutionary computational algorithms (ECAs) are joined with Otsu thresholding method to achieve brightness preserving image contrast enhancement. The selected ECAs are the whale optimization algorithm (WOA) and the crow search algorithm (CSA) which embrace more contrast and minimum entropy alteration corresponding to the original image. The proposed algorithm employs histogram equalization method, based on an improved cumulative distribution to calculate a mapping function. Therefore, a 3-stage procedure has been assumed to change the original histogram. The primary step of the proposed method is to sub-divide the image histogram by using the Otsu thresholding technique. Further, both of histograms are weighted and thresholded in order to control the level of enhancement. The constraint parameters are attained by WOA and CSA algorithms for modification. After constraining the histograms, mean shift modification is executed to slight altering the position of mean shifting from input to output image. The results reflect that proposed technique accomplishes balanced contrast enhancement and better color preservation in comparison with surviving techniques. Through the proposed technique, the enhanced images achieve low contrast boosting, a good trade-off between detail improvement, and brightness conservation with naturalness of the input image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HE:

Histogram equalization

CDF:

Cumulative density function

QDHE:

Quadrants dynamic histogram equalization

DSIHE:

Dualistic sub image histogram equalization

BBHE:

Brightness preserving bi-histogram equalization

RMSHE:

Recursive mean-separate histogram equalization

BHEPL:

Bi-histogram equalization plateau limit

SHMS:

Simple histogram modification scheme

WAHE:

Weighted histogram approximation method

PSO:

Particle swarm optimization

ABC:

Artificial bee colony

GA:

Genetic algorithm

CS:

Cuckoo search algorithm

WDO:

Wind driven optimization

BFO:

Bacteria swarm optimization

DE:

Differential evolution

WOA:

Whale optimization algorithm

CSA:

Crow search algorithm

GWO:

Gray wolf optimization

CT:

Computed tomography

NSCT:

Non-subsampled contourlet transform

PDF:

Probability density function

PSNR:

Peak signal-to-noise ratio

SSIM:

Structural similarity index

DE:

Discrete entropy

CPP:

Contrast per pixel

GMSD:

Gradient magnitude similarity deviation

MEME:

Modified measure of enhancement

AMBE:

Absolute mean brightness error

References

  1. Gonzalez RC, Woods RE (2008) ‘Digital image processing (Pearson Prentice Hall, 2008, 3rd edn.)

  2. Ooi C, Mat Isa N (2010) Quadrants dynamic histogram equalization for contrast enhancement. IEEE Trans Consum Electron 56(4):2552–2559

    Article  Google Scholar 

  3. Wang Y, Chen Q, Zhang B (1999) Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans Consum Electron 45(1):68–75

    Article  Google Scholar 

  4. Kim YT (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron 43(1):1–8

    Article  Google Scholar 

  5. Chen SD, Ramli AR (2003) Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans Consum Electron 49(4):1301–1309

    Article  Google Scholar 

  6. Ooi CH, Kong NSP, Ibrahim H (2009) Bi-histogram equalization with a plateau limit for digital image enhancement. IEEE Trans Consum Electron 55(4):2072–2080

    Article  Google Scholar 

  7. Chang YC, Chang CM (2010) A simple histogram modification scheme for contrast enhancement. IEEE Trans Consum Electron 56(2):737–742

    Article  Google Scholar 

  8. Arici T, Dikbas S, Altunbasak Y (2009) A histogram modification framework and its application for image contrast enhancement. IEEE Trans Image Process 18(9):1921–1935

    Article  MathSciNet  Google Scholar 

  9. Panetta K, Agaian S, Zhou Y, Wharton EJ (2011) Parameterized logarithmic framework for image enhancement. IEEE Trans Syst Man Cybern Part B 41(2):460–473

    Article  Google Scholar 

  10. Bhandari AK, Soni V, Kumar A, Singh GK (2014) Cuckoo search algorithm based satellite image contrast and brightness enhancement using DWT–SVD. ISA Trans 53(4):1286–1296

    Article  Google Scholar 

  11. Bhandari AK, Singh VK, Kumar A, Singh GK (2014) Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Syst Appl 41(7):3538–3560

    Article  Google Scholar 

  12. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  13. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Article  Google Scholar 

  14. El Aziz MA, Ewees AA, Hassanien AE (2017) Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Syst App 83:242–256

    Article  Google Scholar 

  15. Oliva D, Hinojosa S, Cuevas E, Pajares G, Avalos O, Gálvez J (2017) Cross entropy based thresholding for magnetic resonance brain images using crow search algorithm. Expert Syst Appl 79:164–180

    Article  Google Scholar 

  16. Fang Y, Fang Z, Yuan F, Yang Y, Yang S, Xiong NN (2017) Optimized multioperator image retargeting based on perceptual similarity measure. IEEE Trans Syst Man Cybern Syst 47:2956–2966

    Article  Google Scholar 

  17. Panetta KA, Wharton EJ, Agaian SS (2008) Human visual system-based image enhancement and logarithmic contrast measure. IEEE Trans Syst, Man, Cybern, Part B (Cybernetics) 38(1):174–188. https://doi.org/10.1109/TSMCB.2007.909440

    Article  Google Scholar 

  18. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  19. Russo F (2002) An image enhancement technique combining sharpening and noise reduction. IEEE Trans Instrum Meas 51(4):824–828

    Article  Google Scholar 

  20. Munteanu C, Rosa A (2004) Gray-scale image enhancement as an automatic process driven by evolution. IEEE Trans Syst Man Cybern Part B 34(2):1292–1298

    Article  Google Scholar 

  21. Russo F (2007) An image-enhancement system based on noise estimation. IEEE Trans Instrum Meas 56(4):1435–1442

    Article  Google Scholar 

  22. Marsi S, Impoco G, Ukovich A, Ramponi G, Carrato S (2008) Using a recursive rational filter to enhance color images. IEEE Trans Instrum Meas 57(6):1230–1236

    Article  Google Scholar 

  23. Hanmandlu M, Verma OP, Kumar NK, Kulkarni M (2009) A novel optimal fuzzy system for color image enhancement using bacterial foraging. IEEE Trans Instrum Meas 58(8):2867–2879

    Article  Google Scholar 

  24. Attivissimo F, Cavone G, Lanzolla AML, Spadavecchia M (2010) A technique to improve the image quality in computer tomography. IEEE Trans Instrum Meas 59(5):1251–1257

    Article  Google Scholar 

  25. Thomas G, Flores-Tapia D, Pistorius S (2011) Histogram specification: a fast and flexible method to process digital images. IEEE Trans Instrum Meas 60(5):1565–1578

    Article  Google Scholar 

  26. Zentai G (2011) Signal-to-noise and contrast ratio enhancements by quasi-monochromatic imaging. IEEE Trans Instrum Meas 60(3):908–915

    Article  Google Scholar 

  27. Bai T, Zhang L, Duan L, Wang J (2016) NSCT-based infrared image enhancement method for rotating machinery fault diagnosis. IEEE Trans Instrum Meas 65(10):2293–2301

    Article  Google Scholar 

  28. Yue G, Hou C, Zhou T, Zhang X (2018) Effective and efficient blind quality evaluator for contrast distorted images. IEEE Trans Instrum Meas 18:1–9

    Google Scholar 

  29. Chen SD, Ramli AR (2003) Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans on consumer Elc 49(4):1301–1309

    Article  Google Scholar 

  30. Wang Q, Ward RK (2007) Fast image/video contrast enhancement based on weighted thresholded histogram equalization. IEEE Trans Consumer Electron 53(2):757

    Article  Google Scholar 

  31. Bhandari AK, Shahnawazuddin S, Meena AK (2020) A novel fuzzy clustering-based histogram model for image contrast enhancement. IEEE Trans Fuzzy Syst 28:2009

    Article  Google Scholar 

  32. Bhandari AK, Kumar A, Singh GK (2015) Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Syst App 42(3):1573–1601

    Article  Google Scholar 

  33. Wang C, Ye Z (2005) Brightness preserving histogram equalization with maximum entropy: a variational perspective. IEEE Trans Consum Electron 51(4):1326–1334

    Article  Google Scholar 

  34. Santhi K, Banu RW (2015) Adaptive contrast enhancement using modified histogram equalization. Optik 126(19):1809–1814

    Article  Google Scholar 

  35. Xue W, Zhang L, Mou X, Bovik AC (2013) Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans Image Process 23(2):684–695

    Article  MathSciNet  Google Scholar 

  36. Wang X, Chen L (2017) An effective histogram modification scheme for image contrast enhancement. Signal Proc: Image Commun 58:187–198

    Google Scholar 

  37. Lim SH, Isa NAM, Ooi CH, Toh KKV (2015) A new histogram equalization method for digital image enhancement and brightness preservation. Signal, Image Video Proc 9(3):675–689

    Article  Google Scholar 

  38. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

  39. http://sipi.usc.edu/database/database.php?volume=aerials

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kumar Bhandari.

Ethics declarations

Conflict of interest

We are the authors and confirm that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, A.K., Singh, N. & Singh, A. Swarm-based optimally selected histogram computation system for image enhancement. Neural Comput & Applic 34, 7053–7067 (2022). https://doi.org/10.1007/s00521-021-06858-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06858-y

Keywords

Navigation