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Abstract
Missing data is a major problem in real-world datasets, which hinders the performance of data analytics. Conventional data

imputation schemes such as univariate single imputation replace missing values in each column with the same approxi-

mated value. These univariate single imputation techniques underestimate the variance of the imputed values. On the other

hand, multivariate imputation explores the relationships between different columns of data, to impute the missing values.

Reinforcement Learning (RL) is a machine learning paradigm where the agent learns by taking actions and receiving

rewards in response, to achieve its goal. In this work, we propose an RL-based approach to impute missing data by learning

a policy to impute data through an action-reward-based experience. Our approach imputes missing values in a column by

working only on the same column (similar to univariate single imputation) but imputes the missing values in the column

with different values thus keeping the variance in the imputed values. We report superior performance of our approach,

compared with other imputation techniques, on a number of datasets.

Keywords Missing data � Reinforcement learning � Imputation

1 Introduction

Missing data is a common problem in real-life datasets.

Missing data is caused by incomplete/no measurements

due to human/system errors, data corruption, and privacy

concerns of users filling data for surveys. Missing data

hinders the data analysis because most of the analytical

approaches cannot straightforwardly work with incomplete

data [41]. Usually, the data are pre-processed to overcome

this problem. As such, the goal of data pre-processing is to

produce a high-quality dataset without missing values.

Such preprocessing techniques include imputation, a term

used for handling missing values by replacing missing data

with substitute values. Given the relevance of missing data

in real-life datasets, missing value imputation has received

considerable attention and many imputation methods have

been proposed in the literature [17, 21].
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Missingness in data can be categorised as [23]: Missing

Completely At Random (MCAR), Missing At Random

(MAR), and Missing Not At Random (MNAR). Data are

classified as MCAR if the missingness of the data occurs

entirely at random (with no dependency on other vari-

ables). An example of MCAR is a data collected by failed

equipment. This type of missingness is not biased towards

any factor/variable and hence does not affect the data

analysis. Data are MAR when the probability of the

missing data depends on the set of observed data values

(e.g. the observed values in other columns of tabular data).

For instance, older patients might be more likely to forget a

data value (hence missing data), than the younger patients.

MNAR occurs when the missingness probability depends

on the incomplete variables (means the missingness cannot

be explained from the observed variables). For example,

people with higher income are less likely to reveal it. In

this case, an incomes value is missing because it was too

high (the reason for a missing column value is associated

with the same column). Various strategies are employed to

deal with each type of missing data [15]. In this paper, we

introduce missingness in the data by randomly removing

values across the data, thus our data are MCAR in this

work.

A popular approach to deal with missing data is the

complete case analysis [13]. This approach considers only

those data observations which have no missing values and

deletes all the other data. This approach may lead to a

substantial loss of important information since in many

cases: (1) the data may only be missing from only a few

attributes (data from other attributes/columns can be useful,

while it is deleted in the complete case analysis), and (2)

the data may be missing from a large number of samples (a

large amount of (row) data are deleted in this case) contains

a large number of missing values. Another commonly used

approach, called hot deck imputation, fills the missing

values with random values picked from similar non-miss-

ing samples [2]. The main drawback of this approach is its

lack of ability to preserve the covariance structure in the

imputed data [16].

A number of techniques have been applied to solve the

missing data imputation problem. There are two main types

of imputation techniques: single imputation and multiple

imputation [8]. Single imputation approaches estimate the

missing values in the data only once, while multiple

imputation approaches produce multiple datasets each with

an approximation/estimate of the missing values, and the

results from all the imputations are consolidated in the final

stage to infer the missing values. The single imputation

approaches can broadly be categorized as [13]: (1) uni-

variate single imputation approaches such as ad-hoc

imputation, nonresponse weighting, and likelihood-based

methods; and (2) multivariate single imputation approaches

such as k-Nearest Neighbours (kNN), and Random Forests

(RF)-based imputation. The univariate imputation approa-

ches replace missing values in a column (of a tabular data)

by using the observed values in the same column, whereas

the multivariate imputation approaches use the observed

values in other columns of the data to estimate the missing

values of a column of the data.

Univariate single imputation approaches, in general,

impute the missing values in a column of data by using

only non-missing values from the same column. The ad hoc

imputation aims at maintaining the full data sample by

filling the missing values with estimated values. The

missing values (in a column of tabular data) are estimated

with a single value, in this approach, such as mean or

median of the corresponding data feature [20]. The non-

response weighting approach also estimates a single value.

However, the imputed value, in this case, is a weighted

estimate of the population mean or median. The weight is

determined by the ratio of the number of samples in each

group of data. This approach is suitable only when the data

population contains majority samples from one group and a

few samples from the other groups. The single imputation

approaches fill all the missing values (in a column of tab-

ular data) using only one value, which generally underes-

timates the errors of data imputation. The likelihood-based

methods aim at modelling the missing data mechanism by

maximizing the likelihood function of the data [14]. Once

the parameters of the likelihood function are estimated, the

missing values are produced based on these parameters.

Multivariate single imputation approaches use all the

available data across the columns to estimate the missing

values. Machine Learning (ML) techniques such as k-NN

and RF have been used to address the missing data problem

by learning the hidden patterns in the data [19, 33]. Besides

the added time complexity of the ML-based approaches, in

general, the kNN approach is known to be sensitive to

outliers, requires a careful selection of the parameter ’k’,

and is imprecise in imputing variables which have no

dependencies in the dataset [4]. The RF method is known

to have biased results at the extreme values of the contin-

uous variables [26].

Multiple imputation replaces the missing values with a

set of plausible values by predicting the missing values

using the existing data from the other variables [29]. This

approach maintains the natural variability and uncertainty

in the predicted values. In multiple imputation techniques,

the imputation process is iterated several times, each time

creating a completed dataset. The completed dataset is then

analysed using statistical analysis to generate results.

Subsequently, the averaged results are reported. Examples

of multiple imputation include techniques based on joint

modelling [25], and fully conditional specifications [35].

The former approach assumes a normal distribution of
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incomplete variables for imputation, while the latter

imputes missing values based on univariate conditional

distributions for each incomplete variable given other

variables. Despite its sophistication, multiple imputation at

times underperforms compared to the simpler (single)

imputation approaches [10, 31]. This observation moti-

vated us to focus on single imputation in this work.

Reinforcement Learning (RL) is a type of ML that has

robust characteristics to handle the optimization problems

by exploring the environment which is formed based on the

problem and data. RL enables an agent to learn the best

sequence of decisions, through a series of actions and

rewards, to achieve an ultimate goal in an environment. We

believe that the missing data can be imputed using an RL

agent, capable of performing the most suitable action at the

right time, to best achieve the goal of approximating the

missing data. Therefore, in this work, we propose an RL-

based approach to impute missing data, in real-world

datasets. Our proposed approach is a univariate single

imputation approach. The key aspect of our approach is its

ability to estimate missing values without neglecting the

variance of the imputed variable, as in the case of con-

ventional univariate single imputation approaches.

2 Related work

A brief categorization of missing data imputation tech-

niques is shown in Fig. 1. Missing data imputation

approaches are broadly classified as single imputation

approaches, and multiple imputation approaches. A

detailed description of these approaches is presented as

follows.

2.1 Single imputation approaches

Single imputation approaches estimate each missing value

in data with only one value. There are two broad categories

of single imputation approaches: univariate single impu-

tation and multivariate single imputation. The detail of

these approaches is given as follows.

2.1.1 Univariate single imputation

The most common approach of missing data imputation is

the univariate single imputation. Univariate single impu-

tation approaches estimate the missing values, in a column

of data, by using the available values from only the same

column. Therefore, all the missing values in a column of

data are replaced with exactly the same value. Figure 1

shows a number of univariate single imputation approa-

ches, which impute the same value for each missing value

in a column (of a tabular data), including the mean,

median, most frequent value, and the last observation

carried forward imputations [20]. The mean- and median-

based imputation approaches impute the missing values in

a column with the mean and median of the available values

in that column, respectively. The most frequent value-

based imputation replaces missing values in a column with

the most common value in that column of data. The last

observation carried forward imputation replaces missing

values with the last observed values. While these approa-

ches are used frequently, they discard the variance of the

imputed values, since all the missing values in a column of

data are replaced with the same value. These approaches

are rigid and are likely to distort the distribution of the

imputed variables [18].

2.1.2 Our approach

Our proposed univariate single imputation approach uses a

single column during imputation, but estimates dynamic

values for each missing value in a column (of tabular data).

To the best of our knowledge, this is the first attempt

towards a univariate single imputation approach, which

replaces missing values in a column while maintaining the

variance in the estimated values. The policy learnt by our

RL agent guides the imputation process to impute a miss-

ing value by using the available values in only the same

column of data. A detailed description of our approach is

presented in Sect. 3.2.

2.2 Multivariate single imputation

Multivariate single imputation approaches estimate miss-

ing values in a column of data, by using the available data

in the other columns. These approaches estimate the

missing values in a variable by using the relationship

among the available data of the other variables. Figure 1

shows a number of multivariate single imputation tech-

niques. One such technique poses missing data imputation

task as a matrix completion problem [6]. This technique

comprised of a first-order algorithm to fill in the missing

entries in low ranked matrices with a minimum nuclear

norm. Literature [5] proposed iterative imputation of the

missing values of each feature by regressing the values of

the remaining features. All these methods are linear in

nature, which may not be able to capture the nonlinear

relationships between the observed and missing values.

ML techniques such as kNN have also been used to

impute missing data [19, 20]. In kNN-based imputation,

each missing value is replaced with a value obtained from

the related observations of the available dataset. Although

this approach is considered an efficient method to fill in the

missing data, it tends to distort the true distribution of the

data [4].

Neural Computing and Applications (2022) 34:9701–9716 9703

123



A proximity matrix is also used to impute missing data

using RF [33]. In this technique, the data are first imputed

using median (for continuous variables) and the most fre-

quently occurring value (for categorical variables). Then,

an RF is generated using the filled data and a proximity

matrix of size n � n created, where n is the sample size

(number of rows in a tabular data). This proximity matrix is

then used to impute the originally missing data. The

updated data are used to grow another RF and the process

is repeated.

Some works have used autoencoders to impute missing

data [11, 34]. Gondara et al. proposed a multivariate

imputation technique based on deep denoising autoen-

coders [11]. However, this approach assumed that there is

enough complete data to train a model, which might not be

the case in real-world datasets. Tran et al. cascaded a series

of residual autoencoders to learn the complex relationship

from data of different modalities to impute the missing data

[34]. This approach combined the strengths of residual

learning and autoencoders. Although the autoencoders are

empirically effective, these imputation approaches based

on autoencoders are heuristic based and it is unclear what

mathematical objective is defined for the missing values.

Instead of generating candidate values for the missing

data, Smieja et al. presented a general approach to make

neural networks process the incomplete data by building a

probabilistic model of the incomplete data [28]. Their

approach replaced the typical neuron’s response in the first

hidden layer of a neural network with its expected value to

achieve more generalized and accurate activations of the

neurons and improve the imputation performance.

A modified Radial Basis Function (RBF) was proposed

to generalize the standard Gaussian RBF kernel of Support

Vector Machines (SVM) to suite incomplete data [27]. This

approach uses the characteristics of the data distribution to

model the uncertainty of the missing data to serve for data

imputation.

A modified Generative Adversarial Network (GAN) was

proposed by Yeh et al. to fill in the missing regions in

natural images (known as inpainting) [38]. Their approach

was able to learn the representations from the training data

and predict the missing patches by using meaningful con-

text. This approach, however, requires complete data in the

training phase which is not common in real-world datasets.

Since an image is represented with a matrix (or a table) of

values (where a value might represent the intensity value of

a pixel), it is similar to having a tabular data which does not

represent images. Hence, these approaches can also be

applied to tabular data.

A Denoising Auto-Encoder-based approach was pro-

posed to impute missing values [24]. Their approach

deleted some new missing values in those samples which

already have missing values. This extra deletion allowed to

better reconstruct the incomplete data by training auto-

encoders. Their work also introduced a compensation

strategy, by adding a balancing parameter in the loss

function, to minimize the imbalance in data which was

created by the deletion step. Their method achieved similar

imputation performance compared with the Multiple

Imputation by Chained Equations (MICE), a popular

multiple imputation approach.

Popular Generative Adversarial Networks (GANs) [12]

have also been used to impute missing data. GANs are a

type of machine learning algorithm with generative and

discriminator parts, both working in an adversary manner.

The generator receives a collection of training examples

and learns a probability distribution that generated them.

The learnt distribution is then used by the generator to

produce new examples. The discriminator part of GANs

distinguishes real examples from fake examples, which are

generated by the generator. This discrimination is fedback

Fig. 1 A broad categorization of

missing data imputation

techniques
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to the generator to allow it to produce more real-like

examples, in an effort to deceive the discriminator. Yoon

et al. proposed a GAN-based method, named GAIN, to

impute missing data. Their generator completes the missing

values given the observed ones, and the discriminator aims

to distinguish between true and imputed values [39].

Recently, Awan et al. proposed a class-specific distribution

by adapting the popular conditional generative adversarial

networks to impute the missing data. Their approach learns

class-specific probability distributions in the training phase

which allows to impute the missing values more precisely

than the GAIN approach [3].

2.3 Multiple imputation approaches

Multiple imputation tries to restore the natural variability in

the imputed values. This approach first produces n copies

of data [n is typically in the range 5-10 [30]] by imputing

missing values in the data n times using a multivariate

single imputation approach. Then, each copy of the data is

analysed using a standard method (e.g. regressor or a

classifier) for complete data. Finally, the results from the

analytical method are combined to achieve statistical

inference reflecting the uncertainty due to the missing

values [22]. MICE is a commonly used approach to gen-

erate imputations based on a set of imputation models, one

for each variable with missing values [37].

3 The proposed method

The goal of an RL approach is to train an agent, to take

decisions at any stage in an environment, to achieve a goal

using rewards and punishments. In our work, we aim to

train an agent, using RL, to estimate multiple values of

missing values in a column of data. Our agent learns to take

a series of decisions to make the best estimate of the

missing values. A detailed description of RL and our pro-

posed approach is given in the following sections.

3.1 Concept of Reinforcement learning

RL is a machine learning method which is concerned with

how an agent should react in an environment. The goal of

RL is to train an agent to take a sequence of decisions,

using a system of rewards and penalties, to solve a problem

by itself. RL achieves its purpose by emulating a scenario

and noting the corresponding response of the agent. The

agent is rewarded if the response is the desired one and

penalized otherwise [32]. Therefore, the next time the

agent faces the same situation, it executes a similar action

with even more confidence to collect more rewards. Hence,

the agent learns ‘‘what to do’’ from good experiences, and

‘‘what not to do’’ from bad experiences.

RL is widely used in robots nowadays, which play a

vital role in various applications, such as agriculture,

manufacturing, customer service, and health care. Robots

in health care provide patients support and assistance in

critical situations. These robots are trained by RL, which

allows them to learn according to the patients’ needs [1].

The core features of a RL paradigm (see Fig. 2) are as

follows:

– Observation of the environment: an agent is exposed to

the environment.

– Finding yourself in the environment: the situation of the

environment that the agent faces, called a state.

– How to act using some strategy: the agent reacts by

performing an action to evolve from one state to

another.

– Receiving a reward or penalty: After the transition, the

agent may receive a reward or penalty in return.

– Learning from experiences: To create a policy, which is

the strategy of choosing an action given a state to

achieve better outcomes.

3.2 Our proposed approach

Our proposed RL-based approach for missing data impu-

tation is based on the Quality-learning (known as Q-

learning approach) [36]. In our RL approach, an agent

learns an optimal action-selection policy, from its interac-

tion with the environment, using a Q function [36]. An

episode of environment interaction is recorded as (s, a, r,

s’) using the initial state of the agent (s), the action taken by

the agent (a), the reward offered for this action (r), and the

resultant state of the agent (s’). Our agent maintains a

table Q[S, A] where S is the set of states and A is the set of

actions. An experience (s, a, r, s’) serves as one data point

for the value of Q[S, A]. The Q table is updated with each

data point using Eq. (1).

Fig. 2 The components of a typical Reinforcement Learning

paradigm
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Qtþ1ðs; aÞ ¼ Qtðs; aÞ

þ a½Rðs; aÞ þ cmaxQtðs0; aÞ � Qtðs; aÞ�
ð1Þ

where t represents the current time step, and t þ 1 is the

next time step, a is the learning rate ð0\a� 1Þ which

determines the amount of update to be made in Q-values in

each iteration, c is the discount factor ð0� c� 1Þ which

controls the importance given to future rewards. R(s, a) is

the current reward for performing an action in the current

state. The term maxQtðs0; aÞ is the current Q-value esti-

mate of the next best action to be picked. Equation (1)

updates the Q-value of the agent’s current state and action,

by adding the learned value. The learned value is a

weighted combination of the reward for taking an action in

the current state, and the discounted maximum reward from

the next state. This approach motivates the agent to collect

maximum rewards and in doing so, learn the best actions to

take in a state. The objective of Eq. (1) is to learn a policy

to reach the state of lowest error ðs0Þ from any other state

ðs1 � s9Þ. The Q-values are repeatedly updated using

Eq. (1) until a policy is learnt (1000 repetitions in our

work).

We initialize the Q-table with zeros initially, which

represents the learning of a policy from scratch. Next, an

action is chosen from the Q-table and performed using an

epsilon greedy strategy. Initially, the values of epsilon are

large and the agent explores the environment by choosing

actions randomly. The epsilon value gradually decreases

and the agent starts to exploit the environment with its

experience. In our work, the agent had two actions to

choose from: increase the estimated value, or decrease the

estimated value.

Algorithm 1: Q-learning (S, A, α, γ)
1. Inputs:
2. S = set of states
3. A = set of actions
4. α = step size
5. γ = discount
6. Output:
7. Q[S,A] = Learnt Q-table
8. Initialize Q[S,A] with zeros
9. Observe the current state s
10. Repeat
11. Select and perform an action
12. Update the imputed value based on the action
13. Observe the reward R(s,a) and the new state s′

14. Qt+1 = Qt(s, a) + α[R(s, a) + γ maxQt(s′, a) − Qt(s, a)]
15. s ← (s′, a)
16. Untill 1000 iteration

In the training phase, the agent knows nothing about the

environment initially (i.e. where to look for the best esti-

mate of the missing value). Gradually, the agent learns the

manoeuvring and saves it as a policy in the Q-table. Once

the Q-table is ready, the agent can start to exploit the

environment by taking better actions in each state.

Our proposed RL-based approach for imputing missing

data is shown in Fig. 3. The process starts with imputing a

singular value for each missing data (for example, the

mean value of this column). This approximation determi-

nes the state of the imputation, based on the error (how

close/far the imputed value is from the ground-truth value).

The RL model guides the next imputation value such that

the imputed value is pushed towards the state of lower

error. Each transition between the states updates the

imputation value. At the end of this process, we achieve an

imputation value which is very close to the ground truth.

3.2.1 A Markovian formulation of our approach

A Markov Decision Process (MDP) consists of states,

actions, rewards, and transitions between the states. In our

approach, the set of environment states S is defined as a

finite set fs0; s1; . . .; sNg, where N is the size of the state

space S. The size of the state space S is a hyper-parameter,

empirically chosen as 10. A state, in our work, is a measure

of how far an estimated value is from the actual value. The

set of actions A is a finite set fa1; a2; . . .; aKg where K is the

size of the action space. An action a 2 A applicable to a

state s 2 S is denoted as A(s), where AðsÞ 2 A. Each action

is used to control the environment’s state. In this work, our

agent picks one out of two actions, i.e. increase the esti-

mated value or decrease it. By applying an action a 2 A in

a state s 2 S, the environment transitions from state s to a

new state s0 2 S. The reward function specifies rewards for

being in a state, or doing some action in a state. Our reward

function is formally defined as R : S� A� S ! R and

represented by the Q-matrix.

An MDP is a sequence of tuples ðs; a; r; s0Þ. These

sequences of transitions define the model of the MDP. A

Fig. 3 A Markovian depiction of our RL approach to impute missing

values. The training aims at reaching minimum error state, S0, to

minimize the imputation error
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pictorial depiction of MDPs is shown in Fig. 3, where the

nodes correspond to states and directed edges represent the

transitions. Given the MDP, a policy function p outputs for

each state s 2 S an action a 2 A. The training begins with a

start state, e.g. s0, then the policy p suggests an action a0,

which is performed. A new state s1 is achieved with this

transition and a reward r0 is collected. This process con-

tinues producing s0; a0; r0; s1; a1; r1; s2; a2; r2; . . ., etc., and

ends when a goal state, in our case s0, is achieved. The

same process is then repeated with a new start state. The

learnt policy becomes part of the agent and helps it to

control the environment modelled as an MDP.

3.3 A toy example

We present a toy example to demonstrate our proposed

approach for imputing missing data. We use the data given

in Table 1 as our reference data. The data contains 10

instances of data, each having 4 columns.

We randomly delete 10% of the total data to create

missing values (see Table 2). The classical univariate sin-

gle imputation approaches such as mean, median, and the

most frequent value estimate the missing values using

statistical measures. A comparison of the statistical-based

estimated values and our proposed approach, for the

missing values in each column of the toy example data, is

given in Table 6 (discussed at the end of this section)

(Table 3).

Our RL-based approach starts with learning the policy

matrix (Q-matrix) for imputation. For this purpose, we

initialize an n� n matrix of zeros, where n represents the

number of states. In this example, we empirically select

n to be 10. Each state is based on the error of the imputed

value compared with the ground truth value. The rewards

matrix R is of the same size as Q. R-matrix contains zero if

the path between the corresponding states is viable, and -

1 otherwise (path seen in Fig. 3, see Table 4 for R matrix).

The error decreases going from state nine (s9) towards state

zero (s0) and vice versa, and our goal is to reach the state

with minimum error (s0). Therefore, the path of the goal

state is set to 100.

We obtained our trained Q-matrix (shown in Table 4)

after 1000 iterations. This matrix contains the policy in the

form of a sequence of steps going from a state of higher

error to a state of lower error. For each current state (row of

the Q-matrix), the column which contains the maximum

value is the policy for the next state. Once the Q-matrix is

ready, the missing values can be estimated by following the

policy given by the Q-matrix and update the estimated

value accordingly. The policy is derived from the current

state of the agent, followed by the sequence of steps to

reach the state zero (s0). This process is presented in

Table 6 for the missing values in column 2 of our toy

example data. The example shows that our proposed

approach imputes the two missing values in column 2 of

our toy example with two different values. This is a key

advantage of our approach since the conventional uni-

variate single imputation techniques lacked variance in the

imputed values. A brief description of the process is as

follows:

The imputation process starts with an initial estimate of

the missing value (column mean in this example). Then, we

Table 1 Toy example: original

data
Col 1 Col 2 Col 3 Col 4

0.17 0.26 0.57 1

0.5 0.53 0 0.83

0.83 0 0.57 0.33

0.17 0.39 0.87 0.5

1 0.53 0.14 0.67

0.33 0.84 0.86 0

0.85 0.46 0.17 0.83

0.03 1 0.71 0.5

0.17 0.13 0.86 0.83

0 0.26 1 0.7

Table 2 Toy example: original

data with missing values
Col 1 Col 2 Col 3 Col 4

0.17 0.26 0.57 1

0.5 0.53 0 0.83

0.83 0 0.57 ?

0.17 ? 0.87 0.5

1 0.53 ? 0.67

? 0.84 0.86 0

0.85 ? 0.17 0.83

0.03 1 0.71 ?

0.17 0.13 0.86 0.83

0 0.26 1 0.7

Table 3 Initialization of R matrix for Col 2 of our toy example

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

s0 100 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

s1 100 0 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1

s2 - 1 0 0 0 - 1 - 1 - 1 - 1 - 1 - 1

s3 - 1 - 1 0 0 0 - 1 - 1 - 1 - 1 - 1

s4 - 1 - 1 - 1 0 0 0 - 1 - 1 - 1 - 1

s5 - 1 - 1 - 1 - 1 0 0 0 - 1 - 1 - 1

s6 - 1 - 1 - 1 - 1 - 1 0 0 0 - 1 - 1

s7 - 1 - 1 - 1 - 1 - 1 - 1 0 0 0 - 1

s8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 0 0 0

s9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 0 0
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calculate the error between the estimated value and the

ground truth value. The new state of the agent is calculated

based on this new imputation error. Then, the Q-matrix is

used to get the next move, and the imputation value is

updated accordingly. The new value is a weighted update

of the current value based on a weight parameter (r), i.e.

valuenew ¼ valueoldð1 þ rÞ. The sign in this equation is

governed by the policy learnt during the training phase. We

keep the r at 0.01 for our toy example. The update in the

estimated value is repeated until we reach the state with the

minimum error, i.e. s0. The estimated value at that point is

taken as the imputation value based on our approach.

Table 5 presents a detailed calculation of the imputed

values of ‘‘Col 2’’ of the toy example, based on our pro-

posed approach. Table 6 compares the imputation based on

mean, median, the most frequent value, kNN, RF, and our

proposed approach, on the missing values in each column

of the toy example. The first missing value in ‘‘Col 2’’ of

the toy example (original value of 0.39) is estimated as

0.44, 0.397, 0.260, 0.463, and 0.330 using mean, median,

and the most frequent value, kNN, and RF, respectively.

Our proposed RL-based approach imputes this missing

value with 0.396. The same mean, median, and the most

frequent values are imputed to the second missing value in

‘‘Col 2’’ (original value of 0.460). The kNN and RF-based

imputations impute 0.353 and 0.398, while our proposed

approach imputes it with 0.452, which is a better approx-

imation of the original value. Table 6 shows that our pro-

posed RL-based approach outperforms the other imputation

approaches on the toy example data.

4 Experimental results

4.1 Datasets

We used eight publically available datasets from the UCI

Machine Learning Repository [9]. These datasets have

been previously used in the literature, e.g. [40]. The details

of these datasets are given in Table 7. The Breast Cancer

dataset contains features, from digitized images, repre-

senting characteristics of the cell nuclei such as radius,

texture, perimeter, and others. The Vehicle dataset is a

classification dataset having features extracted from the

silhouettes of vehicles. These features include variance,

skewness, and kurtosis among others. Travel dataset con-

tains features that represent the feedback of customers of

the Trip Advisor company. The Spambase dataset is a

classification dataset whose features come from a collec-

tion of emails. The features mostly contain information

such as the percentage of occurrence of a specific word in

an email, and the length of sequences of consecutive cap-

ital letters. Parkinson dataset is composed of features

representing voice measurements of healthy and Parkinson

disease patients. Letter recognition dataset contains fea-

tures from rectangular images representing 26 capital let-

ters in the English alphabet. Default credit card dataset is

also a classification dataset representing the possibility of

default of a customer. The default of a customer is

approximated with age, amount of given credit, history of

past payments, and other features. News popularity dataset

contains statistics of online news articles. These statistics

include the number of words in the title, number of

hyperlinks in the article, the average length of words, and

others.

4.2 Performance metrics

The performance metrics, used in this work, to compare

our proposed approach for missing data imputation with

other available approaches are the Mean Absolute Error

(MAE) and the Root Mean Squared Error (RMSE). These

are the most commonly used metrics to estimate the per-

formance of the missing data imputation approaches [7].

MAE is the mean of all the absolute errors between the

imputed and ground truth values, as given in Eq. (2).

Table 4 Trained Q-matrix for

Col 2 of our toy example
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

s0 100 80 0 0 0 0 0 0 0 0

s1 100 80 64 0 0 0 0 0 0 0

s2 0 80 64 51.2 0 0 0 0 0 0

s3 0 0 64 51.2 40.96 0 0 0 0 0

s4 0 0 0 51.2 40.96 32.77 0 0 0 0

s5 0 0 0 0 40.96 32.77 26.21 0 0 0

s6 0 0 0 0 0 32.77 26.21 20.97 0 0

s7 0 0 0 0 0 0 26.21 20.97 16.78 0

s8 0 0 0 0 0 0 0 20.97 16.78 13.42

s9 0 0 0 0 0 0 0 0 16.78 13.42
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Table 5 Imputation of missing

value using our proposed

approach on Col 2 of the toy

example data in Tables 1 and 2

Ground truth = 0.390 r = 0.01 Policy (Table 5)

Estimated = 0.440 Error = 0.050 Current state = s5 Initialize at mean value

Policy = s5!s4 Policy ) negative sign

Estimated = 0.436 Error = 0.046 Current state = s4 = 0.440 (1–0.01)

Policy = s4!s3 = 0.436

Estimated = 0.432 Error = 0.042 Current state = s4 = 0.436 (1–0.01)

Policy = s4!s3 = 0.432

Estimated = 0.428 Error = 0.038 Current state = s3 = 0.432 (1–0.01)

Policy = s3!s2 = 0.428

Estimated = 0.424 Error = 0.034 Current State = s3 = 0.428 (1–0.01)

Policy = s3!s2 = 0.424

Estimated = 0.420 Error = 0.030 Current State = s3 = 0.424 (1–0.01)

Policy = s3!s2 = 0.420

Estimated = 0.416 Error = 0.026 Current State = s2 = 0.420 (1–0.01)

Policy = s2!s1 = 0.416

Estimated = 0.412 Error = 0.022 Current State = s2 = 0.416 (1–0.01)

Policy = s2!s1 = 0.412

Estimated = 0.408 Error = 0.018 Current State = s1 = 0.412 (1–0.01)

Policy = s1!s0 = 0.408

Estimated = 0.404 Error = 0.014 Current State = s1 = 0.408 (1–0.01)

Policy = s1!s0 = 0.404

Estimated = 0.400 Error = 0.010 Current State = s1 = 0.404 (1–0.01)

Policy = s1!s0 = 0.400

Estimated = 0.396 Error = 0.0096 Current State = s0 = 0.400(1–0.01) = 0.396

Ground truth = 0.460 r = 0.01

Estimated = 0.440 Error = 0.020 Current State = s2 Initialize at mean value

Policy = s2!s1 Policy ) positive sign

Estimated = 0.444 Error = 0.016 Current State = s1 = 0.440(1 ? 0.01) = 0.396

Policy = s1!s0 = 0.444

Estimated = 0.448 Error = 0.012 Current State = s1 = 0.444(1 ? 0.01) = 0.39

Policy = s1!s0 =0.448

Estimated = 0.452 Error = 0.008 Current State = s0 =0.448(1 ? 0.01) = 0.452

Table 6 Toy example: mean,

median, the most frequent

value, and our proposed RL-

based imputation of missing

values from Table 2

Col 1 Col 2 Col 3 Col 4

Original value 0.330 0.390 0.460 0.140 0.330 0.500

Mean imputation 0.410 0.440 0.440 0.620 0.670 0.670

Median imputation 0.170 0.397 0.397 0.710 0.765 0.765

Most frequent value

imputation

0.170 0.260 0.260 0.570 0.830 0.830

Nearest Neighbour

imputation

0.400 0.463 0.353 0.347 0.833 0.453

Random Forest

imputation

0.141 0.330 0.398 0.369 0.859 0.338

Our proposed approach 0.338 0.396 0.452 0.339 0.403 0.512

Our approach outperforms (shown as bold) other approaches. The second best results are underlined
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MAE ¼ 1

N

Xn

i¼1

jxi � bxi j ð2Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn

i¼1

ðxi � bxiÞ2

s
ð3Þ

where xi is the ground truth value, x̂i is the predicted value,

and N is the total number of errors. RMSE, given in

Eq. (3), represents the square root of the average of the

squared differences between the imputed and the ground

truth values. While the MAE represents a generic estimate

of how far off our imputed values are from the ground truth

values, the RMSE is more conscious of the points further

away from the mean. This suits us since we want our

imputed values to come into the closest-possible vicinity of

the ground truth values.

4.3 Experimental setup and results

All the experiments in this work were implemented using

Python 3.5, and Scikit-learn 0.22.1. The data were divided

into 70% and 30% portions for training and testing,

respectively, for each experiment. We created randomly

missing data with 5%, 10%, 15%, and 20% proportions

across all data in the datasets. All the missing values were

replaced with ‘nan’ during the process. The hyperparam-

eters of Q-learning, such as alpha and discount factor, were

selected based on a grid search, in our work. The search

spaces of alpha and discount factor were empirically

selected as f0; 0:001; 0:002; . . .; 0:5g and

f0:9; 0:91; 0:92; . . .; 0:99g, respectively. For our approach,

the Q-learning was performed over 10,000 iterations to

learn the policy for missing data imputation. The Policy

matrix (Q-matrix) was initialized with all zeros. Moreover,

missing data imputation using our proposed approach was

repeated 100 times to check the generalizability of the

method. The results were found similar to the performance

over a single iteration (presented later in Table 12). For

each experiment, we calculated the MAE and RMSE

between the imputed and the ground truth values in the test

dataset. We used other data imputation techniques such as

imputation by mean/median/the most frequent value,

nearest neighbour-based imputation, random forest-based

imputation, multiple imputation by MICE, GAIN, and

CGAIN to compare the performance of our proposed

approach for data imputation. The performance of our

proposed approach is presented in Tables 8, 9, 10, 11,

compared with other imputation methods, for varying

amounts of missing data in all the eight UCI datasets used

in this work. Our proposed approach has outperformed the

other imputation methods on six datasets and remained in

the top three for the other two datasets.

As can be seen in Table 8, our RL-based approach

performs well compared to other univariate single impu-

tation and ML-based imputation approaches. Our approach

produces a MAE of 0.0183 compared to 0.0271, 0.0201,

and 0.0208 for mean, median, and the most frequent value-

based univariate single imputations, respectively, for

Spambase dataset with 5% missing data. For the same

settings, the RMSE of our approach is 0.0485 compared to

0.0544, 0.0591, and 0.0615 for mean, median, and the most

frequent value-based univariate single imputations. The

machine learning-based imputation methods produce a

MAE of 0.0309, 0.0309, 0.0286, 0.0501, and 0.0447; and

an RMSE of 0.0719, 0.0696, 0.0588, 0.0723, and 0.0611,

for kNN-based imputation, RF-based imputation, multiple

imputation using chain equations, GAIN, and CGAIN,

respectively (see Table 8). The imputation performance of

our proposed approach outperforms other approaches with

increased proportions of missing data (see Tables 9, 10,

11). The overall imputation performance (measured as

MAE and RMSE) decreases for all the methods, as the

amount of missing data increases from 5 to 20% (see

Tables 8, 9, 10, 11), since less data are available to esti-

mate the missing values. Our proposed approach gives a

MAE of 0.0198 compared to 0.0278, 0.0210, 0.0217,

0.0319, 0.0321, 0.0290, 0.0595, and 0.0430, for mean,

median, most frequent value-based, kNN-based, RF-based,

multiple imputation using chained equations approach,

GAIN, and CGAIN, respectively, for Spambase dataset

with 20% missing data (see Table 11). The RMSE of our

approach, for the same settings, is observed as 0.0527

compared to 0.0593, 0.0635, 0.0667, 0.0750, 0.0715,

0.0620, 0.0764, and 0.0601 for mean, median, most fre-

quent value-based, kNN-based, RF-based, multiple impu-

tation using chained equations approach, GAIN, and

CGAIN, respectively. The performance of our proposed

approach remained at the top for six datasets, and second-

best and third-best for Letter recognition dataset and Breast

cancer dataset, respectively.

Table 7 Characteristics of datasets used in this work

Dataset No. of instances No. of attributes

Breast cancer 569 30

Vehicle 946 18

Travel 980 10

Spambase 4,601 57

Parkinson disease 5,875 19

Letter recognition 20,000 17

Default credit card 30,000 24

News popularity 39,644 61
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5 Discussions

The univariate single imputation techniques such as

imputation with mean, median, or most frequent value do

not account for the variations in the imputed values

because they impute the same value for each missing value

of a column/feature in the dataset. In this work, we have

used a reinforcement learning-based approach to account

for variations in imputed values and improve the overall

estimation of the missing data. Our approach learns a

policy, from the training dataset, on how to vary the

imputed values to bring them closer to the ground truth

value. The learnt policy is used in the testing phase to vary

the imputed value to better estimate the missing values.

Our approach has worked well compared to the imputation

performance of other imputation methods (see Tables 8, 9,

10, 11).

The performance of univariate single imputation tech-

niques deteriorates when the proportion of missing data

increases. This is because the singular value (such as mean,

median, or the most frequent value) is estimated with fewer

data samples and the estimate is likely to be less repre-

sentative of the entire population. The same trend is

observed in other imputation approaches as well as our

approach (see Figs. 4 and 5). This trend is reasonable since

the ML-based approaches are known to perform well given

more data for training. In our approach, we can argue that

as the percentage of the missing data increases, the algo-

rithm is not able to learn the best imputation policy which

worsens the overall performance.

The performance of our imputation approach is followed

by the mean- and median-based imputation techniques, in

three datasets (Spambase, Default credit card, and News

popularity). This trend is reasonable since the mean and

median imputations estimate the missing values with

average values. These average values present a reasonable

guess given the distribution of the data is normal. As seen

in other studies, the mean and median imputation approa-

ches yielded superior results than the multiple imputation

approach in our study likely due to the small size of

Table 8 Performance of our proposed approach at 5% missing data based on a single iteration

Dataset Error

type

Single imputation Multiple

imputation

(MICE)

GAIN CGAIN Proposed

univariate

approachUnivariate single imputation Multivariate single

imputation

Mean Median Most

frequent

value

Nearest

Neighbour

Random

Forest

Spambase MAE 0.0271 0.0201 0.0208 0.0309 0.0309 0.0286 0.0501 0.0447 0.0183

RMSE 0.0544 0.0591 0.0615 0.0719 0.0696 0.0588 0.0723 0.0611 0.0485

Letter

recognition

MAE 0.1164 0.1134 0.1166 0.1628 0.1594 0.1406 0.1200 0.0776 0.0826

RMSE 0.1537 0.1545 0.1633 0.2130 0.2092 0.1836 0.1437 0.1066 0.1183

Default

credit card

MAE 0.0295 0.0263 0.0304 0.0370 0.0370 0.0350 0.2020 0.1971 0.0212

RMSE 0.0552 0.0582 0.0698 0.0735 0.0723 0.0671 0.2428 0.2329 0.0494

News

popularity

MAE 0.0520 0.0472 0.0873 0.0624 0.0634 0.0610 0.2568 0.1739 0.0334

RMSE 0.1135 0.1166 0.1951 0.1475 0.1533 0.1353 0.2822 0.1964 0.0866

Vehicle MAE 0.1591 0.1553 0.1870 0.1978 0.2041 0.1985 0.1449 0.1362 0.1181

RMSE 0.2080 0.2158 0.2590 0.2573 0.2619 0.2584 0.1881 0.1638 0.1428

Parkinson

disease

MAE 0.0831 0.0808 0.1023 0.1100 0.1093 0.1037 0.0800 0.0717 0.0646

RMSE 0.1301 0.1315 0.1648 0.1772 0.1752 0.1638 0.1227 0.1186 0.1074

Breast

cancer

MAE 0.1046 0.1015 0.1393 0.1321 0.1332 0.1371 0.0635 0.0597 0.0796

RMSE 0.1416 0.1466 0.2009 0.1842 0.1856 0.1878 0.0972 0.0643 0.1152

Travel MAE 0.1068 0.1061 0.1201 0.1341 0.1275 0.1267 0.0946 0.0834 0.0646

RMSE 0.1471 0.1498 0.1781 0.1887 0.1806 0.1703 0.1367 0.1255 0.1128

MAE = Mean absolute error, RMSE = Root mean squared error. (Best results are in bold, second best results are underlined)
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missing data in our data set [10]. The multiple imputation

approaches have been shown to produce a more dispersed

imputed values thus affecting their performance when used

with a small missing data [10].

Multiple imputation, a popular imputation approach

from statistics, has not performed well compared to the

ML-based approaches. This might be because the multiple

imputation approach creates several imputed values for

each missing value, where each estimate is regressed from

the observed features. The models used to predict an esti-

mate of the missing value, in the case of multiple impu-

tation, cannot exploit the complex relationships among the

observed data. This leads to the inadequate performance of

this imputation approach.

It should be noted that although GAIN [39] is a super-

vised approach, the proposed RL approach consistently

outperforms GAIN. In addition, compared to a recently

proposed CGAIN [3], the proposed RL approach produced

superior results on six datasets and slightly inferior results

in two datasets. It should further be noted that CGAIN uses

a supervised learning approach, which requires a large

amount of trained data, while the proposed approach is RL

based.

Table 12 shows the performance of our proposed

approach compared with other imputation approaches, on

different thresholds of missing data, over 100 iterations of

data imputation to check the generalizability of our

approach. Our proposed approach produces an average

MAE (mean ± standard deviation) of 0.01781 ± 0.00091,

0.01859 ± 0.00093, 0.0198 ± 0.00083, and 0.02017 ±

0.00054 for 5, 10, 15, and 20% missing data, respectively,

in Spambase dataset when the imputation is repeated 100

times. The RMSE, in the same experiment, is recorded as

0.04936 ± 0.00127, 0.05012 ± 0.00114, 0.051 ± 0.0006,

and 0.05287 ± 0.00058 for 5, 10, 15, and 20% missing

data, respectively.

Table 13 presents the mean and standard deviation of

the original Spambase data, original data with missing

values, and data with missing values imputed using our

proposed approach. Our proposed RL-based imputation

Table 9 Performance of our proposed approach at 10% missing data based on a single iteration

Dataset Error

type

Single imputation Multiple

imputation

(MICE)

GAIN CGAIN Proposed

univariate

approachUnivariate single imputation Multivariate single

imputation

Mean Median Most

frequent

value

Nearest

Neighbour

Random

Forest

Spambase MAE 0.0274 0.0203 0.0211 0.0312 0.0314 0.0288 0.0488 0.0475 0.0191

RMSE 0.0563 0.0606 0.0637 0.0727 0.0701 0.0597 0.0702 0.0664 0.0494

Letter

recognition

MAE 0.1167 0.1141 0.1177 0.1629 0.1600 0.1426 0.1175 0.0892 0.0916

RMSE 0.1543 0.1552 0.1636 0.2133 0.2099 0.1856 0.1309 0.1057 0.1251

Default

credit card

MAE 0.0296 0.0264 0.0305 0.0372 0.0377 0.0354 0.1923 0.1804 0.0223

RMSE 0.0557 0.0584 0.0701 0.0727 0.0736 0.0675 0.2109 0.2009 0.0501

News

popularity

MAE 0.0522 0.0472 0.0874 0.0624 0.0634 0.0616 0.2301 0.1653 0.0336

RMSE 0.1141 0.1172 0.1963 0.1484 0.1536 0.1362 0.2680 0.1937 0.0889

Vehicle MAE 0.1643 0.1586 0.1893 0.1982 0.2059 0.2014 0.1496 0.1407 0.1226

RMSE 0.2148 0.2204 0.2607 0.2653 0.2724 0.2678 0.1900 0.1974 0.1877

Parkinson

disease

MAE 0.0833 0.0810 0.1025 0.1103 0.1098 0.1056 0.0798 0.0713 0.0703

RMSE 0.1309 0.1328 0.1658 0.1777 0.1756 0.1662 0.1287 0.1213 0.1148

Breast

cancer

MAE 0.1056 0.1019 0.1421 0.1344 0.1368 0.1394 0.0631 0.0518 0.0814

RMSE 0.1427 0.1469 0.2027 0.1866 0.1886 0.1903 0.0931 0.0628 0.1183

Travel MAE 0.1116 0.1087 0.1229 0.1384 0.1329 0.1283 0.0989 0.0865 0.0824

RMSE 0.1518 0.1521 0.1830 0.1898 0.1809 0.1734 0.1492 0.1316 0.1373

MAE = Mean absolute error, RMSE = Root mean squared error. (Best results are in bold, second best results are underlined)
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approach maintains the original distribution of the data as

mean and standard deviation of 1.662 ± 1.775, 1.668 ±

1.778, and 1.660 ± 1.781 for the original Spambase data,

data with missing values, and data with missing values

imputed by our approach, respectively, with 5% missing

data. With 20% missing data, the values were recorded as

1.662 ± 1.775, 1.673 ± 1.801, and 1.674 ± 1.631 for the

original Spambase data, data with missing values, and data

with missing values imputed by our approach, respectively.

This characteristic of our approach allows to impute

accurate values for missing data, which ultimately

improves imputation performance. These results show a

similar distribution of the data imputed using our approach

compared with the original data distribution, at lower rates

of missing data (5 and 10%). Understandably, the gap

between the original and the imputed data distribution

increases when the percentage of missing data increases.

The limitations of our approach include the use of

numeric data variables only. Future works will focus on the

inclusion of categorical variables in our approach. An

extension of this work will focus on the use of additional

environment information to guide the agent during the

policy learning phase.

6 Conclusion

Missing data imputation has been previously addressed

using either a univariate single imputation which discards

the variability in the imputed data, or by approximating the

missing values using ML models which impute data by

exploiting the inherent relationship between the observed

features. We proposed an RL approach to learn a good

imputation strategy, from experimental trials and the

feedback received in response to these trials. Our approach

learns the best policy to impute missing data using a trial

and reward mechanism for the better approximation of the

missing data. The proposed approach has shown superior

performance with lower RMSE compared to other data

imputation techniques on publically available datasets.

Table 10 Performance of our proposed approach at 15% missing data based on a single iteration

Dataset Error

type

Single imputation Multiple

imputation

(MICE)

GAIN CGAIN Proposed

univariate

approachUnivariate single imputation Multivariate single

imputation

Mean Median Most

frequent

value

Nearest

Neighbour

Random

Forest

Spambase MAE 0.0277 0.0206 0.0213 0.0316 0.0317 0.0289 0.0542 0.0433 0.0194

RMSE 0.0581 0.0621 0.0652 0.0735 0.0707 0.0608 0.0739 0.0607 0.0511

Letter

recognition

MAE 0.1168 0.1145 0.1182 0.1631 0.1603 0.1440 0.0851 0.1113 0.0986

RMSE 0.1547 0.1559 0.1637 0.2136 0.2107 0.1874 0.1021 0.1326 0.1301

Default

credit card

MAE 0.0297 0.0265 0.0306 0.0372 0.0373 0.0361 0.2269 0.2137 0.0233

RMSE 0.0562 0.0587 0.0705 0.0739 0.0727 0.0695 0.2442 0.2314 0.0527

News

popularity

MAE 0.0524 0.0476 0.0876 0.0627 0.0636 0.0617 0.2577 0.1668 0.0348

RMSE 0.1148 0.1180 0.1967 0.1487 0.1536 0.1368 0.2869 0.1992 0.0961

Vehicle MAE 0.1718 0.1646 0.1914 0.2160 0.2205 0.2221 0.1534 0.1461 0.1362

RMSE 0.2206 0.2240 0.2640 0.2926 0.2961 0.3033 0.1917 0.1690 0.1991

Parkinson

disease

MAE 0.0835 0.0812 0.1026 0.1112 0.1109 0.1059 0.0809 0.0787 0.0754

RMSE 0.1315 0.1334 0.1665 0.1781 0.1760 0.1667 0.01336 0.1286 0.1221

Breast

cancer

MAE 0.1080 0.1020 0.1438 0.1389 0.1419 0.1408 0.0688 0.0587 0.0847

RMSE 0.1449 0.1486 0.2058 0.1922 0.1942 0.1929 0.0986 0.0673 0.1236

Travel MAE 0.1151 0.1131 0.1232 0.1417 0.1350 0.1324 0.1051 0.0888 0.0893

RMSE 0.1544 0.1556 0.1856 0.1949 0.1867 0.1816 0.1503 0.1470 0.1424

MAE = Mean absolute error, RMSE = Root mean squared error. (Best results are in bold, second best results are underlined)
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Table 11 Performance of our proposed approach at 20% missing data based on a single iteration

Dataset Error

type

Single imputation Multiple

imputation

(MICE)

GAIN CGAIN Proposed

univariate

approachUnivariate single imputation Multivariate single

imputation

Mean Median Most

frequent

value

Nearest

Neighbour

Random

Forest

Spambase MAE 0.0278 0.0210 0.0217 0.0319 0.0321 0.0290 0.0595 0.0430 0.0198

RMSE 0.0593 0.0635 0.0667 0.0750 0.0715 0.0620 0.0764 0.0601 0.0527

Letter

recognition

MAE 0.1169 0.1148 0.1189 0.1634 0.1612 0.1450 0.1046 0.0904 0.1004

RMSE 0.1553 0.1565 0.1643 0.2141 0.2109 0.1887 0.1302 0.1040 0.1373

Default

credit card

MAE 0.0298 0.0268 0.0310 0.0378 0.0373 0.0361 0.2255 0.2071 0.0289

RMSE 0.0565 0.0592 0.0710 0.0749 0.0740 0.0697 0.2426 0.2213 0.0536

News

popularity

MAE 0.0528 0.0478 0.0881 0.0632 0.0641 0.0619 0.2323 0.1631 0.0381

RMSE 0.1156 0.1188 0.1975 0.1494 0.1544 0.1375 0.2686 0.1931 0.1016

Vehicle MAE 0.1735 0.1674 0.2030 0.2274 0.2277 0.2265 0.1641 0.1522 0.1476

RMSE 0.2220 0.2259 0.2756 0.2967 0.2975 0.3052 0.1968 0.1752 0.2063

Parkinson

disease

MAE 0.0852 0.0829 0.1034 0.1117 0.1114 0.1067 0.0826 0.0811 0.0797

RMSE 0.1339 0.1355 0.1675 0.1794 0.1773 0.1680 0.1330 0.1318 0.1281

Breast

Cancer

MAE 0.1084 0.1048 0.1442 0.1430 0.1453 0.1468 0.0705 0.0580 0.0912

RMSE 0.1503 0.1549 0.2096 0.1983 0.2011 0.2015 0.1053 0.0637 0.1343

Travel MAE 0.1206 0.1179 0.1280 0.1448 0.1455 0.1387 0.0826 0.0907 0.0948

RMSE 0.1636 0.1652 0.1948 0.2026 0.2015 0.1929 0.1582 0.1501 0.1483

MAE = Mean absolute error, RMSE = Root mean squared error. (Best results are in bold, second best results are underlined)

Fig. 4 Performance of different imputation methods on Spambase

dataset measured as mean absolute error. NN = Nearest Neighbours,

RF = Random Forest, MICE = Multivariate Imputation by Chained

Equations

Fig. 5 Performance of different imputation methods on Spambase

dataset measured as root mean squared error. NN = Nearest

Neighbours, RF = Random Forest, MICE = Multivariate Imputation

by Chained Equations
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Another advantage of our approach is its power to maintain

the original distribution of data during the process, i.e. the

distributions of the imputed data and the original data are

similar.

Acknowledgements This work is supported by Australian Research

Council Grants DP150100294 and DP150104251, and the UWA

SIRF scholarship. We thank the contributors of the UCI machine

learning repository who collected the data and made it publicly

available. We also acknowledge the computing support provided by

the NVIDIA Corporation as a Quadro P5000 GPU.

Funding Open Access funding enabled and organized by CAUL and

its Member Institutions.

Declaration

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Altameem T, Amoon M, Altameem A (2020) A deep reinforce-

ment learning process based on robotic training to assist mental

health patients. Neural Comput Appl 1–10

2. Andridge RR, Little RJ (2010) A review of hot deck imputation

for survey non-response. Int Stat Rev 78(1):40–64

3. Awan SE, Bennamoun M, Sohel F, Sanfilippo F, Dwivedi G

(2021) Imputation of missing data with class imbalance using

conditional generative adversarial networks. Neurocomputing

453:164–171

4. Beretta L, Santaniello A (2016) Nearest neighbor imputation

algorithms: a critical evaluation. BMC Med Inf Decis Mak

16(3):74

Table 12 Performance of our proposed imputation approach over 100 iterations using different proportions of missing data

Dataset Error type Proportion of missing data

5% 10% 15% 20%

Spambase MAE 0.01781 ± 0.00091 0.01859 ± 0.00093 0.0198 ± 0.00083 0.02017 ± 0.00054

RMSE 0.04936 ± 0.00127 0.05012 ± 0.00114 0.051 ± 0.0006 0.05287 ± 0.00058

Letter recognition MAE 0.08176 ± 0.00126 0.09167 ± 0.00048 0.09949 ± 0.00131 0.10119 ± 0.00121

RMSE 0.11744 ± 0.00127 0.12537 ± 0.00068 0.13062 ± 0.00094 0.13815 ± 0.00127

Default credit card MAE 0.02159 ± 0.0008 0.02288 ± 0.00098 0.02400 ± 0.0012 0.02871 ± 0.00061

RMSE 0.04957 ± 0.00058 0.04974 ± 0.00078 0.05342 ± 0.00113 0.05356 ± 0.00045

News popularity MAE 0.03302 ± 0.00079 0.03354 ± 0.00047 0.03498 ± 0.00061 0.03883 ± 0.00115

RMSE 0.08736 ± 0.00117 0.08860 ± 0.0009 0.09621 ± 0.00053 0.10159 ± 0.00044

Vehicle MAE 0.11757 ± 0.00095 0.12219 ± 0.00083 0.13576 ± 0.00086 0.14712 ± 0.00089

RMSE 0.14355 ± 0.00116 0.18733 ± 0.00078 0.19981 ± 0.00113 0.20722 ± 0.00133

Parkinson MAE 0.06447 ± 0.00055 0.06981 ± 0.00091 0.07497 ± 0.00084 0.07911 ± 0.00101

RMSE 0.10734 ± 0.00047 0.11484 ± 0.00045 0.12141 ± 0.00111 0.12774 ± 0.00077

Breast cancer MAE 0.08045 ± 0.00126 0.08171 ± 0.00072 0.08386 ± 0.00125 0.09163 ± 0.00084

RMSE 0.11486 ± 0.00075 0.11749 ± 0.00123 0.12351 ± 0.00051 0.13337 ± 0.00135

Travel MAE 0.06534 ± 0.00115 0.08299 ± 0.00102 0.08992 ± 0.00103 0.09561 ± 0.00122

RMSE 0.11272 ± 0.00049 0.13684 ± 0.00087 0.14184 ± 0.00097 0.14843 ± 0.00056

Table 13 Distribution of data

from Spambase dataset: original

data vs missing data versus

imputed data using our

proposed approach

Percentage of missing data

Data distribution 5% (mean ± std) 10% (mean ± std) 15% (mean ± std) 20% (mean ± std)

Original 1.662 ± 1.775 1.662 ± 1.775 1.662 ± 1.775 1.662 ± 1.775

Missing 1.668 ± 1.778 1.667 ± 1.778 1.667 ± 1.798 1.673 ± 1.801

Imputed 1.660 ± 1.781 1.662 ± 1.702 1.666 ± 1.681 1.674 ± 1.631

Neural Computing and Applications (2022) 34:9701–9716 9715

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


5. Van Buuren S, Groothuis-Oudshoorn K (2010) MICE: multi-

variate imputation by chained equations in R. J Stat Softw

45:1–68

6. Cai JF, Candès EJ, Shen Z (2010) A singular value thresholding

algorithm for matrix completion. SIAM J Optim

20(4):1956–1982

7. Chai T, Draxler RR (2014) Root mean square error (RMSE) or

mean absolute error (MAE)?-arguments against avoiding RMSE

in the literature. Geosci Model Dev 7(3):1247–1250

8. Donders ART, Van Der Heijden GJ, Stijnen T, Moons KG (2006)

A gentle introduction to imputation of missing values. J Clin

Epidemiol 59(10):1087–1091

9. Dua D, Graff C (2017) UCI machine learning repository. http://

archive.ics.uci.edu/ml
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