Skip to main content
Log in

An observer-based IT2 TSK FLS compensation controller for PMSM servo systems: design and evaluation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

It is hard to achieve precise displacement for the permanent-magnet synchronous motor (PMSM) servo systems due to the nonlinear friction and time-varying end-load. This paper proposes an observer-based compensation control strategy to cope with the above issues. First, an adaptive interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy logic system is adopted to estimate the inherent friction. By utilizing the tracking and modeling error, the composite adaptive updating law is constructed to improve the tracking performance. Then, the residual reconstruction errors and the bounded end-load are estimated and compensated by the designed disturbance observer. Estimation of friction and disturbance observer, as compensation terms, are employed in traditional cascade control. Finally, the proposed controller guarantees the tracking error is uniformly ultimately bounded based on Lyapunov theory. Simulations and experiments are presented to verify the effectiveness and superiority of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

PMSM:

Permanent-magnet synchronous motor

TSK:

Takagi-Sugeno-Kang

FLS:

Fuzzy logic system

T1 FSs:

Type-1 fuzzy sets

T1 FLSs:

Type-1 fuzzy logic systems

T2 FSs:

Type-2 fuzzy logic systems

T2 FLSs:

Type-2 fuzzy logic systems

IT2 FLS:

Interval type-2 fuzzy logic system

PID:

Proportion integration differentiation

UUB:

Ultimately uniformly bounded

CAIT2:

Composite adaptive interval type-2

MF:

Membership function

GT2 FS:

General type-2 fuzzy set

FOU:

Footprint of uncertainty

LMF:

Lower membership function

UMF:

Upper membership function

KM:

Karnik–Mendel

FBFs:

Fuzzy basis functions

RMSE:

Root-mean-square error

AVG:

Average absolute value

MAX:

Maximum absolute value

FOPI:

Fractional order proportion integration

MSMC:

Modified sliding mode controller

References

  1. Belda K, Vošmik D (2016) Explicit generalized predictive control of speed and position of PMSM drives. IEEE Trans Ind Electron 63(6):3889–3896

    Article  Google Scholar 

  2. Liang D, Li J, Qu R, Kong W (2018) Adaptive second-order sliding-mode observer for PMSM sensorless control considering vsi nonlinearity. IEEE Trans Power Electron 33(10):8994–9004

    Article  Google Scholar 

  3. Ni Q, Yang M, Odhano SA, Tang M, Zanchetta P, Liu X, Xu D (2019) A new position and speed estimation scheme for position control of PMSM drives using low-resolution position sensors. IEEE Trans Ind Appl 55(4):3747–3758

    Article  Google Scholar 

  4. Zhang Z, Ma R, Wang L, Zhang J (2018) Novel PMSM control for anti-lock braking considering transmission properties of the electric vehicle. IEEE Trans Veh Technol 67(11):10378–10386

    Article  Google Scholar 

  5. Min J-K, Ahn K-H, Park H-C, Song J-B (2019) A novel reactive-type joint torque sensor with high torsional stiffness for robot applications. Mechatronics 63:102265

    Article  Google Scholar 

  6. Min J-K, Song J-B (2020) Sensor block type joint torque sensor insensitive to crosstalk error. IEEE Sens J 20(7):3469–3475

    Article  Google Scholar 

  7. Wang W-C, Liu T-H, Syaifudin Y (2016) Model predictive controller for a micro-PMSM-based five-finger control system. IEEE Trans Ind Electron 63(6):3666–3676

    Article  Google Scholar 

  8. Senkui I, Wang X (2021) Adaptive neural network output feedback control of incommensurate fractional-order PMSMs with input saturation via command filtering and state observer. Neural Comput Appl 33:5631–5644

    Article  Google Scholar 

  9. Apte A, Thakar U, Joshi V (2019) Disturbance observer based speed control of PMSM using fractional order PI controller. IEEE/CAA J Automatica Sinica 6(1):316–326

    Article  MathSciNet  Google Scholar 

  10. Jiang Y, Xu W, Mu C, Liu Y (2018) Improved deadbeat predictive current control combined sliding mode strategy for PMSM drive system. IEEE Trans Veh Technol 67(1):251–263

    Article  Google Scholar 

  11. Lu E, Li W, Wang S, Zhang W, Luo C (2021) Disturbance rejection control for PMSM using integral sliding mode based composite nonlinear feedback control with load observer. ISA Trans 116:203–217

    Article  Google Scholar 

  12. Wang Y, Yu H, Liu Y (2022) Speed-current single-loop control with overcurrent protection for PMSM based on time-varying nonlinear disturbance observer. IEEE Trans Ind Electron 69(1):179–189

    Article  Google Scholar 

  13. Zhu S, Huang W, Zhao Y, Lin X, Dong D, Jiang W, Zhao Y, Wu X (2022) Robust speed control of electrical drives with reduced ripple using adaptive switching high-order extended state observer. IEEE Trans Power Electron 37(2):2009–2020

    Google Scholar 

  14. Song Z, Yang J, Mei X, Tao T, Xu M (2021) Deep reinforcement learning for permanent magnet synchronous motor speed control systems. Neural Comput Appl 33:5409–5418

    Article  Google Scholar 

  15. Amthor A, Zschaeck S, Ament C (2010) High precision position control using an adaptive friction compensation approach. IEEE Trans Automat Control 55(1):274–278

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu X, Zhen S, Sun H, Zhao H (2020) A novel model-based robust control for position tracking of permanent magnet linear motor. IEEE Trans Ind Electron 67(9):7767–7777

    Article  Google Scholar 

  17. Zhen S, Peng X, Liu X, Li H, Chen Y-H (2021) A new pd based robust control method for the robot joint module. Mech Syst Signal Process 161:107958

    Article  Google Scholar 

  18. Zhang W, Li M, Gao Y, Chen Y (2022) Periodic adaptive learning control of PMSM servo system with LuGre model-based friction compensation. Mech Mach Theory 167:104561

    Article  Google Scholar 

  19. Mustafa D, Ali Fuat B, Murat K, Murat K (2018) Sensorless control application of PMSM with a novel adaptation mechanism. Neural Comput Appl 29:87–103

    Article  Google Scholar 

  20. Mani P, Rajan R, Shanmugam L, Joo YH (2019) Adaptive fractional fuzzy integral sliding mode control for PMSM model. IEEE Trans Fuzzy Syst 27(8):1674–1686

    Article  Google Scholar 

  21. Zheng Y, Zhao H, Zhen S, Sun H (2021) Fuzzy-set theory based optimal robust constraint-following control for permanent magnet synchronous motor with uncertainties. Control Eng Practice 115:104911

    Article  Google Scholar 

  22. Liang Q, Mendel J (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550

    Article  Google Scholar 

  23. Mendel JM, John RI, Liu F (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

    Article  Google Scholar 

  24. Mendel JM, Liu F, Zhai D (2009) \(\alpha\)-plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans Fuzzy Syst 17(5):1189–1207

    Article  Google Scholar 

  25. Mendel JM (2013) On KM algorithms for solving type-2 fuzzy set problems. IEEE Trans Fuzzy Syst 21(3):426–446

    Article  Google Scholar 

  26. Mendel JM (2014) General type-2 fuzzy logic systems made simple: a tutorial. IEEE Trans Fuzzy Syst 22(5):1162–1182

    Article  Google Scholar 

  27. Luo C, Tan C, Wang X, Zheng Y (2019) An evolving recurrent interval type-2 intuitionistic fuzzy neural network for online learning and time series prediction. Appl Soft Comput 78:150–163

    Article  Google Scholar 

  28. Wang H, Luo C, Wang X (2019) Synchronization and identification of nonlinear systems by using a novel self-evolving interval type-2 fuzzy lstm-neural network. Eng Appl Artif Intell 81:79–93

    Article  Google Scholar 

  29. Zhou H, Ying H, Zhang C (2019) Effects of increasing the footprints of uncertainty on analytical structure of the classes of interval type-2 mamdani and ts fuzzy controllers. IEEE Trans Fuzzy Syst 27(9):1881–1890

    Article  Google Scholar 

  30. Huakai Z, Wang Y, Wang D, Wang Y (2020) Adaptive robust control of oxygen excess ratio for pemfc system based on type-2 fuzzy logic system. Inf Sci 511:1–17

    Article  MathSciNet  MATH  Google Scholar 

  31. Barkat S, Tlemçani A, Nouri H (2011) Noninteracting adaptive control of PMSM using interval type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 19(5):925–936

    Article  Google Scholar 

  32. Barkat S, Tlemçani A, Nouri H (2017) Adaptive interval type-2 fuzzy logic control for PMSM drives with a modified reference frame. IEEE Trans Ind Electron 64(5):3786–3797

    Article  Google Scholar 

  33. Shanmugam L, Joo YH (2021) Design of interval type-2 fuzzy-based sampled-data controller for nonlinear systems using novel fuzzy Lyapunov functional and its application to PMSM. IEEE Trans Syst Man Cybern Syst 51(1):542–551

    Article  Google Scholar 

  34. Tsai M-C, Chiu I-F, Cheng M-Y (2004) Design and implementation of command and friction feedforward control for cnc motion controllers. IEE Proc Control Theory Appl 151(1):13–20

    Article  Google Scholar 

  35. Nguyen HT, Jung J-W (2018) Finite control set model predictive control to guarantee stability and robustness for surface-mounted pm synchronous motors. IEEE Trans Ind Electron 65(11):8510–8519

    Article  Google Scholar 

  36. Canudas de Wit C, Olsson H, Astrom K, Lischinsky P (1995) A new model for control of systems with friction. IEEE Trans Automat Control 40(3):419–425

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu Y, Wang Z, Wang Y, Wang D, Xu J (2021) Cascade tracking control of servo motor with robust adaptive fuzzy compensation. Inf Sci 569:450–468

    Article  MathSciNet  Google Scholar 

  38. Wang Y, Wang D, Chai T (2011) Extraction and adaptation of fuzzy rules for friction modeling and control compensation. IEEE Trans Fuzzy Syst 19(4):682–693

    Article  Google Scholar 

  39. Tao X, Yi J, Pu Z, Xiong T (2021) Robust adaptive tracking control for hypersonic vehicle based on interval type-2 fuzzy logic system and small-gain approach. IEEE Trans Cybern 51(5):2504–2517

    Article  Google Scholar 

  40. H. Ying (2009) Interval type-2 takagi-sugeno fuzzy systems with linear rule consequent are universal approximators. In: NAFIPS 2009 annual meeting of the North American fuzzy information processing society, pp. 1–5

  41. Wang S, Tao L, Chen Q, Na J, Ren X (2020) Usde-based sliding mode control for servo mechanisms with unknown system dynamics. IEEE/ASME Trans Mechatron 25(2):1056–1066

    Article  Google Scholar 

  42. Zheng W, Luo Y, Chen Y, Pi Y (2016) Fractional-order modeling of permanent magnet synchronous motor speed servo system. J Vib Control 22(9):2255–2280

    Article  Google Scholar 

  43. Huang M, Deng Y, Li H, Wang J (2021) Torque ripple suppression of PMSM using fractional-order vector resonant and robust internal model control. IEEE Trans Transp Electrific 7(3):1437–1453

    Article  Google Scholar 

  44. Poinot T, Trigeassou JC (2004) Identification of fractional systems using an output-error technique. Nonlinear Dyn 38(1–4):133–154

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Joint Project of Nature Science Foundation of Liaoning Province of China, Grant No. 2021-KF-11-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Wang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, Y. & Wang, Y. An observer-based IT2 TSK FLS compensation controller for PMSM servo systems: design and evaluation. Neural Comput & Applic 34, 10949–10969 (2022). https://doi.org/10.1007/s00521-022-07020-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07020-y

Keywords

Navigation