Skip to main content
Log in

Intuitionistic fuzzy divergences: critical analysis and an application in figure skating

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Despite the importance of divergence measures, the literature has not provided a satisfactory formulation for the case of intuitionistic fuzzy sets (IFS). This paper criticizes the existing attempts in terms of respect of the basic axioms of a divergence measure. Then, new improved, axiomatically supported divergence measures for IFSs are proposed. Additional properties of the new divergence measures are discussed to guarantee their good performance. Transformation relationships with entropy and dissimilarity measures are debated. As an application, a new intuitionistic fuzzy set theory-based ranking method for figure skaters is designed. A numerical example illustrates its applicability. It uses real data produced during the Men Single Skating Short Program performed in the Team Event in Figure Skating during the Olympic Winter Games 2018 PyeungChang held in Korea from 09.02.2018 to 25.02.2018.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhandari D, Pal NR, Dutta Majumder D (1992) Fuzzy divergence, probability measure of fuzzy events and image thresholding. Patt. Recogn Lett. 13:857–867

    Article  Google Scholar 

  2. Montes S, Couso I, Gil P, Bertoluzza C (2002) Divergence measure between fuzzy sets. Int J Approx Reason 30(2):91–105

    Article  MathSciNet  Google Scholar 

  3. Montes I, Pal NR, Janis V, Montes S (2014) Divergence measures for intuitionistic fuzzy sets. IEEE Trans Fuzzy Syst 23(2):444–456

    Article  Google Scholar 

  4. Zadeh LA (1965) Fuzzy sets. Inf. and Control 8:338–353

  5. Atanassov K (1999) Intuitionistic Fuzzy Sets: Theory and Applications. Springer, Heidelberg

  6. Xu ZS (2007) Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst 15:1179–1187

    Article  Google Scholar 

  7. Yager RR (2009) OWA aggregation of intuitionistic fuzzy sets. Int J Gen Syst 38(6):617–641

    Article  MathSciNet  Google Scholar 

  8. Xu ZS, Yager RR (2006) Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst 35:417–433

    Article  MathSciNet  Google Scholar 

  9. Garg H (2016) Generalized intuitionistic fuzzy interactive geometric interaction operators using Einstein t-norm and t-conorm and their application to decision making. Comput Indus Engg. 101:53–69

    Article  Google Scholar 

  10. Wang W, Liu X (2012) Intuitionistic fuzzy information aggregation using Einstein operations. IEEE Trans Fuzzy Syst 20(5):923–938

    Article  Google Scholar 

  11. Xu Z, Xia M (2011) Induced generalized intuitionistic fuzzy operators. Knowl-Based Syst 24(2):197–209

    Article  Google Scholar 

  12. Xu Z, Yager RR (2008) Dynamic intuitionistic fuzzy multi-attribute decision making. Int J Approx Reason 48(1):246–262

    Article  Google Scholar 

  13. Liu P, Mahmood T, Khan Q (2017) Multi-attribute decision-making based on prioritized aggregation operator under Hesitant intuitionistic fuzzy linguistic environment. Symmetry 9(11):270

    Article  Google Scholar 

  14. Boran FE, Gencc S, Kurt M, Akay D (2009) A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst Appl 36(8):11363–11368

    Article  Google Scholar 

  15. Karagoz S, Deveci M, Simic V, Aydin N, Bolukbas U (2020) A novel intuitionistic fuzzy MCDM-based CODAS approach for locating an authorized dismantling center: a case study of Istanbul. Waste Manag Res 38(6):660–672

    Article  Google Scholar 

  16. Feng F, Xu Z, Fujita H, Liang M (2020) Enhancing PROMETHEE method with intuitionistic fuzzy soft sets. Int J Intell Syst 35(7):1071–1104

    Article  Google Scholar 

  17. Devi K (2011) Extension of VIKOR method in intuitionistic fuzzy environment for robot selection. Expert Syst Appl 38(11):14163–14168

    Google Scholar 

  18. Chen TY (2014) Interval-valued intuitionistic fuzzy QUALIFLEX method with a likelihood-based comparison approach for multiple criteria decision analysis. Inform Sci 261:149–169

    Article  MathSciNet  Google Scholar 

  19. Rani P, Jain D, Hooda DS (2019) Extension of intuitionistic fuzzy TODIM technique for multi-criteria decision making method based on shapley weighted divergence measure. Granular Comp 4(3):407–420

    Article  Google Scholar 

  20. Mishra AR, Singh RK, Motwani D (2020) Intuitionistic fuzzy divergence measure-based ELECTRE method for performance of cellular mobile telephone service providers. Neural Comp Appl 32(8):3901–3921

    Article  Google Scholar 

  21. Mishra AR, Sisodia G, Pardasani KR, Sharma K (2020) Multi-criteria IT personnel selection on intuitionistic fuzzy information measures and ARAS methodology. Iran J Fuzzy Syst 17(4):55–68

    MathSciNet  MATH  Google Scholar 

  22. Khan MJ, Kumam P, Kumam W (2021) Theoretical justifications for the empirically successful VIKOR approach to multi-criteria decision making. Soft Comp 25:7761–7767. https://doi.org/10.1007/s00500-020-05548-6

    Article  Google Scholar 

  23. Ohlan A (2016) Intuitionistic fuzzy exponential divergence: application in multi-attribute decision making. J Intell Fuzzy Syst 30(3):1519–1530

    Article  Google Scholar 

  24. Mishra AR, Rani P (2019) Shapley divergence measures with VIKOR method for multi-attribute decision-making problems. Neural Comp Appl 31(2):1299–1316

    Article  Google Scholar 

  25. Mishra AR, Kumari R, Sharma DK (2019) Intuitionistic fuzzy divergence measure-based multi-criteria decision-making method. Neural Comp Appl 31(7):2279–2294

    Article  Google Scholar 

  26. Parkash O, Kumar R (2019) Multi-attribute decision making based on novel generalized parametric exponential intuitionistic fuzzy divergence measure. Risk and Dec Anal. https://doi.org/10.3233/RDA-170030

    Article  Google Scholar 

  27. Joshi R, Kumar S (2019) Jensen-Tsallis intuitionistic fuzzy divergence measure and Its applications in medical analysis and pattern recognition. Int J Uncertainty, Fuzz Knowl Based Syst 27(01):145–169

    Article  MathSciNet  Google Scholar 

  28. Figure Skating, Team Event, Men Single Skating Short Program, Olympic Winter Games PyeongChang 2018, 09.02.2018-25.02.2018. http://results.isu.org/results/season1718/owg2018/

  29. Szmidt E, Kacprzyk J (2001) Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst 118:467–477

    Article  MathSciNet  Google Scholar 

  30. Vlachos IK, Sergiadis GD (2007) Intuitionistic fuzzy information-applications to pattern recognition. Patt Recogn Lett 28(2):197–206

    Article  Google Scholar 

  31. Jurio A, Paternain D, Bustince H, Guerra C, Beliakov G (2010), July. A construction method of Atanassovs intuitionistic fuzzy sets for image processing. In: 2010 5th IEEE International Conference Intelligent Systems. IEEE p. 337-342

  32. Alcantud JCR, Khameneh AZ, Kilicman A (2020) Aggregation of infinite chains of intuitionistic fuzzy sets and their application to choices with temporal intuitionistic fuzzy information. Inf Sci 514:106–117

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is grateful to the Petchra Pra Jom Klao doctoral scholarship KMUTT for the funding of six months research visit (Grant No. 39/ 2561) to the University of Salamanca, Spain. Part of this research was done during the stay of the first author at the University of Salamanca, Spain. He would like to thank all members of the Department of Economics and Economic History for their warm hospitality, and especially Prof. Dr. Gustavo Santos García for helpful comments and suggestions. Poom Kumam was supported by the Thailand Science Research and Innovation (TSRI) Basic Research Fund: Fiscal year 2021 under project number 64A306000005.

Funding

Poom Kumam was supported by the Thailand Science Research and Innovation (TSRI) Basic Research Fund: Fiscal year 2021 under project number 64A306000005.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Poom Kumam or Wiyada Kumam.

Ethics declarations

Conflict of interest

Author’s declare no conflict of interest.

Human participants and/or Animals

This research does not involve study about human participants and/or Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All authors agreed to submit to Neural Computing and Applications.

Appendix A Previous Divergence Functions

Appendix A Previous Divergence Functions

Unless otherwise stated, in this section \(\mathsf { R_{1}} = \{ ( \mathsf {t_{i}},\xi _{\mathsf {R_{1}}}(\mathsf {t_{i}}),\nu _{\mathsf {R_{1}}}(\mathsf {t_{i}}) ) \; \mid \; \mathsf {i=1}, \ldots , \mathsf {n} \}\) and \(\mathsf { R_{2}} = \{ ( \mathsf {t_{i}},\xi _{\mathsf {R_{2}}}(\mathsf {t_{i}}),\nu _{\mathsf {R_{2}}}(\mathsf {t_{i}}) ) \; \mid \; \mathsf {i=1}, \ldots , \mathsf {n} \}\) denote IFSs on the same set \(\mathsf {Y=\{t_{1},\ldots ,t_n \}}\).

Parkash and Kumar [26] defined the generalized parametric exponential divergence measure for IFSs as follows:

$$\begin{aligned}&\mathsf {D}_{\mathsf {1}}^{\mathsf {c}}(\mathsf {R_1,R_2}) \nonumber \\&\quad =\sum _{\mathsf {i=1}}^{\mathsf {m}} \Bigg ( \mathsf {1} - \left( \frac{\mathsf {1}-\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_1}}(\mathsf {t_{i}}) }{\mathsf {2}}\right) \nonumber \\& \quad \quad \times \mathsf {exp}\left[ \left( \frac{\mathsf {1}-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}}\right) ^\alpha -\left( \frac{\mathsf {1}-\xi _{\mathsf {R_1}}(\mathsf {t_{i}}) +\nu _{\mathsf {R_1}}(\mathsf {t_{i}})}{\mathsf {2}}\right) ^\alpha \right] \nonumber \\& \quad \quad - \left( \frac{\mathsf {1}+\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_1}}(\mathsf {t_{i}}) }{\mathsf {2}}\right) \times \mathsf {exp}\left[ \left( \frac{\mathsf {1}+\xi _{\mathsf {R_2}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}}\right) ^\alpha \right. \nonumber \\& \quad \quad \left. -\left( \frac{\mathsf {1}+\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_1}}(\mathsf {t_{i}})}{\mathsf {2}}\right) ^\alpha \right] \Bigg ) \nonumber \\& \quad \quad+ \sum _{\mathsf {i=1}}^{\mathsf {m}} \Bigg ( \mathsf {1} - \left( \frac{\mathsf {1}-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}}) }{\mathsf {2}}\right) \nonumber \\&\quad \quad \times \mathsf {exp}\left[ \left( \frac{\mathsf {1}-\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_1}}(\mathsf {t_{i}})}{\mathsf {2}}\right) ^\alpha -\left( \frac{\mathsf {1}-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}}\right) ^\alpha \right] \nonumber \\& \quad \quad - \left( \frac{\mathsf {1}+\xi _{\mathsf {R_2}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}}) }{\mathsf {2}}\right) \times \mathsf {exp}\left[ \left( \frac{\mathsf {1}+\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_1}}(\mathsf {t_{i}})}{\mathsf {2}}\right) ^\alpha \right. \nonumber \\&\quad \quad \left. -\left( \frac{\mathsf {1}+\xi _{\mathsf {R_2}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}}\right) ^\alpha \right] \Bigg ) \end{aligned}$$
(17)

where \(\mathsf {\alpha > 0}\).

Mishra et al. [21] extended two divergence measures based on the exponential function for IFSs as follows:

$$\begin{aligned} & D_{2}^{c} (R_{1} ,R_{2} ) = \frac{1}{{2n(\exp (2) - 1)}}\sum\limits_{{i = 1}}^{n} {\left[ {\left( {\xi _{{R_{1} }} (t_{i} ) - \xi _{{R_{2} }} (t_{i} )} \right)} \right.} \hfill \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\;\,\left( {\exp \left( {\frac{{2\xi _{{R_{1} }} (t_{i} )}}{{\xi _{{R_{1} }} (t_{i} ) + \xi _{{R_{2} }} (t_{i} )}}} \right)} \right. \hfill \\ & \left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\;\; - \exp \left( {\frac{{2\xi _{{R_{2} }} (t_{i} )}}{{\xi _{{R_{1} }} (t_{i} ) + \xi _{{R_{2} }} (t_{i} )}}} \right)} \right) \hfill \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\;\;\; + \left( {\nu _{{R_{1} }} (t_{i} ) - \nu _{{R_{2} }} (t_{i} )} \right)\left( {\exp \left( {\frac{{2\nu _{{R_{1} }} (t_{i} )}}{{\nu _{{R_{1} }} (t_{i} ) + \nu _{{R_{2} }} (t_{i} )}}} \right)} \right. \hfill \\ & \left. {\,\,\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\;\;\,\; - \exp \left( {\frac{{2\nu _{{R_{2} }} (t_{i} )}}{{\nu _{{R_{1} }} (t_{i} ) + \nu _{{R_{2} }} (t_{i} )}}} \right)} \right)\,} \right] \hfill \\ \end{aligned}$$
(18)
$$\begin{aligned}&\mathsf {D}_{\mathsf {3}}^{\mathsf {c}} (\mathsf {R_1,R_2})= \frac{\mathsf {1}}{\mathsf {n}(\mathsf {1}-\frac{\mathsf {1}}{\sqrt{\mathsf {e}}})} \sum _{\mathsf {i=1}}^{\mathsf {n}} \Bigg [ \Bigg [ \frac{\mathsf {1}}{\mathsf {2}} \left( \mathsf {exp}\left\{ -\left( \frac{\mathsf {1}-\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_1}}(\mathsf {t_{i}})}{\mathsf {2}}\right) \right\} \right. \nonumber \\&\quad \left. + \mathsf {exp}\left\{ -\left( \frac{\mathsf {1}-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}}\right) \right\} \right) \nonumber \\&-\mathsf {exp}\left\{ -\left( \frac{\nu _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}} (\mathsf {t_{i}})+\mathsf {2}-\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {4}}\right) \right\} \Bigg ] \nonumber \\&\quad \quad \mathsf {I}_{[\xi _{\mathsf {R_1}}(\mathsf {t_{i}})\ge \nu _{\mathsf {R_1}}(\mathsf {t_{i}})]} \nonumber \\&\quad + \Bigg [ \frac{\mathsf {1}}{\mathsf {2}} \left( \mathsf {exp}\left\{ -\left( \frac{\mathsf {1}+\xi _{\mathsf {R_1}} (\mathsf {t_{i}})-\nu _{\mathsf {R_1}}(\mathsf {t_{i}})}{\mathsf {2}}\right) \right\} \right. \nonumber \\&\quad \left. + \mathsf {exp}\left\{ -\left( \frac{\mathsf {1}+\xi _{\mathsf {R_2}}(\mathsf {t_{i}}) -\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}}\right) \right\} \right) \nonumber \\&\quad - \mathsf {exp}\left\{ -\left( \frac{\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\xi _{\mathsf {R_2}}(\mathsf {t_{i}}) +\mathsf {2}-\nu _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {4}}\right) \right\} \Bigg ]\mathsf {I}_{[\xi _{\mathsf {R_1}}(\mathsf {t_{i}})< \nu _{\mathsf {R_1}}(\mathsf {t_{i}})]} \end{aligned}$$
(19)

Recently, the author of [25] extended the two divergence measures for IFSs as follows:

$$\begin{aligned}&\mathsf {D}_{\mathsf {4}}^{\mathsf {c}} (\mathsf {R_1,R_2}) =\frac{\mathsf {1}}{\mathsf {n}(\sqrt{\mathsf {e}}-\mathsf {1})}\nonumber \\&\quad \sum _{\mathsf {i=1}}^{\mathsf {n}} \Bigg [ \Bigg [ \left\{ \frac{\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\xi _{\mathsf {R_2}}(\mathsf {t_{i}})+\mathsf {2}-\nu _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {4}}\right\} \nonumber \\&\mathsf {exp}\left\{ \frac{\nu _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}}) +\mathsf {2}-\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {4}}\right\} \nonumber \\&\quad + \left\{ \frac{\nu _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})+\mathsf {2}-\xi _{\mathsf {R_1}}(\mathsf {t_{i}}) -\xi _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {4}}\right\} \nonumber \\&\mathsf {exp}\left\{ \frac{\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\xi _{\mathsf {R_2}}(\mathsf {t_{i}})+\mathsf {2}-\nu _{\mathsf {R_1}}(\mathsf {t_{i}}) -\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {4}}\right\} \Bigg ] \nonumber \\&-\frac{\mathsf {1}}{\mathsf {2}} \Bigg [ \left\{ \frac{\mathsf {1}-\xi _{\mathsf {R_1}}(\mathsf {t_{i}}) +\nu _{\mathsf {R_1}}(\mathsf {t_{i}})}{\mathsf {2}}\right\} \nonumber \\&\quad \quad \mathsf {exp}\left\{ \frac{\mathsf {1}+\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_1}}(\mathsf {t_{i}})}{\mathsf {2}}\right\} \nonumber \\&+ \left\{ \frac{\mathsf {1}+\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_1}}(\mathsf {t_{i}})}{\mathsf {2}}\right\} \mathsf {exp}\left\{ \frac{\mathsf {1}-\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_1}}(\mathsf {t_{i}})}{\mathsf {2}}\right\} \nonumber \\&\quad + \left\{ \frac{\mathsf {1}-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}}\right\} \nonumber \\&\mathsf {exp}\left\{ \frac{\mathsf {1}+\xi _{\mathsf {R_2}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}}\right\} + \left\{ \frac{\mathsf {1}+\xi _{\mathsf {R_2}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}}\right\} \nonumber \\&\quad \quad \mathsf {exp}\left\{ \frac{\mathsf {1}-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}}\right\} \Bigg ]\Bigg ] \end{aligned}$$
(20)
$$\begin{aligned}&\mathsf {D}_{\mathsf {5}}^{\mathsf {c}} (\mathsf {R_1,R_2})\nonumber \\&\quad =\frac{\mathsf {1}}{\mathsf {n}(\sqrt{\mathsf {e}}-\mathsf {1})} \sum _{\mathsf {i=1}}^{\mathsf {n}} \Bigg [ \Bigg [ \left\{ \frac{\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\xi _{\mathsf {R_2}}(\mathsf {t_{i}})+\mathsf {2}-\nu _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {4}}\right\} \nonumber \\&\mathsf {exp}\left\{ \frac{\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\xi _{\mathsf {R_2}}(\mathsf {t_{i}})+\mathsf {2}-\nu _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {4}}\right\} \nonumber \\&\quad +\left\{ \frac{\nu _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})+\mathsf {2}-\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {4}}\right\} \nonumber \\&\mathsf {exp}\left\{ \frac{\nu _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})+\mathsf {2}-\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {4}}\right\} \Bigg ] \nonumber \\&-\frac{\mathsf {1}}{\mathsf {2}} \Bigg [ \left\{ \frac{\mathsf {1}-\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_1}}(\mathsf {t_{i}})}{\mathsf {2}}\right\} \nonumber \\&\quad \quad \mathsf {exp}\left\{ \frac{\mathsf {1}-\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_1}}(\mathsf {t_{i}})}{\mathsf {2}}\right\} \nonumber \\&\quad +\left\{ \frac{\mathsf {1}+\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_1}}(\mathsf {t_{i}})}{\mathsf {2}}\right\} \mathsf {exp}\left\{ \frac{\mathsf {1}+\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_1}}(\mathsf {t_{i}})}{\mathsf {2}}\right\} \nonumber \\&\quad + \left\{ \frac{\mathsf {1}-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}}\right\} \nonumber \\&\quad \quad \mathsf {exp}\left\{ \frac{\mathsf {1}-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}}\right\} + \left\{ \frac{\mathsf {1}+\xi _{\mathsf {R_2}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}}\right\} \nonumber \\&\quad \quad \mathsf {exp}\left\{ \frac{\mathsf {1}+\xi _{\mathsf {R_2}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}}\right\} \Bigg ]\Bigg ] \end{aligned}$$
(21)

An ELECTRE method based on IF divergence was used to find the performance of mobile phone service providers in [20], and to this purpose, the next divergence measure was defined:

$$\begin{aligned}&\mathsf {D}_{\mathsf {6}}^{\mathsf {c}} (\mathsf {R_1,R_2})=\frac{\mathsf {-1}}{\mathsf {nln2}} \sum _{\mathsf {i=1}}^{\mathsf {n}} \Bigg [ \Bigg [ \left( \frac{\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\xi _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}} \right) \nonumber \\&\quad \mathsf {ln} \left( \frac{\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\xi _{\mathsf {R_2}}(\mathsf {t_{i}})}{\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\xi _{\mathsf {R_2}}(\mathsf {t_{i}}) + \nu _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})} \right) \nonumber \\&\qquad + \left( \frac{\nu _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}} \right) \mathsf {ln} \left( \frac{\nu _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\xi _{\mathsf {R_2}}(\mathsf {t_{i}}) + \nu _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})} \right) \nonumber \\&\quad \quad - \left( \frac{\pi _{\mathsf {R_1}}(\mathsf {t_{i}})+\pi _{\mathsf {R_2}}(\mathsf {t_{i}})}{\mathsf {2}} \right) \mathsf {ln2} \Bigg ] \nonumber \\&\qquad \frac{\mathsf {-1}}{\mathsf {2}} \Bigg [ \xi _{\mathsf {R_1}}(\mathsf {t_{i}}) \mathsf {ln} \left( \frac{\xi _{\mathsf {R_1}}(\mathsf {t_{i}})}{\xi _{\mathsf {R_1}}(\mathsf {t_{i}}) +\nu _{\mathsf {R_1}}(\mathsf {t_{i}})} \right) \nonumber \\&\quad \quad + \nu _{\mathsf {R_1}}(\mathsf {t_{i}}) \mathsf {ln} \left( \frac{\nu _{\mathsf {R_1}}(\mathsf {t_{i}})}{\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_1}}(\mathsf {t_{i}})} \right) \nonumber \\&\quad \quad + \xi _{\mathsf {R_2}}(\mathsf {t_{i}}) \mathsf {ln} \left( \frac{\xi _{\mathsf {R_2}}(\mathsf {t_{i}})}{\xi _{\mathsf {R_2}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})} \right) \nonumber \\&\qquad + \nu _{\mathsf {R_2}}(\mathsf {t_{i}}) \mathsf {ln} \left( \frac{\nu _{\mathsf {R_2}}(\mathsf {t_{i}})}{\xi _{\mathsf {R_2}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})} \right) \nonumber \\&\quad \quad - \left( \pi _{\mathsf {R_1}}(\mathsf {t_{i}})+\pi _{\mathsf {R_2}}(\mathsf {t_{i}}) \right) \mathsf {ln2} \Bigg ] \Bigg ] \end{aligned}$$
(22)

The VIKOR method based on Shapley IF divergence was used to solve MCDM problems in [24], and the procedure used the Shapley divergence measure defined as follows:

$$\begin{aligned}&\mathsf {D}_{\mathsf {7}}^{\mathsf {c}} (\mathsf {R_1,R_2})=\frac{\mathsf {1}}{\mathsf {2n}(\mathsf {1} -\frac{\mathsf {1}}{\mathsf {e}})} \sum _{\mathsf {i=1}} ^{\mathsf {n}} \Bigg [ \Bigg [\mathsf {exp}\left\{ -\left( \frac{(\xi _{\mathsf {R_2}}(\mathsf {t_{i}}) -\xi _{\mathsf {R_1}}(\mathsf {t_{i}})) + (\nu _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _ {\mathsf {R_2}}(\mathsf {t_{i}}))}{\mathsf {2}} \right) \right\} \nonumber \\&\quad + \mathsf {exp} \left\{ -\left( \frac{(\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})) + (\nu _{\mathsf {R_2}}(\mathsf {t_{i}})-\nu _{\mathsf {R_1}}(\mathsf {t_{i}}))}{\mathsf {2}}\right) \right\} \nonumber \\&\quad -\mathsf {2} \Bigg ]\mathsf {I}_ {[\xi _{\mathsf {R_1}}(\mathsf {t_{i}})\ge \nu _{\mathsf {R_1}} (\mathsf {t_{i}})]} \nonumber \\&\Bigg [\mathsf {exp} \left\{ -\left( \frac{(\xi _{\mathsf {R_2}}(\mathsf {t_{i}})- \xi _{\mathsf {R_1}}(\mathsf {t_{i}})) (\nu _{\mathsf {R_1}} (\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}}))} {\mathsf {2}}\right) \right\} \nonumber \\&\quad + \mathsf {exp}\left\{ -\left( \frac{(\xi _{\mathsf {R_1}} (\mathsf {t_{i}})-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})) + (\nu _{\mathsf {R_2}}(\mathsf {t_{i}})-\nu _{\mathsf {R_1}} (\mathsf {t_{i}}))}{\mathsf {2}}\right) \right\} -\mathsf {2} \Bigg ]\mathsf {I}_[\xi _{\mathsf {R_1}}(\mathsf {t_{i}})& \le \nu _{\mathsf {R_1}}(\mathsf {t_{i}})] \Bigg ] \end{aligned}$$
(23)
$$\begin{aligned}&\mathsf {D}_{\mathsf {8}}^{\mathsf {c}} (\mathsf {R_1,R_2})\nonumber \\&\quad = \sum _{\mathsf {i=1}}^{\mathsf {n}} \Bigg [ \mathsf {2}- \left( \frac{\mathsf {2}+(\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})) + (\nu _{\mathsf {R_2}}(\mathsf {t_{i}})-\nu _{\mathsf {R_1}}(\mathsf {t_{i}}))}{\mathsf {2}}\right) \nonumber \\&\quad \mathsf {exp}\left\{ \left( \frac{(\xi _{\mathsf {R_2}}(\mathsf {t_{i}})-\xi _{\mathsf {R_1}}(\mathsf {t_{i}})) + (\nu _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}}))}{\mathsf {2}}\right) \right\} \nonumber \\&\quad \quad -\left( \frac{\mathsf {2}+( \xi _{\mathsf {R_2}}(\mathsf {t_{i}})-\xi _{\mathsf {R_1}}(\mathsf {t_{i}})) + (\nu _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}}))}{\mathsf {2}}\right) \nonumber \\&\quad \mathsf {exp}\left\{ \left( \frac{(\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})) + (\nu _{\mathsf {R_2}}(\mathsf {t_{i}})-\nu _{\mathsf {R_1}}(\mathsf {t_{i}}))}{2}\right) \right\} \Bigg ] \end{aligned}$$
(24)

Ohlan [23] defined another divergence measure for IFSs as follows:

$$\begin{aligned}&\mathsf {D}_{\mathsf {9}}^{\mathsf {c}}(\mathsf {R_1,R_2})= \sum _{\mathsf {i=1}}^{\mathsf {n}} \Bigg [ \mathsf {2}- \left( \mathsf {1}-\frac{(\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})) - (\nu _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}}))}{\mathsf {2}}\right) \nonumber \\&\quad \mathsf {exp}\left\{ \left( \frac{(\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})) - (\nu _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}}))}{\mathsf {2}}\right) \right\}\\ & \quad \quad -\left( \mathsf {1}+\frac{(\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})) - (\nu _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}}))}{\mathsf {2}}\right) \nonumber \\&\quad \mathsf {exp}\left\{ \left( \frac{(\nu _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}}))-(\xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\xi _{\mathsf {R_2}}(\mathsf {t_{i}})) }{\mathsf {2}}\right) \right\} \Bigg ] \end{aligned}$$
(25)

It is important to note that the divergence measures \(\mathsf {D}_{\mathsf {8}}^{\mathsf {c}}\) and \(\mathsf {D}_{\mathsf {9}}^{\mathsf {c}}\) are the same. \(\mathsf {D}_{\mathsf {9}}^{\mathsf {c}}\) was proposed in [23] in 2016, while \(\mathsf {D}_{\mathsf {8}}^{\mathsf {c}}\) was proposed in [24] in 2019.

Rani et al. [19] discussed the IF divergence-based TODIM method for MCDM problems and the corresponding divergence measure is defined as follows:

$$\begin{aligned}&\mathsf {D}_{\mathsf {10}}^{\mathsf {c}} (\mathsf {R_1,R_2}) =\frac{\mathsf {1}}{\mathsf {n}} \sum \limits _{\mathsf {i=1}}^{\mathsf {n}} \Bigg [ \mid \xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\xi _{\mathsf {R_2}}(\mathsf {t_{i}}) \mid \mathsf {exp} \left( \mathsf {2}\frac{ \mid \xi _{\mathsf {R_1}}(\mathsf {t_{i}})-\xi _{\mathsf {R_2}}(\mathsf {t_{i}}) \mid }{\xi _{\mathsf {R_1}}(\mathsf {t_{i}})+\xi _{\mathsf {R_2}}(\mathsf {t_{i}})} \right) \nonumber \\&\quad + \mid \nu _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}}) \mid \mathsf {exp} \left( \mathsf {2}\frac{\mid \nu _{\mathsf {R_1}}(\mathsf {t_{i}})-\nu _{\mathsf {R_2}}(\mathsf {t_{i}}) \mid }{\nu _{\mathsf {R_1}}(\mathsf {t_{i}})+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})} \right) \\ & \quad+ \mid \pi _{\mathsf {R_1}}(\mathsf {t_{i}})-\pi _{\mathsf {R_2}}(\mathsf {t_{i}}) \mid \mathsf {exp} \left( \mathsf {2}\frac{\mid \pi _{\mathsf {R_1}}(\mathsf {t_{i}})-\pi _{\mathsf {R_2}}(\mathsf {t_{i}}) \mid }{\pi _{\mathsf {R_1}}(\mathsf {t_{i}})+\pi _{\mathsf {R_2}}(\mathsf {t_{i}})} \right) \Bigg ] \end{aligned}$$
(26)

Joshi and Kumar [27] discussed the applications of Jensen-Tsalli’s IF divergence measure in medical diagnosis and pattern recognition.

$$\begin{aligned}&\mathsf {D}_{\mathsf {11}}^{\mathsf {c}} (\mathsf {R_1,R_2}) = \frac{\mathsf {1}}{\mathsf {1-p}} \Bigg ( \left( \alpha _{\mathsf {2}} \xi _{\mathsf {R_2}}(\mathsf {t_{i}})+\alpha _{\mathsf {1}} \xi _{\mathsf {R_1}}(\mathsf {t_{i}})\right) ^\mathsf {p}+\left( \alpha _{\mathsf {2}} \nu _{\mathsf {R_2}}(\mathsf {t_{i}})+\alpha _{\mathsf {1}} \nu _{\mathsf {R_1}}(\mathsf {t_{i}})\right) ^\mathsf {p} + \left( \alpha _{\mathsf {2}} \pi _{\mathsf {R_2}}(\mathsf {t_{i}})+\alpha _{\mathsf {1}} \pi _{\mathsf {R_1}}(\mathsf {t_{i}})\right) ^\mathsf {p} \nonumber \\&\quad\quad-\alpha _{\mathsf {2}} \left( \xi _{\mathsf {R_2}}(\mathsf {t_{i}})^\mathsf {p}+\pi _{\mathsf {R_2}}(\mathsf {t_{i}})^\mathsf {p}+\nu _{\mathsf {R_2}}(\mathsf {t_{i}})^\mathsf {p}\right) -\alpha _{\mathsf {1}} \left( \xi _{\mathsf {R_1}}(\mathsf {t_{i}})^\mathsf {p}+\pi _{\mathsf {R_1}}(\mathsf {t_{i}})^\mathsf {p}+\nu _{\mathsf {R_1}}(\mathsf {t_{i}})^\mathsf {p}\right) \Bigg ) \end{aligned}$$
(27)

where \(\mathsf {p \in (0,1)}\) and \(\alpha _{\mathsf {1}} + \alpha _{\mathsf {2}} = \mathsf {1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.J., Alcantud, J.C.R., Kumam, P. et al. Intuitionistic fuzzy divergences: critical analysis and an application in figure skating. Neural Comput & Applic 34, 9123–9146 (2022). https://doi.org/10.1007/s00521-022-06933-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-06933-y

Keywords

Navigation