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Abstract
In recent years, it has been revealed that machine learning models can produce discriminatory predictions. Hence, fairness

protection has come to play a pivotal role in machine learning. In the past, most studies on fairness protection have used

traditional machine learning methods to enforce fairness. However, these studies focus on low dimensional inputs, such as

numerical inputs, whereas more recent deep learning technologies have encouraged fairness protection with image inputs

through deep model methods. These approaches involve various object functions and structural designs that break the

spurious correlations between targets and sensitive features. With these connections broken, we are left with fairer

predictions. To better understand the proposed methods and encourage further development in the field, this paper

summarizes fairness protection methods in terms of three aspects: the problem settings, the models, and the challenges.

Through this survey, we hope to reveal research trends in the field, discover the fundamentals of enforcing fairness, and

summarize the main challenges to producing fairer models.

Keywords Image fairness protection � Deep learning � Fair representations

1 Introduction

Protecting fairness in a machine learning model means

measuring and eliminating discrimination in the model and

ensuring the applications built around the model are

trustworthy. The aim is to prevent the model from making

significantly different predictions for different sub-groups,

where each subgroup is divided by a ‘‘sensitive feature’’,

such as race, gender, or age. The phenomenon of unfairness

has been observed frequently across the machine learning

field. For example, software used to support recruitment

and hiring decisions has been found to be discriminatory

[1]. And there have been severe problems with gender bias

in the Amazon AI curriculum selection [2]. In fact,

machine learning models are so widely deployed in our

society that, without fairness protection, we may find the

impacts of discrimination to be catastrophic [3–8].

Fortunately, studies on fairness have a long history [9],

so there is much documented evidence of not only the

biases that lead to unfair predictions [10–12] but also a

plethora of approaches to overcome those biases. Sug-

gested strategies include data sampling, re-weighting, and

modification methods to enforce equal predictions across

subgroups, along with different fairness metrics to measure

the differences in predictions.

Most previous articles on fairness have focused on

numerical or tablet inputs. However, there are a growing

number of studies dealing with fairness protection for

image inputs. Rapid developments in deep learning have

seen various image datasets emerge, such as ImageNet [13]

and KITTI [14], and, as in the past, unfairness and dis-

crimination have again been observed with image inputs

and deep model deployments. Buolamwini and Gebru [15]

find that commercial face recognition systems suffer sig-

nificant prediction gaps across populations, while Brandao

[16] find age and gender biases among pedestrian detection

algorithms. Unfair predictions jeopardize model
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performance for minorities and lead to negative social

impacts. Moreover, this phenomenon has also led to con-

cerns over the training of deep models in that they tend to

learn short-cut features that are irrelevant to the learning

targets. Thus, the central issue in fairness protection for

images is to break this short-cut learning so as to avoid

unfair predictions.

It is natural to adopt previous methods for fair protection

with image inputs. However, traditional value modification

methods cannot hold. As discussed in [17, 18], an image

feature, such as race, cannot be modified from one attribute

to another, and enforcing fairness with other methods is

inefficient compared to deep model methods [19]. Intu-

itively, simply balancing the training dataset should resolve

the problem. However, as indicated in [20, 21], con-

structing a balanced dataset in all its attributes can be very

challenging. What’s more, even with balanced datasets,

bias in the trained model cannot be eliminated completely

[22].

The more recent deep learning methods try to enforce

fairness protection with images through additional con-

straints, by removing sensitive features, and/or by learning

fair representations. These strategies are often applied

during training with the overarching objective of mini-

mizing prediction gaps across the subgroups. The main

challenge with this work is to remove any spurious bias

that favors one subgroup over another. Part of this involves

deriving invariant features during the learning process that

will generalize well across domains. Broadly speaking,

deep model studies in image fairness encourage a deeper

understanding of the dynamic learning procedures of the

model.

To better understand these studies and to encourage

further development in the field, we, with this paper,

have summarized the deep learning based fairness pro-

tection methods for images. Beyond highlighting the

differences between image and numerical inputs, we also

aim to reveal research trends in the field; summarize the

methods and expose the fundamentals that bind these

approaches; and discuss the main challenges researchers

are currently facing in ensuring better protection.

Fairness concerns a range of fields. For example, dif-

ferent biases, such as historical bias, measurement bias, and

evaluation bias, lead to different types of unfair predictions

[10]. Further, fairness is also a subject that concerns social

issues and impacts [11, 23]. Grgic-Hlaca et al. [24], for

example, discuss definitions of fairness among different

groups of people, while Mehrabi et al. [10] regard social

historical reasons as sources of unfair bias. Hence, to

narrow down the scope of this survey, we have concen-

trated on research in the field, considering only studies on

representation bias—also known as data imbalance bias—

which is the most commonly studied bias.

Additionally, there are some traditional image process-

ing methods that can enforce fairness that have not been

covered, both in the pre-processing phase, such as data

sampling and re-weighting, or in the post-processing phase,

such as parameter post tuning. As been discussed, these

methods are inefficient compared with deep models and we

do not include these methods to avoid repeating work

already undertaken in other surveys. Our focus remains

fixed on deep model methods. We also note that deep

model studies from other fields, such as domain adaptation,

could also be adopted for enforcing image fairness. These

methods were included if they considered sensitive fea-

tures, such as gender and race.

There have been several other surveys on fairness

protection, each with their own distinct focus. For

example, Mitchell et al. [3] concentrate on summarizing

fair notions and metrics. Mehrabi et al. [10] focus on the

sources of discrimination source. Quy et al. [25] examine

the underlying relations in the attributes of fairness

protection datasets. Caton and Haas [26] provide an

overview of fairness protection from metrics to approa-

ches to dilemmas in the machine learning area. As for

fairness protection with deep models, Malik and Singh

[27] discuss general deep learning technology, offering

an introduction to unfair interpretation. Du et al. [28]

present deep methods in terms of the bias found in

inputs and representations, while Shi [29] looks at issues

of unfairness in deep federated learning methods. Our

work provides a thorough summary of image fairness

protection with deep models. We present a comprehen-

sive view of the problems, models, and challenges

associated in this area. Unlike other surveys, we have

analyzed the research trends in fairness protection for

deep image models. We have also pinpointed three

fundamental challenges to better fairness and discussed

solutions drawn from other fields. Table 1 lists the dif-

ferent scopes of each of the fairness surveys.

In summary, this work contributes the following addi-

tions to the literature:

• We have highlighted the difference between numerical

and image inputs, summarizing the different problem

settings for image inputs with deep models;

• Research trends in the field are extracted and outlined;

• The methods reviewed are classified into four

approaches and compared against different fairness

characteristics; and

• Three fundamental challenges for better fairness pro-

tection have been identified with potential solutions

introduced from other fields.
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Figure 1 shows the main structure of this survey. The

survey begins with background information on fairness

protection in Sect. 2. Research trends with different

problem settings are then discussed in Sect. 3. The deep

model methods for protecting fairness are introduced in

Sect. 4. Section 5 re-iterates the methods in terms of

three challenges. Additionally, as fairness and privacy

are closely related, we discuss this issue in Sect. 6.

Future directions and conclusions are presented in

Sect. 6.4.

2 Background and preliminary

Before jumping into image fairness methods, we need to

introduce the background and preliminaries of image

fairness. This includes the relevant definitions, notions

and measurements, datasets, and the methods associated

with protecting fairness with images. We will also

introduce the most widely adopted and fundamental deep

models in image fairness protection studies.

Deep learning-based 
Image Fairness

5. Challenges

5.1 Better Fair
Representations

5.2 Utility Issues

5.3 Biases
Discovering

3. Problems

3.2 Different
Problem Settings

3.1 Differences
between Image and
Numerical inputs

4. Methods

Fairness 
Characteristic
Comparisons

Problems introduced
by inputs

Problems introduced
by deep models 4.3 Removing

sensitive features

4.2 Data Operations

4.1 Fair Constraints

4.4 Learning
independent features

Fig. 1 The main structure of this survey: introducing image fairness protections with deep model methods from problems, models, and

challenges

Table 1 A comparison of different fairness protection surveys

Surveys Main scope and content

Mitchell et al. [3] Focuses on fair notions and metrics

Mehrabi et al. [10] Summarizes different sources of discrimination

Quy et al. [25] Examines underlying relations across attributes in datasets

Haas [26] Provides reviews of fairness protection in the machine learning area

Malik and Singh [27] An introduction to general deep learning and unfair interpretation

Du et al [28] Summarizes deep methods in terms of biased inputs and representations

Shi [29] Focuses on unfairness issues in deep federated learning methods

Our Summarizes image fairness protection in deep models in terms of problems, models, and challenges
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2.1 Definitions

The most common case considered in fairness studies is a

binary classification problem with data X 2 Rn, targets Y 2
f0; 1g and sensitive attributes S 2 f0; 1g. The aim of

enforcing fair predictions is to learn a model f : X ! Y

whose predictions Ŷ 2 f0; 1g are maximally close to Y

while being fair for S under biased representations of

training data.

Figure 2 illustrates a biased representation problem, also

referred to as imbalance bias. In the image, the circles and

squares are classification targets y0, y1, while the colors are

sensitive features s0, s1. A well-trained and fair model

should classify the shapes independently of the colors.

However, the classifier favors blue samples over green

ones due to short-cut learning issues and an over-repre-

sentation of blue training samples. This spurious learning

of features leads to unfair predictions. The most considered

sensitive features in fairness studies are age, race, and

gender.

2.2 Fairness notions and measurements

Aside from the social, ethical, or philosophical debates

on defining fairness [30], studies usually consider fair-

ness notions in three respects: (1) individually, where

similar examples should be treated similarly [31]; (2)

causally, where sensitive features should be independent

of the target predictions [32–34]; and (3) as a group

where different subgroups of sensitive features should

process similar outputs [31, 33, 35]. Group fairness

notions can also be regarded as statistical fairness

notions since they compare statistics, such as accuracy or

false positive rates. For example, demographic parity

(DP) [31, 33] compares positive predictions results

across subgroups:

Ps0fŶ ¼ 1g ¼ Ps1fŶ ¼ 1g;

Equalized opportunity (EOP) [35] compares equal true

positive rates across subgroups:

Ps0fŶ ¼ 1jY ¼ 1g ¼ Ps1fŶ ¼ 1jY ¼ 1g;

And equalized odds (EOD) [35] compares both true and

false positive rates across subgroups:

Ps0fŶ ¼ 1jY ¼ ig ¼ Ps1fŶ ¼ 1jY ¼ ig; i ¼ 0; 1;

Different fair notions need to be considered in different

scenarios. For example, individual fairness requires that

similar samples get similar treatments, which is suitable for

general fair tasks. However, similarity should be defined

for a particular task. This is generally challenging to define

[36]. Causal fairness notions should be adopted when

causal graphs are considered. One example is counterfac-

tual fairness [33], which requires similar predictions

between samples and their counterfactual counterparts.

However, specifying either the counterparts or the causal

relationships between datasets is challenging. Group fair-

ness is most widely adopted since it involves explicit

constraints.

Fair measurements adopt fair notions to quantify fair-

ness results. For example, disparate impact (DI) adopts

demographic parity to ensure fair measurements:

DI ¼ Ps0fŶ ¼ 1g
Ps1fŶ ¼ 1g

;

As has been illustrated, disparate impact DI lies in the

range ½0;1Þ, where 1 denotes perfect demographic parity.

A DI of \1 indicates that the classifier favors privileged

groups and DI[ 1 means the opposite. Alternatively,

subtractions with demographic parity can also be consid-

ered as measurements:

DDP ¼ jPs0fŶ ¼ 1g � Ps1fŶ ¼ 1gj;

The metrics true positive rate balance (TPRB) and true

negative rate balance (TNRB) have also been adopted

alongside the notions of equalized opportunity and equal-

ized odds:

TPRB ¼ Ps0fŶ ¼ 1jY ¼ 1g � Ps0fŶ ¼ 1jY ¼ 1g;
TNRB ¼ Ps0fŶ ¼ 1jY ¼ 0g � Ps0fŶ ¼ 1jY ¼ 0g;

DEP ¼ 1

2
TPRBþ 1

2
TNRB;

Note that these are by no means the only fairness notions

and measurements. In their survey, Mehrabi et al. [10]

introduce the most commonly used fair notions, while

Islam et al. [37] summarize more than 20 different notions

and measurements. A more detailed comparison of these

different notions and measures and when they are used

follows in Sect. 4.

Fig. 2 Representation bias (imbalanced bias)
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2.3 Image fairness protection methods

Methods in fairness protection studies are generally

categorized into three groups: (1) pre-processing methods

such as sampling and re-weighting [38–40], where

manipulations of training data are conducted before

training; (2) in-processing methods [32, 41, 42], where

the methods adopt additional losses for different fair

metrics during the learning of the models; and (3) post-

processing methods [43–45], where the methods tune the

prediction results or adjust the decision boundaries to

reduce unfair predictions.

Most surveys generally classify deep model methods as

in-processing methods without much further discussion.

However, since our focus is on deep models, we have

divided the methods into four different approaches: fair

constraint methods, data operation methods, methods that

remove sensitive features, and methods that learn inde-

pendent features. Each group is introduced in more detail

in Sect. 4.

2.4 Datasets

Many of the studies on fairness rely on numerical datasets,

such as Adult [46] and COMPAS [47]. The Adult dataset

provides 48,842 records of people’s salaries including the

attributes of race and gender. The COMPAS dataset scores

a criminal defendant’s likelihood of re-offending (recidi-

vism) with annotated attributions of over 10,000 samples.

The most widely-adopted image datasets for fairness

studies are UTKFace [48] and CelebA [49]. UTKFace

dataset consists of over 20,000 face images with annota-

tions including age and ethnicity. The CelebA dataset

provides more than 200K celebrity images with 40 attribute

annotations. Generally speaking, age, gender, and race are

commonly considered in image fairness studies.

Other datasets that have featured in papers on image

fairness include the German credit dataset [46], the

Diversity in Faces dataset [50], and the Yale B face dataset

[51]. The Mehrabi et al. survey [10] also discusses some

additional datasets. Table 2 provides a summary.

2.5 Deep learning and fairness

Most deep models for image fairness protection models are

adopting generative models [52, 53] with adversarial

designs that generate latent features or synthetic data from

the original training data [54, 55]. The most common

implementations are variational autoencoders (VAEs)

[56, 57] based models or generative adversarial networks

(GANs) [58] based models. VAE models require distribu-

tion similarities between the generated data and the original

training data through similarity constraints. GAN models

generate data with additional adversarial model designs. To

enforce fairness, deep models generate synthetic images

with generative models and remove sensitive features with

adversarial designs.

3 Problem settings for image fairness
with deep model methods

This section begins with an analysis of the difference

between numerical and image inputs in terms of fairness.

This is followed by the various problem settings and con-

texts in which research on these methods has been pre-

sented. Our discussions cover both data inputs and deep

learning technologies, and through these discussions,

research trends in the field emerge.

3.1 Input differences with images

In terms of numerical inputs, sensitive features, such as

gender, age, or race, are generally represented as discrete

values or as a binary variable f0; 1g. Because it is possible
to modify these sensitive features, fairness-aware methods

such as data modification [59] or data generation [60] have

emerged as a solution. However, with image data, feature

disentanglement in high dimensional domains makes rep-

resenting features with explicit values generally impossi-

ble. Figure 3 illustrates the difference. As described by Mo

et al. [21], due to this disentanglement, general datasets

suffer background bias and content bias, and constructing a

balanced dataset that fairly considers all the different

attributes is a challenging task [20]. What’s more, Xu et al.

[22] observed that, even with balanced datasets containing

equal training samples from a mixture of races, the trained

model still suffered from unfair predictions. Another dif-

ference is that iterating sensitive feature is impossible

because, unlike numeric data, images contain countless

attributes. This can lead to difficulties with identifying bias

among images [19, 61, 62] or collecting balanced image

datasets [63–65].

3.2 Problem settings

In this section, we answer the question: What is the

research focus for different studies? The section starts with

problem settings introduced by training inputs; the problem

settings introduced by deep models then follows.

Generally, most image fairness studies focus on fair-

ness-aware classifier training with imbalanced training

datasets. Given sensitive features S and a learned model f, a

fair learning objective can be expressed as:

Neural Computing and Applications (2022) 34:12875–12893 12879
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min lðY ; ŶÞ s.t. cðf ðs0; s1ÞÞ\h; ð1Þ

where l is the losses, c represents the adopted fairness

measurements, and h represents a small number. The

equation illustrates that the trained model should maintain

low prediction losses while satisfying some fair measure-

ment constraints with different fairness protection methods.

Beyond these general settings, other problem settings have

been considered. For example, studies [66–68] consider

multiple sensitive attributes: S ¼ fS1; S2; :::g, where the

sensitive features can have multiple attribute values, such

as race. With multiple values, it would be resource-inten-

sive for the fair methods that construct additional sensitive

prediction heads. Studies [69, 70] focus on universal fair

representations without downstream tasks:

lðI; ÎÞ; cðgðs0; s1ÞÞ\h, where g is a feature extraction

model, and I and Î are input images and the generated

synthetic images, respectively. This is challenging since it

requires the learned features to be independent of the

sensitive features. Study [71] consider noisy labels: ð �Y ; YÞ,
where Y = �Y ? �, �Y represent the real labels, while Y

denotes the labels in the dataset that contain noise. Grari

et al. [72] examined continuous sensitive values where

s 2 R. This setting makes the fair methods with sensitive

prediction heads invalid since considering prediction heads

for continuous values are difficult. Others have concen-

trated on discovering bias among datasets where the sen-

sitive features S are unknown [61, 62, 73].

Turning to the problem settings introduced by deep

models, some studies observed unfair phenomenons in

deep models: Choi et al. [69] find that generation models

amplify data bias, which leads to unfair image generation.

Li et al. [74] consider fair issues in deep clustering meth-

ods; Xu et al. [75] observe unfair results in adversarial

training, while Chen et al. [76] look at fairness in graph

deep models, and Shi et al. [29] summarize image fairness

protection methods for deep federated learning models.

One issue that repeatedly crops up in studies on

fairness protection concerns model utility once fairness

constraints have been enforced. Chang et al. [77], for

example, verify that fair models are more vulnerable to

adversarial attacks. Mishler and Kennedy investigate the

balance between accuracy and fairness [78]. Qian et al.

[79] examine fairness methods in the context of deep

learning, finding that fair protected models may suffer

large fair variance.

Moreover, some studies report that fairness protection

issues share connections with issues in other fields. For

Fig. 3 Gender information in the Adult dataset is stored as a binary value [46], while, in the CelebA image dataset, gender information is not

stored in a tractable form [49]

Table 2 The datasets most commonly adopted in fairness studies

Datasets Type Size Descriptions

Adult [46] Numerical 48,842 records People’s salaries with relative information such as age race, gender

COMPAS [47] Numerical 10,896 records Criminal defendants’ likelihood of reoffending basing on relative attributes

German credit [46] Numerical 1000 records Assessments of people as good or bad credit risks described by a set of attributes

Yale B [51] Image 16,128 images 28 human subjects under 9 poses and 64 illumination conditions

UTKFace [48] Image 20,000 images Face images with annotations of age, gender, and ethnicity

CelebA [49] Image 200k images Celebrity images, each with 40 attribute annotations

DiF [50] Image 1M images Celebrity images, each with 10 attribute annotations

12880 Neural Computing and Applications (2022) 34:12875–12893
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instance, Zhao et al. [80] cast incremental learning prob-

lems to fair protection problems, while Wei et al. [81]

explore fairness protection methods for long-tailed data

problems. Table 3 summarizes the different problem set-

tings with the corresponding approach.

3.2.1 Discussion

Although images as an input bring certain challenges to

fairness protection, they share similar problem settings

with numerical studies, such as considering multiple or

continuous sensitive attribute values. Similarly, some of

the difficulties raised by deep models have also been seen

in previous studies, such as fairness for clustering or online

learning. However, there are also emerging problems that

are being addressed for the first time in the context of

image fairness, such as fairness for image generation

models, federated models, and graph models.

4 Models of image fairness protections
with deep models

While previous studies on fairness protection generally

classify deep methods as in-processing methods, we have

divided them into four further groups: fair constraint

methods, data generation methods, methods that remove

sensitive features, and methods that learn independent

features. This section introduces each approach in detail

and concludes with a comparison of the various charac-

teristics of the methods, including the metrics and datasets

used and the sensitive features considered.

4.1 Fair constraints

Fair constraint methods incorporate additional loss con-

straints and learning objects into the learning procedure in

such a way that the learned models should satisfy the

corresponding fair metrics. Examples of this method can be

found in [75, 77, 82–84] where the learning problems are

solved following Eq. 1. This equation can be seen as an

optimization issue with constraints. As with other

mathematical modeling studies [85–87], the problem can

be resolved with Lagrangian methods. Given some sensi-

tive features S and a learning model f with weights w, Eq. 1

can be expressed as:

min
w

max
k2Rþ

lðY; f ðI;wÞÞ þ kcðw; SÞ;

where k is the Lagrange multiplier. The maximum lower

bound can be replaced considering kmax:

max
k2Rþ

min
w

lðY; f ðI;wÞÞ þ kcðw; SÞ:

The general method of deriving kmax is to update the

weights twice during learning, once to minimize the loss

w.r.t. w and again to maximize the loss w.r.t. k at every

iteration [88]. Although these methods all rely on con-

straints, they are designed for different fair metrics and

settings. More details on this are presented in Table 5.

Notably, while fair constraint methods enforce fairness

protection, they do introduce target irrelevant learning

objects. To avoid the problem, data operation methods are

proposed for better fairness protections. These are dis-

cussed next.

4.2 Data operations

Intuitively, there are traditional image processing methods

that can enforce fairness. However, studies have shown that

general image processing methods are inefficient compared

to deep model methods [19]. Thus, some deep models have

incorporated techniques like data generation, sampling, and

re-weighting to enhance performance.

4.2.1 Data generation

Data generation methods generate synthetic training sam-

ples or features with adversarial models to balance the

dataset. Hwang et al. [89], for example, generated under-

represented samples with CycleGAN [90], while Joo et al.

[65, 91] generated synthetic samples through latent feature

manipulations with GAN inversion methods [92]. Alter-

natively, others have reconstructed the datasets through

data argumentation methods [82, 93]. With mixed-up

Table 3 Different problems settings for image fairness protections with deep models

Problems Specific settings

Most studies focus on general image fairness

protection
minE½lðY ; ŶÞ� s.t. cðf ðs0; s1ÞÞ\h

Problem settings introduced by training data Settings with sensitive features [66–68, 72] and labels [61, 62, 69, 70, 73]

Problem settings introduced by deep models Fair for different deep models [29, 69, 74, 75, 75, 76]; Utility studies for fair enforced models

[71, 77–79]
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images comprised of different subgroups, models tend to

learn fair features, like Du et al. [94] for instance, who

presented a mix-up scheme to generate neutralized

features.

4.2.2 Data sampling

Data sampling methods strike a balance in the training

samples during training iterations. In this vein, Roh et al.

[30] designed a learning scheme for batch sample selec-

tions to balance any prediction gap between subgroups.

Another technique is to design deep methods to optimize

the sample selection procedure [95, 96]. Shekar et al. [97]

enforced fairness through sampling with hard example

mining methods.

4.2.3 Data re-weighting

Re-weighting methods introduce parameter weights to

balance samples or learned features with the model’s

design. Zhao et al. [80] reduced biased predictions by

attaching one fully connected layer to a classifier, called a

weight aligning layer, to re-assign weights across groups.

Gong et al. [98] designed different convolution kernels for

different attribute values, then re-fused the values to bal-

ance feature learning and enforce fairer predictions.

However, while data operations are good for balancing

datasets, they do not prevent sensitive features from being

learned during training. To overcome this problem, the

sensitive features need to be eliminated using a removal

method as discussed next.

4.3 Removing sensitive features

Zemel et al. [99] were the first to cast fairness problems as

an issue of removing sensitive features from numerical

input data. Ever since, researchers have been crafting new

ways to remove sensitive features. Some are designed for

numerical inputs [38, 100]. Others are designed for image

inputs under a range of situations

[54, 55, 64, 66, 67, 74, 101–104]. However, despite their

subtle differences, all these methods follow the same broad

approach. Figure 4 illustrates the general model structure.

It is an adversarial framework that learns the target task

without the ability to predict sensitive information.

Specifically, an encoder first extracts latent information as

a proxy for the input. Then, one task prediction head and

one sensitive attribute prediction head are attached to

predict the learning tasks and the attribute values. To

ensure the extracted features contain little to no sensitive

information, an inverse gradient is updated for sensitive

attribute predictions during the learning. With h repre-

senting the extracted features, f and fs being the task pre-

diction heads and sensitive features prediction heads,

respectively, the learning objects can be expressed as:

min
l

max
la

E½lðY ; f ðhÞ � lsðS; fsðhÞ�;

where l and ls are the training losses of the target and

sensitive attribute predictions. The learning adopts an

adversarial training setting by minimizing the target clas-

sification losses and maximizing the attribute prediction

losses.

It is worth noting that, although removing sensitive

features enforces fairness, removing features can deterio-

rate prediction performance. Therefore, the last type of

scheme tries to simply disentangle sensitive features

without tending to remove them.

4.4 Learning independent features

Methods of learning independent features try to enforce

fairness by guaranteeing that the features adopted for

task predictions do not contain sensitive information—

that is, that the prediction features are independent of the

sensitive features. Generally, deep models predict tasks,

sensitive attribute values, and reconstruct input data at

the same time. A range of similarity measurements

between a task’s features and its sensitive features have

been put forward to enforce independence. The idea is to

minimize the similarity between learned features and

sensitive features during training. Figure 5 presents the

general framework. With the learned features for the

Images

Task 

Adversarial Settings
Inverse Gradient 

Extracted Features

Prediction Heads

Fig. 4 Adversarial framework with inverse gradient for the methods

that remove sensitive features

Images 

Task 
Encoder 

Features 

Recon. 

Decoder 

Fig. 5 General model structure for the independent feature learning

methods
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tasks ht, the sensitive features hs, and the reconstructed

images Î, the loss functions can be described as:

L ¼ k1ltar þ k2lreconðI; ÎÞ þ k3lsimiðht; hsÞ;

where ltar is the target loss, lrecon is the reconstruction loss

which maintains the utility of generated data, and lsimi

measures the similarity distance between features.

The studies that have adopted this method in our review

include [53, 63, 67, 68, 73, 105–111, 111–117]. The dif-

ferent similarity measurements that have been used include

maximum mean discrepancy (MMD) [105] in [105–107],

the Kullback–Leibler divergence (KL) [68, 73, 108–111],

the Hilbert–Schmidt independence criterion (HSIC)

[53, 112, 113], matrix correlations [114], cosine similarity

[63, 115, 116], and L1 and Euclidean distance [67, 117].

Additionally, Gitiaux and Rangwala [111] designed a

binary representation method to better learn independent

features. Table 4 provides a detailed summary of the main

methods referred to in this section.

4.4.1 Other studies

Apart from deep model designs, there are other tech-

nologies for enforcing image fairness protection. For

example, Wang and Deng [118] learn adaptive classifi-

cation margins for different subgroups with deep rein-

forcement learning methods (DQN [119]), while Kim

et al. [120] adopt boosting methods to promote fairness.

4.4.2 Discussion

Although above methods are widely adopted for fairness-

aware training, there are limitations for each direction.

Using fair constraints usually results in an accuracy drop,

often referred to as the utility issue, which has been

reported in several studies such as [35, 121, 123, 124].

Moreover, deep model optimizations are often non-convex

in nature and challenging to solve in general, which may

lead to difficult or unstable training [26, 125].

With the data generation techniques, generating under-

represented images or counterfactual samples for model

training is difficult as disentangling features and inter-

preting high dimensional inputs is always challenging [92].

Additionally, Vinyals [126, 127] show that, even generat-

ing highly photorealistic images, e.g., with model BigGAN

[128], training a classifier on synthetic images is never as

good as training with real ones.

Removing sensitive features and learning independent

features both involve representation learning, which raises

similar concerns over utility [19, 110, 117]. It also creates

difficulties when attempting to learn invariant or indepen-

dent features [102]. In their survey, Caton and Haas [26]

discuss the limitations of fair representation learning

studies in detail.

Despite all the different directions pursued, each aims

to break spurious correlations between learning targets

and sensitive features. Fair constraint methods encourage

models to learn similar predictions across subgroups of

sensitive features, which leaves the predictions and sen-

sitive features irrelevant. Data operation methods balance

the datasets and reweight the feature maps to impede the

model’s short-cut learning. Sensitive feature removal

prevents the models from extracting sensitive features

through deep adversarial designs. And learning inde-

pendent features encourages the model predictions to be

independent of the sensitive features through various

similarity measurements. Nevertheless, all four methods

aim to generate fair predictions by not learning spurious

correlations.

4.4.3 Fairness characteristics

Having discussed the methods themselves, it is now

important to cover the measurements, datasets, and

attributes considered for a more detailed comparison

between the methods. Table 5 shows a matrix. The

table illustrates that most studies concentrate on a single

fairness metric, while strategies that involve multiple

metrics have drawn less attention. Additionally, there are

fewer studies on individual or counterfactual fairness

since the metrics required are stricter than for others.

Another issue that has been raised is that the frameworks

are not particularly generalized. A method designed for

one fair metric may not be applicable to others [79].

Hence, general frameworks for fairness are still neces-

sary. As a last observation, most of the studies concern

data with a single sensitive feature, such as gender or

race. Problems involving multiple sensitive features or

features with non-binary or continuous values are far less

studied.

In real applications, given limited medical data available

for training, Frid-Adar et al. [129] opted to generate their

own data and achieved outstanding fairness protection

results. After comparing different fairness protection

methods, Qian et al. [79] found that fair constraint methods

were suitable for fairness protection under various fair

metrics since the constraints are explicitly attached to the

loss functions. Wang et al. [19] find that, in general, rep-

resentation methods such as removing sensitive features

and learning independent features can enforce fairness

protection. However, learning fair representations is

difficult.

Overall, despite the different methods, the current

studies have only eased the unfair prediction issue, not
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solved it. Fixing all the problems with fairness protection

still holds many challenges. This is the subject of the next

section. However, it is notable that although the fair results

may just be improved 2% in the studies, the studies are

working towards solving the issue and better understanding

the dynamic learning procedures of deep models.

5 Challenges to ensuring greater fairness

This section discusses the challenges underlying the above

methods. From our review, we settled on three main

questions that need to be answered before fairness

protection can become a largely resolved issue: (1) How

can we learn fairer representations? (2) How can we

maintain utility in the face of data modifications (data

operation methods) or additional training objects (fair

constraints)? And (3) Since most studies concern public

datasets, how can we reveal imbalance bias in real data and

real-world situations? Each of these questions is discussed

in more detail next.

5.1 How to get fairer representations?

The critical issue for the methods that involve removing

sensitive features or learning independent features with

Table 4 A comparison of deep

learning image fairness models
Names Models Outputs Targets Remv. Recon. Simil. Fair const

ALFR [54] Encoder Pred. w w w/o w/o w/o

Beutel [55] Encoder Pred. w w w/o w/o w/o

FFVAE [109] VAE Data w w/o w w w/o

AFR [103] GAN Data w w/o w w/o w

Zhang [101] Encoder Pred. w w w/o w/o w/o

FAD [121] Encoder Pred. w w w/o w/o w/o

FairGAN [52] GAN Data w w w/o w/o w/o

Quadrianto [53] GAN Data w w/o w w w/o

Louizos [107] VAE Data w w/o w w w/o

Moyer [110] VAE Data w w/o w w w/o

FCNN [84] Encoder Pred. w w/o w/o w/o w

FRL [75] Encoder Pred. w w/o w/o w/o w

Chang [77] Encoder Pred. w w/o w/o w/o w

FairMixup [82] Encoder Pred. w w/o w/o w/o w

ApxFair [83] Encoder Pred. w w/o w/o w w/o

Joo [91] GAN Data w/o w/o w w/o w/o

Wang [19] Encoder Pred. w w w/o w/o w/o

Wang [64] Encoder Pred. w w/o w/o w/o w

Ramaswamy [65] GAN Data w/o w/o w w/o w/o

FairFaceGAN [66] GAN Data w w w w w/o

Hwang [67] Encoder Pred. w w w/o w w/o

Xie [102] Encoder Pred. w w w/o w/o w/o

DB-VAE [73] VAE Data w w/o w w w/o

FD-VAE [108] VAE Data w w w/o w w/o

Sarhan [68] Encoder Pred. w w/o w w w/o

MFD [106] Encoder Pred. w w/o w/o w w/o

Tartaglione [114] Encoder Pred. w w/o w/o w w/o

Xu [117] Encoder Pred. w w/o w/o w w/o

Boedi [22] Encoder Pred. w w/o w/o w/o w

CSAD [115] Encoder Pred. w w/o w/o w w/o

Mo [93] Encoder Pred. w w/o w/o w w/o

BiasCon [116] Encoder Pred. w w/o w/o w w/o

Boedi [122] Encoder Pred. w w/o w/o w w/o

Pred. ¼ prediction results. Data ¼ features or synthetic data. The objective functions include: target loss,

sensitive removing loss, reconstruction loss, feature similarity loss, and fair constraint loss
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Table 5 A comparison of the main fair characteristics

Names Dataset Features Metrics Methods Descriptions

ALFR [54] Adult Gender DP SFR With attributes classifiers to remove sensitive features

Beutel [55] Adult Gender DP SFR Proposed representation for fairness

FFVAE [109] CelebA Chubby, Egyglasses,

Gender

DP IFL Fairness with multiple-sensitive features

AFR [103] Adult Gender DP SFR Removed features with attributes classifications and

reconstruction loss

Zhang [101] UCI

Adult

Gender DP EOD

EOP

SFR Removed sensitive features without intermediate representations

FAD [121] Adult Gender DP DM SFR Further integrated models in [103] into one GAN based model

FairGAN [52] UCI

Adult

Gender DP DM SFR First introduced GAN based FairGAN to enforce fairness and

data generation

Quadrianto

[53]

CelebA Gender EOP SFR Proposed GAN based models to enforce fairness.

Louizos [107] YaleB Illumination DP EOP

IF

IFL MMD to measured distance of features

FCNN [84] Adult gender DP EOD FC With Lagrangian to solve fair constraints

Chang [77] Adult Gender ACC FC Attached fairness constraints to attack objectives

FairMixup

[82]

CelebA Gender DP EOD FC With mixup images and proposed new constraints for fairness

ApxFair [83] Adult Gender DP EOD FC Developed iterative algorithms to solve fair constraints.

Joo [91] CelebA Gender ACC DO Generated counterfactual samples for invariant features learning

to enforce fairness

Wang [19] CelebA Gender BA DO Trained with ALL domains for features independent learning

Ramaswamy

[65]

CelebA Gender BA DO Generated counterfactuals with latent vectors to enforce fairness

Hwang [89] CelebA Gender ACC DO Based on cycleGAN to generate fair images.

Xie [102] Yale B Illumination ACC SFR Removed sensitive features with attributes classifiers

Wang [64] Coco

[130]

Gender BA SFR Required similar outputs with environments / backgrounds

FairFaceGAN

[66]

CelebA Gender EOD EOP SFR Removed features with multiple sensitive attributes classifiers

Hwang [67] CelebA Gender EOP SFR With Triplet and Group loss to measure feature distance

DB-VAE [73] CelebA Race Gender ACC IFL Learned the underlying latent variables through minimizing KL

distance

FD-VAE

[108]
CelebA

UTK

Gender Race EOD EOP IFL Adopted VAE distribution to disentangle and decorrelated

features

Sarhan [68] YaleB Illumination ACC IFL Designed disentanglement loss with mean orthogonal to learn

fair representations

MFD [106] CelebA

UTK

Gender Race EOD IFL Used MMD to learn independent features

Tartaglione

[114]

CelebA Gender ACC IFL Measured feature distance with matrix correlations

Xu [63] BUPT

[131]

Race ACC IFL Measured distance with Cosine Similarity Matrix

Boedi [117] CelebA Gender EOP IFL Adopted L1 Norm to measure feature distances

CSAD [115] CelebA Gender ACC IFL Learned disentangled features with cosine similarity constraints

Mo [93] Coco Scene ACC DG With ContraCAM and data augmentations to debias scene

correlations

BiasCon [116] CelebA

UTK

gender race ACC IFL With contrastive learning based losses to alleviate bias

predictions
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similarity constraints is to learn fair representations.

Although previous studies have proposed solutions like

gradient reversing methods or learning independent fea-

tures, solutions from other fields experiencing similar

problems may also be helpful. We reviewed some of the

literature on image causality inference, domain adaptation

(invariant representation learning), and transfer learning

and found several methods worthy of discussion that could

be adopted to improve fair representation learning.

5.1.1 Image causality inference

Image causality inference is an emerging topic. The idea

behind this notion is to empower learning models with the

ability to deal with causal effects; they can either remove

the spurious bias [134], disentangle the desired model

effects [135], or modularize reusable features that gener-

alize well [136]. The main approach involves interventions

with inputs or features. At the same time, similar predic-

tions are required for original and modified inputs. As a

result, causal chains are broken down for skew attributes

and targets. Given the original and counterfactual samples

x and x̂ with a learning target of Y, the consistency rule is

formulated as:

PðY jxÞ ¼ PðYjx̂Þ;

where P are the prediction probabilities. Most studies

construct a contrastive loss to ensure similar predictions.

For the training pair x and x̂ with a learning model f, the

contrastive loss can be expressed as:

Lcon ¼ � logE
expðf ðxÞT f ðx̂Þ=sÞ

P
i expðf ðxiÞ

T f ðxjÞ=sÞ

" #

;

where xi and xj are samples from different classes and s is
the scalar temperature hyper-parameter [137].

The connection between causality and fairness has been

shown in several studies. Kusner et al. introduced coun-

terfactual fairness, which requires that samples and their

counterfactual counterparts should share similar predic-

tions [33]. Ramaswany et al. and Yurochkin et al. gener-

ated synthetic images by manipulating latent vectors as

counterfactual samples [36, 65]. Sarhan et al. treated sen-

sitive features S and learning targets Y as causally

independent features through learning orthogonality values

of mean vectors for target and sensitive features distribu-

tions [68].

5.1.2 Domain adaptation

Domain adaptation, also known as invariant representation

learning, refers to methods that attempt to learn invariant

features across domains for the purposes of model gener-

alization improvement. The invariant learning serves as a

proxy for causality inference [138], it refers to finding

features that are domain-invariant, i.e, that reliably predict

the true class regardless of the domain environment [139].

As domains can be viewed as sensitive group features in

fairness protection, fairness problems can be cast as an

issue of learning invariant features. Invariant risk mini-

mization [140] is one of several recently successful

approaches in the field that minimizes predicting distances

across domains. Given the domains 8e1; e2 2 E through

and the learning features 8h 2 H, the aim of these studies

can be expressed as:

E½y j gðxÞ ¼ h; e1� ¼ E½y j gðxÞ ¼ h; e2�;

where g are the feature extraction models.

Requiring invariant features and consistency predictions

across domains can be interpreted as a group fairness

metric, such as demographic fairness. Similar interpreta-

tions have been discussed in [141] which enumerates

several group fairness criteria and draws analogies to

domain generalization methods. For fairness protection,

Adragna et al. empirically demonstrate that domain adap-

tation methods can be used to enforce fairness protection

through learning models that are invariant to the features

containing sensitive attributes [142]. They adopted invari-

ant risk minimization to encourage models to learn

invariant predictors for different sensitive subgroups.

Although they considered only textual inputs for comment

toxicity classification tasks, in principle, the proposed

methods could be applied to tasks with images.

5.1.3 Transfer learning

Some image fairness methods enforce fairness by requiring

similar feature distributions across subgroups

Table 5 (continued)

Names Dataset Features Metrics Methods Descriptions

Boedi [122] CelebA gender race EOP DP IFL Diminished feature distance across groups to enforce fairness

DP demographic parity, SP statistical parity, EOD equalized odds, EOP equal opportunity, DM disparate mistreatment [132], IF individual

fairness, BA bias amplification [133]. Methods: DO data operations, FC fair constraints, SFR sensitive feature removal, IFL independent features

learning
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[68, 73, 108, 109]. Although the problem may not be the

same as transfer learning, which requires transferring the

knowledge across domains, they share similar methods

such as MMD in [106, 107], KL in [73], or HSIC constraint

in [53]. We think the merging methods in transfer learning

can be further adapted to encourage better fairness

protection.

5.1.4 Other fields

There are also other fields that closely relate to fairness

protection, such as: out-of-distribution detection (OOD)

[143], which distinguishes minorities based on feature

differences; GAN inversion [65], which inverts images into

disentangled latent space features; contrastive learning

[144], which requires consistent predictions for training

pairs; incremental learning [80], which manipulates the

learning features for different classes. Such methods might

also be helpful for encouraging fair representation learning

and fairness protection.

5.2 How to maintain prediction performance
after enforcing fairness?

Fairness methods may modify training samples or intro-

duce target-irrelevant constraints. Naturally, this raises

concerns about whether the applying methods will cause

the model’s performance to deteriorate. Most studies on

enforcing fairness in deep models witness accuracy drops

after fairness protection has been applied [121, 123]. A

similar phenomenon has also been observed in traditional

machine learning studies [35, 124], so this comes as no

surprise. Further, Chang et al. [77] observed that fair

models are more vulnerable to adversarial attacks than their

original counterparts. Van et al. [145] discuss adversarial

defenses for fair models. Qian et al. [79] illustrate that

learned models tend to have larger fair variance after

fairness enforcement. In other words, they have utility

problems. Few studies have focused on this problem, so

this is a future challenge still to be met.

5.2.1 Reasons

Currently, no closed studies are available to illustrate the

reason for utility issues. The issue may be caused by

removing sensitive features, which may actually remove

the features related to the targets [40] for methods that

remove sensitive features or it could be due to any target

irrelevant constraints, such as the additional losses intro-

duced in fair constraint methods.

5.2.2 Methods

To maintain utility, one promising direction is to maintain

the similarities between original and learned data. Calmon

et al. [38] introduced a utility preservation constraint to

guarantee that the distributions between the original data

and the latent space features remained statistically close.

Specifically, they adopted KL-divergence to measure the

distances between two distributions. Zhang et al. measured

the same distance but in Euclidean terms [100], while Xu

et al. use dimension-wise probability to check whether the

modified data maintains a similar distribution [52]. Beyond

distribution similarities, Quadrianto et al. adopt image

reconstruction losses to ensure similar semantic meanings

for generated images [53].

Previous studies concentrate on maintaining similarity

to guarantee the utility of fairness protection methods.

However, proposing a general and practical metric to

measure utility is still challenging, especially for image

modifications. Additionally, the introduced methods have

only been applied to datasets with limited samples under

specific settings. Thus, the methods’ performance could be

positively related to factors such as the size of data, the

sparsity of data, the data that is modified, or the specific

machine learning algorithm used. Further study on the

utility impact issue is still necessary.

5.3 How to find imbalanced biases among data

Since most studies on fairness protection rely on public

datasets or synthetically generated data with given sensi-

tive feature annotations, more work is needed to determine

how we can effectively discover bias in real-world data. Hu

et al. introduced the one-human-in-the-loop method to find

bias [62]. They designed questions to ask people whether

images contained sensitive information, revealing sensitive

attributes based on the statistics. Amini et al. discovered

under-represented data based on the latent representations

[73]. They distinguished feature representations between

majority and minority data, which is challenging with

image data. Li et al. [61] combined the methods and tried

to find biased features through GAN and human-in-the-

loop methods. They generated synthetic images with GAN

methods based on the latent vectors and asked people to

interpret the semantic meaning of images.

As few studies focus on finding bias, considering the

high cost of mass data annotations, more methods to dis-

cover bias in datasets are necessary.
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6 From fairness to privacy

6.1 Fairness protection and privacy protection
share relationships

Dwork et al. introduced the notion of individual fairness,

which requires treating similar people similarly [31]. The

idea can be seen as a generalization of differential privacy

[146]. As described in [99], differential privacy involves a

constraint for the rows of a data matrix, while fairness

involves a constraint for the columns. They share tide

relations. Inspired by the similarity between the two,

Dwork et al. [31] proposed a fairness protection method

based on differential privacy that imposes a Lipschitz

constraint on fair metrics. Likewise, fairness protection

methods have also been considered for privacy protection

issues [147].

6.2 With machine learning

Ekstrand et al. first raised the question of whether statistical

metrics of predictive results, such as equalized odds, were

compatible with privacy [148]. They showed that the

constraint of differential privacy might lead to fairness

under certain conditions. Later, Jagielski et al. proposed

two algorithms that can satisfy both differential privacy

and equalized odds. Similarly, Xu et al. also achieved

differential privacy and demographic parity at the same

time [149]. Other studies include [150] and [151] with

K-anonymity, and [152] and [153] with data mining.

6.3 With deep learning

New challenges have emerged from the studies that focus

on fairness protection in deep learning. Xu et al. and

Bagdasaryan et al., for instance, find that privacy protection

with stochastic gradient descent may lead to unfair results

[123, 154]. This shows that achieving fairness protection

and differential privacy at the same time is quite necessary.

As for fair representation, Grgic-Hlaca et al. [24] regard the

sensitive features of fairness as private information and so

proposed methods that fit both fairness and privacy.

Edwards et al. [54] use learned representations to hide

private information in the image. They argue that, in this

way, image privacy and fairness can be achieved at the

same time.

6.4 Future directions and conclusions

There are several outstanding challenges in the image

fairness literature that have yet to be addressed. In Sect. 3,

we indicated that future trends in this field may fall into:

(1) exploring more and different settings, such as multiple

[66] and continuous [72] sensitive features; and (2)

examining some newly emerging deep learning applica-

tions, such as deep clustering [74], adversarial training

[75], and attacks [77].

Given the models and methods presented in Sects. 4 and

5, more studies from related study fields could be taken on

board to ensure fairer representations. Some solutions

already seem very promising, such as causality inference

[65], domain generalization or invariant representation

learning [142], and transfer learning [103].

In terms of the model utility concerns presented in

Sect. 5, a systematic understanding of how data and feature

modifications contribute to predictions is still lacking. We

believe the causal-based [155, 156] methods or those based

on interpretation [157] could be possible solutions. More-

over, as little attention has been paid to discovering sen-

sitive features, further research is required to discover and

represent them in real-world datasets [24].

Additionally, fairness protection and privacy protection

have a great many overlaps. Yet, few methods have been

proposed to achieve both [123, 154, 158]. Further research

should be undertaken to explore methods that can bestow

both types of protection, especially for settings with high

dimensional inputs.

In this paper, we summarized deep learning based image

fairness protection studies in three respects: problems,

models, and challenges. Since image inputs are different

from numerical inputs, we started by highlighting the dif-

ferences and summarizing the research trends by present-

ing different problem settings. We then introduced four

approaches to fairness with deep model methods and their

characteristics. Additionally, we discussed the three main

challenges leading to better fairness protection results.

Last, we discussed the closeness between fairness and

privacy as issues.

Although our focus remained solely fixed on image

fairness studies in the realm of deep learning, we did

introduce some problems and challenges that can extend

to fairness with numerical inputs and other high

dimensional data tasks, such as natural language pro-

cessing, speech processing, or video processing. Prob-

lems with data bias are also common in the image

processing area. The discussed studies shared the same

problems with other fields such as domain adaptation,

transfer learning, or long-tail issues, as all aim to break

spurious correlations and learn invariant features. We

expect that the methods might stimulate cross-pollination

among these fields.

Our survey concludes with some comparisons between

fairness and privacy preservation in terms of problems and

questions. Fairness protection methods can be aligned with

accuracy and privacy preservation. This leaves room for
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further work to summarize fairness protection studies from

a range of additional perspectives.
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