Skip to main content
Log in

Observer-based adaptive finite-time prescribed performance NN control for nonstrict-feedback nonlinear systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This article focuses on an adaptive neural network (NN) finite-time prescribed performance control problem for nonstrict-feedback nonlinear systems subject to full-state constraints. Specifically, a finite-time performance function is employed, which can guarantee that the tracking error converges to a prescribed region within a finite-time. Neural networks (NNs) are used to approximate the unknown nonlinear function. The unmeasurable states are estimated via constructing a state observer. By using the dynamic surface control (DSC) technique, the complexity problem has been avoided in traditional backstepping control. In order to satisfy the state constraint condition, the barrier Lyapunov function (BLF) is incorporated in the process of backstepping. The developed adaptive finite-time NN backstepping control strategy can make that the closed-loop system is semiglobally practical finite-time stability (SGPFS). Meanwhile, all states can be guaranteed to remain in the constrained space. Simulation results demonstrate the validity of the control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhou Z, Tong D, Chen Q, Zhou W, Xu Y (2021) Adaptive NN control for nonlinear systems with uncertainty based on dynamic surface control. Neurocomputing 421:161–172

    Google Scholar 

  2. Yang Y, Peng JCH, Ye C, Ye Z, Ding Y (2021) A criterion and stochastic unit commitment towards frequency resilience of power systems. IEEE Trans Power Syst. https://doi.org/10.1109/TPWRS.2021.3095180

    Article  Google Scholar 

  3. Liu H, Pan Y, Cao J, Wang H, Zhou Y (2020) Adaptive neural network backstepping control of fractional-order nonlinear systems with actuator faults. IEEE Trans Neural Netw Learn Syst 31(12):5166–5177

    MathSciNet  Google Scholar 

  4. Wen G, Chen CP, Ge SS (2020) Simplified optimized backstepping control for a class of nonlinear strict-feedback systems with unknown dynamic functions. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.3002108

    Article  Google Scholar 

  5. Tymoshchuk P (2019) A neural circuit model of adaptive robust tracking control for continuous-time nonlinear systems. In: International Conference on Artificial Neural Networks, pp: 819–835. Springer

  6. Tymoshchuk P (2020) Optimal control for continuous-time scalar nonlinear systems with known dynamics. In: 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp: 695–700. IEEE

  7. Kanellakopoulos I, Kokotovic PV, Morse AS (1991) Systematic design of adaptive controllers for feedback linearizable systems. In: 1991 American control conference, pp: 649–654. IEEE

  8. Zhou J, Wen C, Zhang Y (2004) Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans Autom Control 49(10):1751–1759

    MathSciNet  MATH  Google Scholar 

  9. Tong D, Xu C, Chen Q, Zhou W, Xu Y (2020) Sliding mode control for nonlinear stochastic systems with Markovian jumping parameters and mode-dependent time-varying delays. Nonlinear Dyn 100(2):1343–1358

    MATH  Google Scholar 

  10. Zhou Q, Li H, Shi P (2015) Decentralized adaptive fuzzy tracking control for robot finger dynamics. IEEE Trans Fuzzy Syst 23(3):501–510

    Google Scholar 

  11. Wang D, Huang J (2005) Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans Neural Netw 16(1):195–202

    Google Scholar 

  12. Liu Y, Su C, Zhou Q (2021) Funnel control of uncertain high-order nonlinear systems with unknown rational powers. IEEE Trans Syst Man Cybern Syst 51(9):5732–5741

    Google Scholar 

  13. Wang H, Liu PX, Zhao X, Liu X (2020) Adaptive fuzzy finite-time control of nonlinear systems with actuator faults. IEEE Trans Cybern 50(5):1786–1797

    Google Scholar 

  14. Wang T, Wu J, Wang Y, Ma M (2020) Adaptive fuzzy tracking control for a class of strict-feedback nonlinear systems with time-varying input delay and full state constraints. IEEE Trans Fuzzy Syst 28(12):3432–3441

    Google Scholar 

  15. Zhang Y, Wang F, Yan F (2021) Fast finite time adaptive neural network control for a class of uncertain nonlinear systems subject to unmodeled dynamics. Inf Sci 565:306–325

    MathSciNet  Google Scholar 

  16. Li YX, Yang GH (2018) Adaptive neural control of pure-feedback nonlinear systems with event-triggered communications. IEEE Trans Neural Netw Learn Syst 29(12):6242–6251

    MathSciNet  Google Scholar 

  17. Peng J, Ding S, Dubay R (2021) Adaptive composite neural network disturbance observer-based dynamic surface control for electrically driven robotic manipulators. Neural Comput Appl 33(11):6197–6211

    Google Scholar 

  18. Zhang J, Li S, Ahn CK, Xiang Z (2021) Adaptive fuzzy decentralized dynamic surface control for switched large-scale nonlinear systems with full-state constraints. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2021.3069461

    Article  Google Scholar 

  19. Tong Y, Tong D, Chen Q, Zhou W (2020) Finite-time state estimation for nonlinear systems based on event-triggered mechanism. Circuits Syst Signal Process 39(7):3737–3757

    MATH  Google Scholar 

  20. Liu X, Tong D, Chen Q, Zhou W, Liao K (2021) Observer-based adaptive NN tracking control for nonstrict-feedback systems with input saturation. Neural Process Lett 53(5):3757–3781

    Google Scholar 

  21. Li Y, Yang T, Tong S (2020) Adaptive neural networks finite-time optimal control for a class of nonlinear systems. IEEE Trans Neural Netw Learn Syst 31(11):4451–4460

    MathSciNet  Google Scholar 

  22. Wang A, Liu L, Qiu J, Feng G (2020) Finite-time adaptive fuzzy control for nonstrict-feedback nonlinear systems via an event-triggered strategy. IEEE Trans Fuzzy Syst 28(9):2164–2174

    Google Scholar 

  23. Huang Y, Jia Y (2019) Adaptive finite-time 6-DOF tracking control for spacecraft fly around with input saturation and state constraints. IEEE Trans Aerosp Electron Syst 55(6):3259–3272

    Google Scholar 

  24. Zheng S, Li W (2019) Fuzzy finite time control for switched systems via adding a barrier power integrator. IEEE Trans Cybern 49(7):2693–2706

    Google Scholar 

  25. Qiu J, Sun K, Rudas IJ, Gao H (2020) Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis. IEEE Trans Cybern 50(7):2905–2915

    Google Scholar 

  26. Shao K, Zheng J, Huang K, Wang H, Man Z, Fu M (2020) Finite-time control of a linear motor positioner using adaptive recursive terminal sliding mode. IEEE Trans Ind Electron 67(8):6659–6668

    Google Scholar 

  27. Shao K (2021) Nested adaptive integral terminal sliding mode control for high-order uncertain nonlinear systems. Int J Robust Nonlinear Control 31(14):6668–6680

    MathSciNet  Google Scholar 

  28. Bechlioulis CP, Rovithakis GA (2008) Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans Autom Control 53(9):2090–2099

    MathSciNet  MATH  Google Scholar 

  29. Wang M, Yang A (2017) Dynamic learning from adaptive neural control of robot manipulators with prescribed performance. IEEE Trans Syst Man Cybern Syst 47(8):2244–2255

    Google Scholar 

  30. Bikas LN, Rovithakis GA (2019) Combining prescribed tracking performance and controller simplicity for a class of uncertain MIMO nonlinear systems with input quantization. IEEE Trans Autom Control 64(3):1228–1235

    MathSciNet  MATH  Google Scholar 

  31. Hua C, Liu G, Li L, Guan X (2018) Adaptive fuzzy prescribed performance control for nonlinear switched time-delay systems with unmodeled dynamics. IEEE Trans Fuzzy Syst 26(4):1934–1945

    Google Scholar 

  32. Ni J, Ahn CK, Liu L, Liu C (2019) Prescribed performance fixed-time recurrent neural network control for uncertain nonlinear systems. Neurocomputing 363:351–365

    Google Scholar 

  33. Yang Y, Ge C, Wang H, Li X, Hua C (2015) Adaptive neural network based prescribed performance control for teleoperation system under input saturation. J Franklin Inst 352(5):1850–1866

    MathSciNet  MATH  Google Scholar 

  34. Chen B, Zhang H, Lin C (2016) Observer-based adaptive neural network control for nonlinear systems in nonstrict-feedback form. IEEE Trans Neural Netw Learn Syst 27(1):89–98

    MathSciNet  Google Scholar 

  35. Tong D, Xu C, Chen Q, Zhou W (2020) Sliding mode control of a class of nonlinear systems. J Franklin Inst 357(3):1560–1581

    MathSciNet  MATH  Google Scholar 

  36. Han SI, Lee JM (2014) Fuzzy echo state neural networks and funnel dynamic surface control for prescribed performance of a nonlinear dynamic system. IEEE Trans Ind Electron 61(2):1099–1112

    Google Scholar 

  37. Liu Y, Su C, Li H (2021) Adaptive output feedback funnel control of uncertain nonlinear systems with arbitrary relative degre. IEEE Trans Autom Control 66(6):2854–2860

    MATH  Google Scholar 

  38. Xu C, Tong D, Chen Q, Zhou W, Shi P (2021) Exponential stability of Markovian jumping systems via adaptive sliding mode control. IEEE Trans Syst Man Cybern Syst 51(2):954–964

    Google Scholar 

  39. Qiu J, Wang T, Sun K, Rudas IJ, Gao H (2021) Disturbance observer-based adaptive fuzzy control for strict-feedback nonlinear systems with finite-time prescribed performance. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2021.3053327

    Article  Google Scholar 

  40. Liu Y, Liu X, Jing Y, Zhang Z (2019) A novel finite-time adaptive fuzzy tracking control scheme for nonstrict feedback systems. IEEE Trans Fuzzy Syst 27(4):646–658

    Google Scholar 

  41. Lu S, Wang X (2021) Adaptive neural network output feedback control of incommensurate fractional-order PMSMs with input saturation via command filtering and state observer. Neural Comput Appl 33(11):5631–5644

    Google Scholar 

  42. Zhang H, Liu Y, Wang Y (2021) Observer-based finite-time adaptive fuzzy control for nontriangular nonlinear systems with full-state constraints. IEEE Trans Cybern 51(3):1110–1120

    Google Scholar 

  43. Xu C, Tong D, Chen Q, Zhou W, Xu Y (2020) Exponential synchronization of chaotic systems with Markovian switching and stochastic noise via periodically intermittent control. Int J Robust Nonlinear Control 30(7):2611–2624

    MATH  Google Scholar 

  44. Wang F, Chen B, Liu X, Lin C (2018) Finite-time adaptive fuzzy tracking control design for nonlinear systems. IEEE Trans Fuzzy Syst 26(3):1207–1216

    Google Scholar 

  45. Wang F, Chen B, Lin C, Zhang J, Meng X (2018) Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Trans Cybern 48(6):1839–1848

    Google Scholar 

  46. Lu Y (2018) Adaptive-fuzzy control compensation design for direct adaptive fuzzy control. IEEE Trans Fuzzy Syst 26(6):3222–3231

    Google Scholar 

  47. Chen B, Lin C, Liu X, Liu K (2016) Observer-based adaptive fuzzy control for a class of nonlinear delayed systems. IEEE Trans Syst Man Cybern Syst 46(1):27–36

    Google Scholar 

  48. Li H, Zhao S, He W, Lu R (2019) Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone. Automatica 100:99–107

    MathSciNet  MATH  Google Scholar 

  49. Shao K, Zheng J, Wang H, Wang X, Lu R, Man Z (2021) Tracking control of a linear motor positioner based on barrier function adaptive sliding mode. IEEE Trans Ind Inf 17(11):7479–7488

    Google Scholar 

Download references

Acknowledgment

This work is partially supported by National Natural Science Foundation of China (61673257), the Natural Science Foundation of Shanghai (20ZR1422400), the China Postdoctoral Science Foundation (2019M661322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongbing Tong.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

By (15), \({\dot{V}}_0\) is calculated as

$$\begin{aligned} \begin{aligned} {\dot{V}}_0(t)=&-e^\mathrm {T}(t)Qe(t)+2e^\mathrm {T}(t)W\sum _{i=1}^{n}{\tilde{\varGamma }}_i\phi _i({\hat{\chi }}(t))\\ {}&+2e^\mathrm {T}(t)W\big (\zeta +\triangle f\big ). \end{aligned} \end{aligned}$$
(46)

According to Lemma 1, Assumption 2 and \(\phi _i^\mathrm {T}(X)\phi _i(X)\le \mathfrak {I}\), the following inequalities hold

$$\begin{aligned}&\begin{aligned} 2e(t)^\mathrm {T}W\sum _{i=1}^{n}{\tilde{\varGamma }}_i\phi _i({\hat{\chi }})\le \mathfrak {I}\Vert W\Vert ^2\sum _{i=1}^{n}{\tilde{\varGamma }}_i^\mathrm {T}{\tilde{\varGamma }}_i+\Vert e\Vert ^2, \end{aligned} \end{aligned}$$
(47)
$$\begin{aligned}&\begin{aligned} 2e(t)^\mathrm {T}W\zeta \le \Vert W\Vert ^2\Vert \zeta ^*\Vert ^2+\Vert e\Vert ^2, \end{aligned} \end{aligned}$$
(48)
$$\begin{aligned}&\begin{aligned} 2e(t)^\mathrm {T}W\triangle f\le \left(\Vert W\Vert ^2\sum _{i=1}^{n}l_i^2+1\right)\Vert e\Vert ^2, \end{aligned} \end{aligned}$$
(49)

where \(\zeta ^*=[\zeta _1^*,\dots ,\zeta _n^*]^\mathrm {T}\).

According to (47, 48 and 49), it yields

$$\begin{aligned} \begin{aligned} {\dot{V}}_0\le&-e(t)^\mathrm {T}Qe(t)+\left(\Vert W\Vert ^2\sum _{i=1}^{n}l_i^2+3\right)\Vert e\Vert ^2\\ {}&+\Vert W\Vert ^2\Vert \zeta ^*\Vert ^2+\mathfrak {I}\Vert W\Vert ^2\sum _{i=1}^{n}{\tilde{\varGamma }}_i^\mathrm {T}{\tilde{\varGamma }}_i\\ \le&-q_0\Vert e\Vert ^2+\mathfrak {I}\Vert W\Vert ^2\sum _{i=1}^{n}{\tilde{\varGamma }}_i^\mathrm {T}{\tilde{\varGamma }}_i+M_0.\\ \end{aligned} \end{aligned}$$
(50)

Appendix 2

Step 1: From (1), (5) and (17), \({\dot{z}}_1\) can be given as

$$\begin{aligned} \begin{aligned} {\dot{z}}_1=&\frac{\pi (1+\psi ^2)}{2\rho }({\dot{\chi }}_1-{\dot{y}}_d -\frac{2}{\pi }{\dot{\rho }}\arctan (\psi ))\\ =&\frac{\pi (1+\psi ^2)}{2\rho }(z_2+\alpha _1+\varsigma _2+\varGamma _1^{*\mathrm {T}}\phi _1({\hat{\chi }}) -{\dot{y}}_d\\ {}&+e_2+\zeta _1-\frac{2}{\pi }{\dot{\rho }}\arctan (\psi ))\\ =&\frac{\pi (1+\psi ^2)}{2\rho }(z_2+\alpha _1+\varsigma _2+\varGamma _1^{*\mathrm {T}}\phi _1({\hat{\chi }})\\ {}&-\varGamma _1^{*\mathrm {T}}\phi _1({\hat{\chi }}_1) +\varGamma _1^{\mathrm {T}}\phi _1({\hat{\chi }}_1)+{\tilde{\varGamma }}_1^{\mathrm {T}}\phi _1({\hat{\chi }}_1)+\zeta _1\\ {}&+e_2-{\dot{y}}_d-\frac{2}{\pi }{\dot{\rho }}\arctan (\psi )). \end{aligned} \end{aligned}$$
(51)

Choose a Lyapunov function as

$$\begin{aligned} \begin{aligned} V_1=V_0+\frac{1}{2}\log \frac{k_{b1}^2}{k_{b_1}^2-z_1^2}+\frac{1}{2\delta _1}{\tilde{\varGamma }}_1^{\mathrm {T}}{\tilde{\varGamma }}_1, \end{aligned} \end{aligned}$$
(52)

where \(k_{b_1}=k_{c_1}-A_0\), and \(\delta _1\) is the design parameter. Obviously, \(V_0\ge 0\) and \({\tilde{\varGamma }}_1^{\mathrm {T}}{\tilde{\varGamma }}_1\ge 0\). In addition, \(k_{b1}^2/(k_{b1}^2-z_1^2)\ge 1\), that is , \(\frac{1}{2}\log \frac{k_{b1}^2}{k_{b_1}^2-z_1^2}\ge 0\). Then, \(V_1\ge 0\) can be obtained.

According to (51), the derivative of \(V_1\) yields

$$\begin{aligned} \begin{aligned} {\dot{V}}_1=\,&{\dot{V}}_0+\frac{z_1{\dot{z}}_1}{k_{b_1}^2-z_1^2} -\frac{1}{\gamma _1}{\tilde{\varGamma }}_1^{\mathrm {T}}{\dot{\varGamma }}_1\\ =\,&{\dot{V}}_0+\frac{\pi (1+\psi ^2)}{2\rho (k_{b_1}^2-z_1^2)}z_1(\alpha _1-{\dot{y}}_d+z_2+\varsigma _2\\ {}&+e_2+\zeta _1+\varGamma _1^{\mathrm {T}}\phi _1({\hat{\chi }}_1) -\frac{2}{\pi }{\dot{\rho }}\arctan (\psi ))\\ {}&+\frac{\pi (1+\psi ^2)}{2\rho (k_{b_1}^2-z_1^2)}z_1 (\varGamma _1^{*\mathrm {T}}\phi _1({\hat{\chi }})-\varGamma _1^{*\mathrm {T}}\phi _1({\hat{\chi }}_1))\\&-\frac{1}{\delta _1}{\tilde{\varGamma }}_1^{\mathrm {T}}({\dot{\varGamma }}_1 -\delta _1\frac{\pi (1+\psi ^2)}{2\rho (k_{b_1}^2-z_1^2)}z_1\phi _1({\hat{\chi }}_1)). \end{aligned} \end{aligned}$$
(53)

According to (53), Lemma 1 and \(\phi _i^\mathrm {T}(X)\phi _i(X)\le \mathfrak {I}\), we can obtain

$$\begin{aligned}&\begin{aligned} \frac{\pi (1+\psi ^2)}{2\rho (k_{b_1}^2-z_1^2)}z_1\zeta _1\le \frac{1}{2}(\frac{\pi (1+\psi ^2)}{2\rho (k_{b_1}^2-z_1^2)})^2z_1^2+\frac{1}{2}\zeta _1^{*2}, \end{aligned} \end{aligned}$$
(54)
$$\begin{aligned}&\begin{aligned} \frac{\pi (1+\psi ^2)}{2\rho (k_{b_1}^2-z_1^2)}z_1\varsigma _2\le \frac{1}{2}(\frac{\pi (1+\psi ^2)}{2\rho (k_{b_1}^2-z_1^2)})^2z_1^2+\frac{1}{2}\varsigma _2^2, \end{aligned} \end{aligned}$$
(55)
$$\begin{aligned}&\begin{aligned} \frac{\pi (1+\psi ^2)}{2\rho (k_{b_1}^2-z_1^2)}z_1e_2\le \frac{1}{2}(\frac{\pi (1+\psi ^2)}{2\rho (k_{b_1}^2-z_1^2)})^2z_1^2+\frac{1}{2}\Vert e\Vert ^2, \end{aligned} \end{aligned}$$
(56)
$$\begin{aligned}&\begin{aligned} \frac{\pi (1+\psi ^2)}{2\rho (k_{b_1}^2-z_1^2)}z_1&(\varGamma _1^{*\mathrm {T}}\phi _1({\hat{\chi }})-\varGamma _1^{*\mathrm {T}}\phi _1({\hat{\chi }}_1)) \\\le {}&\frac{\tau }{2}(\frac{\pi (1+\psi ^2)}{2\rho (k_{b_1}^2-z_1^2)})^2z_1^2+\frac{2\mathfrak {I}}{\tau }\Vert \varGamma _1^*\Vert ^2, \end{aligned} \end{aligned}$$
(57)

From (54)−(57), (53) can be written as

$$\begin{aligned} \begin{aligned} {\dot{V}}_1\le&{\dot{V}}_0+\frac{\pi (1+\psi ^2)}{2\rho (k_{b_1}^2-z_1^2)}z_1 (\alpha _1-{\dot{y}}_d+\varGamma _1^{\mathrm {T}}\phi _1({\hat{\chi }}_1)\\ {}&+\frac{(3+\tau )\pi (1+\psi ^2)}{4\rho (k_{b_1}^2-z_1^2)}z_1 -\frac{2}{\pi }{\dot{\rho }}\arctan (\psi ))+\frac{1}{2}\Vert e\Vert ^2\\ {}&+\frac{2\mathfrak {I}}{\tau }\Vert \varGamma _1^*\Vert ^2 +\frac{\pi (1+\psi ^2)}{2\rho (k_{b_1}^2-z_1^2)}z_1z_2 +\frac{1}{2}\zeta _1^{*2}+\frac{1}{2}\varsigma _2^2\\ {}&-\frac{1}{\delta _1}{\tilde{\varGamma }}_1^{\mathrm {T}}({\dot{\varGamma }}_1 -\delta _1\frac{\pi (1+\psi ^2)}{2\rho (k_{b_1}^2-z_1^2)}z_1\phi _1({\hat{\chi }}_1)). \end{aligned} \end{aligned}$$
(58)

Considering (18), it follows that

$$\begin{aligned} \begin{aligned} {\dot{V}}_1\le&-q_1\Vert e\Vert ^2+\mathfrak {I}\Vert W\Vert ^2\sum _{i=1}^{n}{\tilde{\varGamma }}_i^\mathrm {T}{\tilde{\varGamma }}_i+M_1\\ {}&-\frac{c_1z_1^{2\sigma }}{(k_{b_1}^2-z_1^2)^\sigma }+\frac{\pi (1+\psi ^2)}{2\rho (k_{b_1}^2-z_1^2)}z_1z_2\\ {}&+\frac{\mu _1}{\delta _1}{\tilde{\varGamma }}_1^\mathrm {T}\varGamma _1+\frac{1}{2}\varsigma _2^2, \end{aligned} \end{aligned}$$
(59)

where \(q_1=q_0-\frac{1}{2}\) and \(M_1=M_0+\frac{1}{2}\zeta _1^{*2}+\frac{2\mathfrak {I}}{\tau }\Vert \varGamma _1^*\Vert ^2\).

The following first-order low-pass filter will be utilized to filter \(\alpha _1\) and to obtain \(\gamma _2\)

$$\begin{aligned} \begin{aligned} \varpi _2{\dot{\gamma }}_2+\gamma _2=\alpha _1, \gamma _2(0)=\alpha _1(0), \end{aligned} \end{aligned}$$
(60)

where \(\varpi _2\) is a positive constant.

Define \(\varsigma _2=\gamma _2-\alpha _1\). According to (60), it is easy to obtain \({\dot{\gamma }}_2=-\frac{\varsigma _2}{\varpi _2}\), and then one gets

$$\begin{aligned} \begin{aligned} {\dot{\varsigma }}_2={\dot{\gamma }}_2-{\dot{\alpha }}_1=-\frac{\varsigma _2}{\varpi _2}+Y_2(\cdot ), \end{aligned} \end{aligned}$$
(61)

where

$$\begin{aligned} \begin{aligned} Y_2(\cdot )\,=\,\frac{\partial \alpha _1}{\partial {\hat{\chi }}_1}\dot{{\hat{\chi }}}_1 -\frac{\partial \alpha _1}{\partial \varGamma _1}{\dot{\varGamma }}_1 -\frac{\partial \alpha _1}{\partial y_d}{\dot{y}}_d -\frac{\partial \alpha _1}{\partial {\dot{y}}_d}\ddot{y}_d. \end{aligned} \end{aligned}$$

Step 2: According to (1), (5) and (17), \({\dot{z}}_2\) can be calculated as

$$\begin{aligned} \begin{aligned} {\dot{z}}_2=\,&\dot{{\hat{\chi }}}_2-{\dot{\gamma }}_2\\ =&{\hat{\chi }}_3+k_2(y-{\hat{\chi }}_1)+\varGamma _2^\mathrm {T}\phi _2({\hat{\chi }})-{\dot{\gamma }}_2\\ =\,&z_3+\varsigma _3+\alpha _2+k_2e_1+\varGamma _2^{*\mathrm {T}}\phi _2({\hat{\chi }}) -{\tilde{\varGamma }}_2^\mathrm {T}\phi _2({\hat{\chi }})\\ {}&-\varGamma _2^{*\mathrm {T}}\phi _2(\hat{{\bar{\chi }}}_2) +\varGamma _2^{\mathrm {T}}\phi _2(\hat{{\bar{\chi }}}_2) +{\tilde{\varGamma }}_2^{\mathrm {T}}\phi _2(\hat{{\bar{\chi }}}_2)-{\dot{\gamma }}_2, \end{aligned} \end{aligned}$$
(62)

where \(\hat{{\bar{\chi }}}_2=({\hat{\chi }}_1,{\hat{\chi }}_2)^\mathrm {T}\).

Choose a Lyapunov function as

$$\begin{aligned} \begin{aligned} V_2=V_1+\frac{1}{2}\log \frac{k_{b_2}^2}{k_{b_2}^2-z_2^2}+\frac{1}{2}\varsigma _2^2 +\frac{1}{2\delta _2}{\tilde{\varGamma }}_2^\mathrm {T}{\tilde{\varGamma }}_2, \end{aligned} \end{aligned}$$
(63)

where \(\delta _2\) is the positive designed parameter, and \(k_{b_2}\) will be given later. Similar to (52), \(V_2\ge 0\) can be obtained.

From (62) and (63), one has

$$\begin{aligned} \begin{aligned} {\dot{V}}_2=\,&{\dot{V}}_1+\frac{z_2}{k_{b_2}^2-z_2^2}(\alpha _2+k_2e_1+z_3+\varsigma _3 -{\dot{\gamma }}_2\\ {}&+\varGamma _i^\mathrm {T}\phi _i(\hat{{\bar{\chi }}}_2))-\frac{z_2}{k_{b_2}^2-z_2^2}{\tilde{\varGamma }}_2^\mathrm {T}\phi _2({\hat{\chi }})\\ {}&+\frac{z_2}{k_{b_2}^2-z_2^2}(\varGamma _2^{*\mathrm {T}}\phi _2({\hat{\chi }}) -\varGamma _2^{*\mathrm {T}}\phi _2(\hat{{\bar{\chi }}}_2))\\ {}&+\varsigma _2{\dot{\varsigma }}_2 -\frac{1}{\delta _2}{\tilde{\varGamma }}_2^\mathrm {T}({\dot{\varGamma }}_2-\frac{\delta _2}{k_{b_2}^2 -z_2^2}z_2\phi _2(\hat{{\bar{\chi }}}_2)). \end{aligned} \end{aligned}$$
(64)

By Lemma 1, we can obtain the following inequalities

$$\begin{aligned}&\begin{aligned} \frac{z_2}{k_{b_2}^2-z_2^2}(\varGamma _2^{*\mathrm {T}}\phi _2({\hat{\chi }})&-\varGamma _2^{*\mathrm {T}}\phi (\hat{{\bar{\chi }}}_2)) \\\le {}&\frac{\tau z_2^2}{2(k_{b_2}^2-z_2^2)}+\frac{2\mathfrak {I}}{\tau }\Vert \varGamma _2^*\Vert ^2, \end{aligned} \end{aligned}$$
(65)
$$\begin{aligned}&\begin{aligned} \frac{z_2}{k_{b_2}^2-z_2^2}\varsigma _3\le \frac{z_2^2}{2(k_{b_2}^2-z_2^2)^2} +\frac{1}{2}\varsigma _3^2, \end{aligned} \end{aligned}$$
(66)
$$\begin{aligned}&\begin{aligned} -\frac{z_2}{k_{b_2}^2-z_2^2}{\tilde{\varGamma }}_2^\mathrm {T}\phi _2({\hat{\chi }})\le \frac{z_2^2}{2(k_{b_2}^2-z_2^2)^2}+\frac{\mathfrak {I}}{2}{\tilde{\varGamma }}_2^\mathrm {T}{\tilde{\varGamma }}_2, \end{aligned} \end{aligned}$$
(67)

According (65)-(67), one has

$$\begin{aligned} \begin{aligned} {\dot{V}}_2\le&{\dot{V}}_1+\frac{z_2}{k_{b_2}^2-z_2^2}(\alpha _2+k_2e_1 -{\dot{\gamma }}_2+\varGamma _2^\mathrm {T}\phi _2(\hat{{\bar{\chi }}}_2)\\ {}&+\frac{(2+\tau )z_2}{k_{b_2}^2-z_2^2}) +\frac{1}{2}\varsigma _3^2+\frac{\mathfrak {I}}{2}{\tilde{\varGamma }}_2^\mathrm {T}{\tilde{\varGamma }}_2 +\frac{2\mathfrak {I}}{\tau }\Vert \varGamma _2^*\Vert ^2\\ {}&+\varsigma _2{\dot{\varsigma }}_2 -\frac{1}{\delta _2}{\tilde{\varGamma }}_2^\mathrm {T}({\dot{\varGamma }}_2 -\frac{\delta _2}{k_{b_2}^2-z_2^2}z_2\phi _2(\hat{{\bar{\chi }}}_2))\\ {}&+\frac{z_2z_3}{k_{b_2}^2-z_2^2},\\ \end{aligned} \end{aligned}$$
(68)

where \(M_2=M_1+\frac{2\mathfrak {I}}{\tau }\Vert \varGamma _2^*\Vert ^2\).

And then, we can obtain

$$\begin{aligned} \begin{aligned} {\dot{V}}_2\le&-q_1\Vert e\Vert ^2+\mathfrak {I}\Vert W\Vert ^2\sum _{i=1}^{n}{\tilde{\varGamma }}_i^\mathrm {T}{\tilde{\varGamma }}_i+M_2 \\&+\frac{z_2z_3}{k_{b_2}^2-z_2^2} +\frac{z_2}{k_{b_2}^2-z_2^2}\Big (\alpha _2+k_2e_1 -{\dot{\gamma }}_2\\ {}&+\varGamma _i^\mathrm {T}\phi _2(\hat{{\bar{\chi }}}_2) +\frac{(2+\tau )z_2}{k_{b_2}^2-z_2^2}\\&+\frac{\pi (1+v^2)(k_{b_2}^2-z_2^2)}{2\rho (k_{b_1}^2-z_1^2)}z_1\Big ) +\frac{1}{2}\varsigma _3^2\\ {}&+\frac{\mathfrak {I}}{2}{\tilde{\varGamma }}_2^\mathrm {T}{\tilde{\varGamma }}_2 +\frac{\mu _1}{\delta _1}{\tilde{\varGamma }}_1^\mathrm {T}\varGamma _1+\frac{1}{2}\varsigma _2^2 -\frac{c_1z_1^{2\sigma }}{(k_{b_1}^2-z_1^2)^\sigma } \\ {}&+\varsigma _2{\dot{\varsigma }}_2 -\frac{1}{\delta _2}{\tilde{\varGamma }}_2^\mathrm {T}({\dot{\varGamma }}_2 -\frac{\delta _2}{k_{b_2}^2-z_2^2}z_2\phi _2(\hat{{\bar{\chi }}}_2)). \end{aligned} \end{aligned}$$
(69)

Substituting (19) into (69), one has

$$\begin{aligned} \begin{aligned} {\dot{V}}_2\le&-q_1\Vert e\Vert ^2+\mathfrak {I}\Vert W\Vert ^2\sum _{i=1}^{n}{\tilde{\varGamma }}_i^\mathrm {T}{\tilde{\varGamma }}_i+M_2\\ {}&-\frac{c_1z_1^{2\sigma }}{(k_{b_1}^2-z_1^2)^\sigma } -\frac{c_2z_2^{2\sigma }}{(k_{b_2}^2-z_2^2)^\sigma } +\frac{\mathfrak {I}}{2}{\tilde{\varGamma }}_2^\mathrm {T}{\tilde{\varGamma }}_2\\ {}&+\frac{\mu _1}{\delta _1}{\tilde{\varGamma }}_1^\mathrm {T}\varGamma _1 +\frac{\mu _2}{\delta _2}{\tilde{\varGamma }}_2^\mathrm {T}\varGamma _2+\frac{1}{2}\varsigma _2^2+\frac{1}{2}\varsigma _3^2\\ {}&+\varsigma _2\left(-\frac{\varsigma _2}{\varpi _2}+Y_2(\cdot )\right)+\frac{z_2z_3}{k_{b_2}^2-z_2^2}. \end{aligned} \end{aligned}$$
(70)

The first-order filter is designed as

$$\begin{aligned} \begin{aligned} \varpi _3{\dot{\gamma }}_3+\gamma _3=\alpha _2, \gamma _3(0)=\alpha _2(0). \end{aligned} \end{aligned}$$
(71)

Define \(\varsigma _3=\gamma _3-\alpha _2\). According to (71), we can obtain \({\dot{\gamma }}_3=-\frac{\varsigma _3}{\varpi _3}\), which implies

$$\begin{aligned} \begin{aligned} {\dot{\varsigma }}_3= {\dot{\gamma }}_3-{\dot{\alpha }}_2=-\frac{\varsigma _3}{\varpi _3}+Y_3(\cdot ), \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} Y_3(\cdot )=&-\frac{\partial \alpha _2}{\partial {\hat{\chi }}_1}\dot{{\hat{\chi }}}_1 -\frac{\partial \alpha _2}{\partial {\hat{\chi }}_2}\dot{{\hat{\chi }}}_2 -\frac{\partial \alpha _2}{\partial \varGamma _1}{\dot{\varGamma }}_1 -\frac{\partial \alpha _2}{\partial \varGamma _2}{\dot{\varGamma }}_2 -\frac{\partial \alpha _2}{\partial \gamma _2}{\dot{\gamma }}_2. \end{aligned} \end{aligned}$$

Step i (\(3\le i \le n - 1\)): By (17), \({\dot{z}}_i\) is

$$\begin{aligned} \begin{aligned} {\dot{z}}_i=\,&\dot{{\hat{\chi }}}_i-{\dot{\gamma }}_i\\ =\,&{\hat{\chi }}_{i+1}+k_i(y-{\hat{\chi }}_1)+\varGamma _i^\mathrm {T}\phi _i({\hat{\chi }})-{\dot{\gamma }}_i\\ =\,&z_{i+1}+\varsigma _{i+1}+\alpha _i+k_ie_1+\varGamma _i^{*\mathrm {T}}\phi _i({\hat{\chi }}) \\ {}&-{\tilde{\varGamma }}_i^\mathrm {T}\phi _i({\hat{\chi }})-\varGamma _i^{*\mathrm {T}}\phi _i(\hat{{\bar{\chi }}}_i) +\varGamma _i^{\mathrm {T}}\phi _i(\hat{{\bar{\chi }}}_i) \\ {}&+{\tilde{\varGamma }}_i^{\mathrm {T}}\phi _i(\hat{{\bar{\chi }}}_i)-{\dot{\gamma }}_i. \end{aligned} \end{aligned}$$
(72)

Choose a Lyapunov function as

$$\begin{aligned} \begin{aligned} V_i=V_{i-1}+\frac{1}{2}\log \frac{k_{b_i}^2}{k_{b_i}^2-z_i^2}+\frac{1}{2}\varsigma _i^2 +\frac{1}{2\delta _i}{\tilde{\varGamma }}_i^\mathrm {T}{\tilde{\varGamma }}_i, \end{aligned} \end{aligned}$$
(73)

where \(\delta _i\) is the positive parameter, and \(k_{b_i}\) will be given later. Similar to (63), it can be seen \(V_i\ge 0\).

From (72) and (73), one has

$$\begin{aligned} \begin{aligned} {\dot{V}}_i=\,&{\dot{V}}_{i-1}+\frac{z_i}{k_{b_i}^2-z_i^2}(\alpha _i+k_2e_1+z_{i+1}+\varsigma _{i+1}\\ {}&-{\dot{\gamma }}_{i+1} +\varGamma _i^\mathrm {T}\phi _i(\hat{{\bar{\chi }}}_i))-\frac{z_i}{k_{b_i}^2-z_i^2}{\tilde{\varGamma }}_i^\mathrm {T}\phi _i({\hat{\chi }})\\ {}&+\frac{z_i}{k_{b_i}^2-z_i^2}(\varGamma _i^{*\mathrm {T}}\phi _i({\hat{\chi }}) -\varGamma _i^{*\mathrm {T}}\phi _i(\hat{{\bar{\chi }}}_i))\\&+\varsigma _i{\dot{\varsigma }}_i -\frac{1}{\delta _i}{\tilde{\varGamma }}_i^\mathrm {T}\left({\dot{\varGamma }}_i-\frac{\delta _i}{k_{b_i}^2 -z_i^2}z_i\phi _i(\hat{{\bar{\chi }}}_i)\right). \end{aligned} \end{aligned}$$
(74)

Similarly, it yields

$$\begin{aligned}&\begin{aligned} \frac{z_i}{k_{b_i}^2-z_i^2}(\varGamma _i^{*\mathrm {T}}\phi _i({\hat{\chi }})&-\varGamma _i^{*\mathrm {T}}\phi (\hat{{\bar{\chi }}}_i)) \\\le {}\frac{\tau z_i^2}{2(k_{b_i}^2-z_i^2)} +\frac{2\mathfrak {I}}{\tau }\Vert \varGamma _i^*\Vert ^2, \end{aligned} \end{aligned}$$
(75)
$$\begin{aligned}&\begin{aligned} \frac{z_i}{k_{b_i}^2-z_i^2}\varsigma _{i+1}\le \frac{z_i^2}{2(k_{b_i}^2-z_i^2)^2} +\frac{1}{2}\varsigma _{i+1}, \end{aligned} \end{aligned}$$
(76)
$$\begin{aligned}&\begin{aligned} -\frac{z_i}{k_{b_i}^2-z_i^2}{\tilde{\varGamma }}_i^\mathrm {T}\phi _i({\hat{\chi }})\le \frac{z_i^2}{2(k_{b_i}^2-z_i^2)^2}+\frac{\mathfrak {I}}{2}{\tilde{\varGamma }}_i^\mathrm {T}{\tilde{\varGamma }}_i. \end{aligned} \end{aligned}$$
(77)

The first-order filter is designed as

$$\begin{aligned} \begin{aligned} \varpi _{i+1}{\dot{\gamma }}_{i+1}+\gamma _{i+1}=\alpha _i, \gamma _{i+1}(0)=\alpha _i(0). \end{aligned} \end{aligned}$$
(78)

Define \(\varsigma _{i+1}=\gamma _{i+1}-\alpha _i\). According to (78), we can obtain \({\dot{\gamma }}_{i+1}=-\frac{\varsigma _{i+1}}{\varpi _{i+1}}\), which implies

$$\begin{aligned} \begin{aligned} {\dot{\varsigma }}_{i+1}= {\dot{\gamma }}_{i+1}-{\dot{\alpha }}_i=-\frac{\varsigma _{i+1}}{\varpi _{i+1}}+Y_{i+1}(\cdot ), \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} Y_{i+1}(\cdot )=&-\sum _{j=1}^{i}\frac{\partial \alpha _{i}}{\partial {\hat{\chi }}_j}\dot{{\hat{\chi }}}_j -\sum _{j=1}^{i}\frac{\partial \alpha _{i}}{\partial \varGamma _j}{\dot{\varGamma }}_j -\sum _{j=1}^{i}\frac{\partial \alpha _{i}}{\partial \gamma _i}{\dot{\gamma }}_i. \end{aligned} \end{aligned}$$

Substituting (75)−(77) and (19) into (53), it yields

$$\begin{aligned} \begin{aligned} {\dot{V}}_i\le&-q_1\Vert e\Vert ^2+\mathfrak {I}\Vert W\Vert ^2\sum _{i=1}^{n}{\tilde{\varGamma }}_i^\mathrm {T}{\tilde{\varGamma }}_i +\sum _{j=1}^{i}\frac{1}{2}\varsigma _{j+1}^2\\&-\sum _{j=1}^{i}\frac{c_jz_j^{2\sigma }}{(k_{b_j}^2-z_j^2)^\sigma }-\sum _{j=1}^{i}\frac{\mu _j}{\delta _j}{\tilde{\varGamma }}_j^\mathrm {T}\varGamma _j +\frac{z_iz_{i+1}}{k_{b_i}^2-z_i^2}\\ {}&+\sum _{j=2}^{i}\frac{\mathfrak {I}}{2}{\tilde{\varGamma }}_j^\mathrm {T}{\tilde{\varGamma }}_j +\sum _{j=2}^{i}\varsigma _j(-\frac{\varsigma _j}{\varpi _j}+Y_j(\cdot ))+M_i, \end{aligned} \end{aligned}$$
(79)

where \(M_i=M_{i-1}+\frac{2\mathfrak {I}}{\tau }\Vert \varGamma _i^*\Vert ^2\).

Step n: From (1) and (17), the derivation of \(z_n\) is given as

$$\begin{aligned} \begin{aligned} {\dot{z}}_n=\,&u+k_ne_1+\varGamma _n^\mathrm {T}\phi _n({\hat{\chi }}) -{\tilde{\varGamma }}_n^\mathrm {T}\phi _n({\hat{\chi }}) \\ {}&+{\tilde{\varGamma }}_n^\mathrm {T}\phi _n({\hat{\chi }})-{\dot{\gamma }}_i. \end{aligned} \end{aligned}$$
(80)

The Lyapunov function is given as

$$\begin{aligned} \begin{aligned} V_n=V_{n-1}+\frac{1}{2}\log \frac{k_{b_n}^2}{k_{b_n}^2-z_n^2}+\frac{1}{2}\varsigma _n^2 +\frac{1}{2\delta _n}{\tilde{\varGamma }}_n^\mathrm {T}{\tilde{\varGamma }}_n, \end{aligned} \end{aligned}$$
(81)

where \(\delta _n>0\) is a designed parameter. Similar to (73), \(V_n\ge 0\) can be obtained.

According to (80) and (81), one has

$$\begin{aligned} \begin{aligned} {\dot{V}}_n=\,&{\dot{V}}_{n-1}+\frac{z_n}{k_{b_n}^2-z_n^2}(u+k_ne_1 -{\dot{\gamma }}_n+\varGamma _n^\mathrm {T}\phi _n(\hat{{\bar{\chi }}}))\\ {}&-\frac{z_n}{k_{b_n}^2-z_n^2}{\tilde{\varGamma }}_n^\mathrm {T}\phi _n({\hat{\chi }}) +\varsigma _n{\dot{\varsigma }}_n \\ {}&-\frac{1}{\delta _n}{\tilde{\varGamma }}_n^\mathrm {T}({\dot{\varGamma }}_n-\frac{\delta _n}{k_{b_n}^2 -z_n^2}z_n\phi _n({\hat{\chi }})). \end{aligned} \end{aligned}$$
(82)

From Lemma 1, it yields

$$\begin{aligned} \begin{aligned} -\frac{{\tilde{\varGamma }}_n^\mathrm {T}\phi _n({\hat{\chi }})}{k_{b_n}^2-z_n^2}z_n\le \frac{z_n^2}{2(k_{b_n}^2-z_n^2)^2}+\frac{\mathfrak {I}}{2}{\tilde{\varGamma }}_n^\mathrm {T}{\tilde{\varGamma }}_n. \end{aligned} \end{aligned}$$
(83)

From (79), (82) and (83), one gets

$$\begin{aligned} \begin{aligned} {\dot{V}}_n\le&-q_1\Vert e\Vert ^2+\mathfrak {I}\Vert W\Vert ^2\sum _{i=1}^{n}{\tilde{\varGamma }}_i^\mathrm {T}{\tilde{\varGamma }}_i +M_{n-1}\\ {}&-\sum _{i=1}^{n-1}\frac{c_iz_i^{2\sigma }}{(k_{b_i}^2-z_i^2)^\sigma } +\frac{z_n}{k_{b_n}^2-z_n^2}(u+k_ne_1 -{\dot{\gamma }}_n\\ {}&+\frac{z_n}{2(k_{b_n}^2-z_n^2)} +\frac{(k_{b_n}^2-z_n^2)z_{n-1}}{k_{b_{n-1}}^2-z_{n-1}^2} +\varGamma _n^\mathrm {T}\phi _n(\hat{{\bar{\chi }}}))\\ {}&-\sum _{i=1}^{n-1}\frac{\mu _i}{\delta _i}{\tilde{\varGamma }}_i^\mathrm {T}\varGamma _i +\sum _{i=1}^{n-1}\frac{1}{2}\varsigma _{i+1}^2 +\sum _{i=2}^{n}\frac{\mathfrak {I}}{2}{\tilde{\varGamma }}_i^\mathrm {T}{\tilde{\varGamma }}_i\\ {}&+\sum _{i=2}^{n}\varsigma _i(-\frac{\varsigma _i}{\varpi _i}+Y_i(\cdot ))\\ {}&-\frac{1}{\delta _n}{\tilde{\varGamma }}_n^\mathrm {T}({\dot{\varGamma }}_n-\frac{\delta _n}{k_{b_n}^2 -z_n^2}z_n\phi _n({\hat{\chi }})). \end{aligned} \end{aligned}$$
(84)

Considering (21), it yields

$$\begin{aligned} \begin{aligned} {\dot{V}}_n\le&-q_1\Vert e\Vert ^2+\mathfrak {I}\Vert W\Vert ^2\sum _{i=1}^{n}{\tilde{\varGamma }}_i^\mathrm {T}{\tilde{\varGamma }}_i +\sum _{i=1}^{n}\frac{1}{2}\varsigma _{i}^2\\ {}&-\sum _{i=1}^{n}\frac{\mu _i}{\delta _i}{\tilde{\varGamma }}_i^\mathrm {T}\varGamma _i -\sum _{i=1}^{n}\frac{c_iz_i^{2\sigma }}{(k_{b_i}^2-z_i^2)^\sigma }\\ {}&+\sum _{i=2}^{n}\varsigma _i\left(-\frac{\varsigma _i}{\varpi _i}+Y_i(\cdot )\right)+\sum _{i=2}^{n}\frac{\mathfrak {I}}{2}{\tilde{\varGamma }}_i^\mathrm {T}{\tilde{\varGamma }}_i+M_i. \end{aligned} \end{aligned}$$
(85)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, D., Liu, X., Chen, Q. et al. Observer-based adaptive finite-time prescribed performance NN control for nonstrict-feedback nonlinear systems. Neural Comput & Applic 34, 12789–12805 (2022). https://doi.org/10.1007/s00521-022-07123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07123-6

Keywords

Navigation