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Abstract
Due to the fast growing amount of user generated content (UGC) on social networks, the prediction of retweeting behavior

is attracting significant attention in recent years. However, the existing studies tend to ignore the influence of implicit social

influence and group retweeting factor factors. Also, it is still challenging to consider all related factors into a unified

framework. To solve the above disadvantages, we propose a novel deep neural network fusion embedding-based deep

neural network (FEBDNN) through the perspective of user embedding and tweets embedding for the author and the user’s

historical tweets. Firstly, we propose dual auto-encoder (DAE) network for user embedding by integrating user’s basic

features, explicit and implicit social influence and group retweeting factor. Then, we utilize the attention-based

F_BLSTM_CNN(A_F_BLSTM_CNN) model for historical tweets’ representative embedding based on the combination of

convolutional neural network (CNN) and bidirectional long short-term memory (BLSTM). Finally, we concatenate these

embedding features into a vector and design a hidden layer and a fully connected softmax layer to predict the retweeting

label. The experimental results demonstrate that the FEBDNN model compares favorably performance against the state-of-

the-art methods.

Keywords Retweeting prediction � Deep neural network � Convolutional neural network � Dual auto-encoder �
Social network

1 Introduction

With the fast growing of active users in recent years, social

medias (e.g., Sina Weibo, Twitter, Instagram) have grad-

ually become significant platforms for information collec-

tion and share their own opinions. The users on social

networks create millions of tweets on various topics every

day. Take Sina Weibo, for example, up to September 2020,

there are totally 376 million active users for each month

and 165 million active users for each day. Other social

platforms also have a similar amount of users. Such a huge

number of users make these platforms to be a popular way

to get breaking news and entertainment.

The public opinion dissemination on social networks has

the characteristics of content diversity, enormous people

interactivity and fast retweeting speed, which will cause a

great influence on public opinion analysis and public sen-

timent analysis [1]. Some rumors will start if some users

produce some false or fake network public opinions [2–4].

Thus, it is very important to capture the development and

the direction of rumor dissemination as soon as possible.

Retweeting is the most straight and crucial way to spread

these false information. Predicting the retweeting behavior

in time is of crucial importance for the monitoring and

guiding of the network public opinion [5]. Besides,

retweeting prediction is also an important factor for the

research of user recommendation [6], tweet recommenda-

tion [7] and hot-spot topic tendency monitoring. Therefore,

it is urgent to propose an accurate retweeting prediction

framework to achieve the function of public opinion early

warning and even disaster prediction.
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The current research on the prediction of retweeting

behavior mainly focuses on two perspectives, feature

extraction and model construction. For example, Wang

et al. [8] proposed a unified factorization model called

Bayesian Poisson factorization (BPF??) to combine two

factors, which were social influence and tweet similarity.

Khan et al. [9] proposed two prediction models based on

RNN and CNN to combine numeric and text features on

tweets. Ameur et al. [10] proposed a contextual recursive

auto-encoders embedding method for the content of com-

ments and posts to predict user behavior (like and com-

ment). Zhang et al. [11] incorporated structural, textual and

temporal information into hierarchical Dirichlet process

(HDP) model to conduct prediction task. In recent studies,

the analysis and the mining of the influencing factors is still

the main method for our task. Most of these methods focus

on constructing a prediction model by using surface

information, such as user attribute information, user’s

historical post content and user’s following relationships.

Actually, in addition to these surface features, the social

influence and the group retweeting prior often have a great

impact on the prediction accuracy, since that a user may be

influenced by his/her group or his followees’ retweeting

behavior, even if he/she is not interested in the retweeted

topics. The existing retweeting behavior prediction meth-

ods usually have the following disadvantages:

1. Some methods only use user attributes, post content

and other surface features to predict, but ignore the

implicit social influence between two users.

2. There exists group-aware prior on user retweeting

behaviors. One user may retweet a post if most of the

users in his/her community retweet this post, although

the post is not in accord with the user’s interests.

However, most methods neglect the group-aware

retweeting factor, which make the result cannot be

apparently improved.

3. Many existing research improve the performance from

the perspective of deep learning model, but it is still

challenging to consider all these related factors into a

unified framework.

To solve the above disadvantages, we propose a novel

deep neural network called fusion deep neural network

(FEBDNN) to incorporate several kinds of important fac-

tors into this unified framework with their embedding

space. Specifically, our manuscript has the following

contributions:

(1) We propose a unified deep neural network FEBDNN

from the perspective of embedding learning that

jointly combines the user embedding features and the

tweets embedding features to improve the perfor-

mance of retweeting prediction task.

(2) We propose dual auto-encoder (DAE) model to get a

joint representation for user surface attributes, tem-

poral information, explicit and implicit social influ-

ence. The DAE model is designed as an extension of

traditional auto-encoder network. We also integrate

the group retweeting factor into the joint embedding

by leveraging the first-order and second-order neigh-

borhood features.

(3) We build an attention-based model

F_BLSTM_CNN(A_F_BLSTM_CNN) to get the

embedding vector for the author and the user’s

historical tweets. The A_F_BLSTM_CNN model is

designed as an attention-based deep neural network

with the combination of convolutional neural net-

work (CNN) and bidirectional long short-term

memory (BLSTM) to capture the fine-grained local

semantic features and to model complex semantics of

word use and polysemy.

(4) We collect a new corpus Twitter dataset by ourselves

for validation and conduct extensively experiments

on two real-world datasets (Twitter and Sina Weibo).

The experimental results demonstrate that the

FEBDNN model compares favorably performance

against the state-of-the-art methods.

To the best of our knowledge, our framework is the first

study to incorporate all important factors into a unified

model, including user surface features, temporal informa-

tion, explicit and implicit social influence, group-aware

retweeting factor and user/author’s content information.

Although the combination of CNN and BLSTM has been

proposed in emotional analysis [12], we design them as a

sequential structure in A_F_BLSTM_CNN model and add

an extra attention mechanism to generate attention proba-

bilities for different tweets in user/author’s history.

Besides, the FEBDNN framework also includes a novel

joint embedding module DAE, which is an extension of

traditional auto-encoder network with two inputs, two

outputs and a common hidden layer. This structure is the

first attempt to effectively incorporate group retweeting

prior into user embedding. Thus, the technical steps in our

method are different with the existing methods.

2 Related works

User’s retweeting behavior is one of the important ways to

spread information in social networks. The retweeting-re-

lated research mostly includes the prediction of retweeters,

retweeting counts as well as tweets’ spreading path. In this

paper, we try to analyze and predict one user’s retweeting

behavior and deal with the problem of whether the user will

retweet the query tweet or not, which is usually determined
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by many different factors. Aiming at predicting the user

retweeting behavior on social networks, many researchers

have deeply analyzed the user behavior through different

methods. Current research mainly focuses on two aspects,

feature extraction and prediction model construction.

In terms of prediction model construction, Jiang et al.

[13] proposed a probabilistic matrix factorization method

to combine obvious retweet data, social influence and tweet

content to improve the prediction performance. But this

method does not analyze the implicit social influence fac-

tors. Zhang et al. [14] analyzed the factors that affected the

user’s retweeting behavior and adopted factor graph model

to learn the correlation between these factors. Petrovic

et al. [15] used manual experiments to prove that the

retweeting behavior of a single user can indeed be pre-

dicted by a supervised binary classification method, and

proposed a passive–aggressive algorithm for retweeting

prediction on all users. Tang et al. [16] extended the

logistic regression algorithm by analyzing and character-

izing the similarity between Sina Weibo users, and pro-

posed a novel logical regression model for individual

retweeting behavior (IRBLRUS) based on user similarity.

Liang et al. [17] showed that the retweeting prediction

problem was a one-class setting problem. By analyzing the

basic factors affecting microblog retweeting, authors

employed one-class collaborative filtering to measure the

user’s personal preferences and social influence. Liu et al.

[18] adopted RBF (radical basis function) to model users

retweeting behavior and then proposed a novel neural

network model Cloud-RBFNN for fully expressing the

fuzziness and randomness of user retweeting behavior.

Wang et al. [19] presented a probabilistic model which

incorporates multiple trust relationships between users into

a traditional Bayesian Poisson factorization (BPF) model to

predict retweeting behavior. Kushwaha et al. [20] pre-

sented a deep neural network framework based on LSTM

model to classify tweets that may be retweeted with a high

possibility. Dai et al. [21] considered both the user’s own

factors and external factors and proposed improved SVM

model to predict the retweeting behavior of hot topics.

Inspired by the image restoration technology, Xiao et al.

[22] proposed a diffusion2pixel algorithm to transform the

user relationship network of topic diffusion into image

pixel matrix.

In terms of feature extraction, some context features are

combined to perform our task. Boyd et al. [23] analyzed the

user’s historical retweet records and obtained multiple

factors affecting user’s retweeting behavior. Spiro et al.

[24] statistically analyzed the retweeting time and proposed

the influence of the time on the user’s retweeting behavior.

Zhang et al. [25] provided a definition of structural influ-

ence and pairwise influence to describe the local influence

from active neighbors and proposed that if the user’s

neighbors are more active, the user is more likely to

retweet the Weibo. This shows that the local structure and

the retweeting behavior of neighbors have a certain influ-

ence on the predicted users. Zhang et al. [26] studied the

influence of different structures composed of active

neighbors and divided different structures into three cate-

gories according to the influence extent, which improved

the F1 value of retweeting prediction task. Liu et al. [27]

analyzed the historical retweeting records of Weibo users

and proposed the definition of ‘‘user’s activity’’ and ‘‘in-

visible Weibo’’ based on dynamic time window. This

method fully considered the dynamic and regularity of

retweeting behavior. Shi et al. [28] proposed a framework

that related five major components involved in a social

communication: (1) the information source, (2) the stimuli,

(3) the information receiver, (4) the relationship between

the source and the receiver and (5) the contextual factor,

and an analysis on panel dataset indicates that all these

components had significant impacts on individual

retweeting decision. Rivadeneira et al. [29] presented a

novel evidential reasoning (ER) prediction model called

MAKER-RIMER to analyze the impact of different fea-

tures. Jia et al. [30] extracted 19 features to predict by

analyzing the relationship between high-retweeted micro-

blog and low-retweeted microblog, the relationship

between high-retweeted users and low-retweeted users and

the relationship between high-retweeting users and low-

retweeting users. Ma et al. [31] perceived the hop topic

discussed by user’s followees and analyzed user interests

by using user’s historical posts to perform prediction task.

Yin et al. [32] learned the latent features and interactions of

tweets, social relationships and the posting time through a

deep learning model. Firdaus et al. [33] considered the

emotion, topic preference and personality of a user to

represent user’s online behavior. Wang et al. [34] proposed

a CH-Transformer to learn feature vector from numerical

features and textual Features. Khan et al. [9] analyzed the

impact of tweet text and user features on the information

spreading on COVID-19.

3 Proposed method

Given a social network G ¼ ðU;EÞ,U ¼ fuigði ¼ 1; :::; nÞ
represents a set of users, E ¼ fui; ujgði; j ¼ 1; :::; nÞ repre-
sents the social relationship between ui and uj. For a query

tweet tq, we use yi 2 f0; 1g to represent whether the user ui
retweets the twee tq or not. In other words, the task of our

paper is to predict yi as a positive output or a negative

output. In this way, the problem of user identification

problem can be converted to the following problem: Given
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a query tweet tq and a user ui, how to predict the corre-

sponding retweeting label yi; yi 2 Y?

We design a deep neural network FEBDNN to combine

user embedding (including surface attribute features, tem-

poral information, group-aware retweeting factor) and

tweets embedding (including the user’s historical tweets

and the author’s historical tweets). It has the following

steps:

(1) For user embedding, we first extract the user basic

features, temporal information and social influence

between the user and the author, and denote them as

vu. Next, we extract these features from the user’s

first-order and second-order neighborhood

N,uk 2 N; k 6¼ i, and average these features as vu.

Then, to incorporate the group retweeting factor into

the user embedding, we propose a DAE (dual auto-

encoder) network to obtain the joint representation

for vu and vu.

(2) For tweeting embedding, we propose

A_F_BLSTM_CNN to embed the content of the

author’s historical tweets and the user’s historical

tweets. We utilize BLSTM before CNN model to

exploit previous and future context with respect to

current position for sequence learning in both the

forward and backward direction in two layers, and

utilize an attention mechanism to generate attention

probabilities for different tweets.

(3) After extracting the user embedding features and the

tweets embedding features, we employ a concatena-

tion layer to combine the information from the

following vectors:

V ¼ c½ve u; ~v
a
h; ~v

u
h�; ð1Þ

where ve u is the user embedding vector, ~vuh is the

embedding of user’s historical tweets, and ~vah is the

embedding of author’s historical tweets. We design a

hidden layer and a fully connected softmax layer to predict

the retweeting label. In this way, the problem of retweeting

prediction problem is converted to a binary classification

problem.

Figure 1 shows the framework of our method. In the

following, we introduce how to generate the features

ve u,~v
u
h and ~vah.

3.1 User embedding

To effectively get a high-quality representation of the

users, we need to analyze the user features that may affect

the user’s retweeting behavior from different perspectives.

Most of recent studies only extract user’s basic surface

features, such as the number of followees, the number of

posts and temporal information, but ignore implicit social

influence features and group retweeting factor. In the fol-

lowing, we will introduce how to get an embedding space

for these features.

3.1.1 User attributes and temporal information

Most social networks allow one user to follow the other

users. When user ui follows uj, ui can retweet a tweet that is

published (or retweeted) by uj. ui can be considered as the

follower of uj, and uj can be considered as the followee of

ui. User attributes mainly include the number of followees,

the number of followers, the total number of tweet, the

number of retweeted tweets, the authentication label and

the degree of retweeting activity, which can be obtained

directly from the user data. These features are denoted as

n1; n2; n3; n4; n5; n6, respectively. The degree of retweeting

activity n6 is defined as the ratio of the number of

retweetings within a certain period to the total number of

tweets. It can measure the user’s tendency to retweet. We

concatenate these feature after standardization by the fol-

lowing equation:

f 0 ¼ f � fmin

fmax � fmin

; ð2Þ

where f represents the original features, fmin and fmax rep-

resent the min value and the max value of one kind of

features. It has to be noted that we do not standardize n5
and n6 since they are already in the range of [0,1]. The

steps can be shown in Fig. 2.

Besides the above features, the temporal information is

also an important factor for our task. It has been reported

that one new tweet is usually retweeted in 24 h or smaller

Fig. 1 The architecture of the FEBDNN model
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time period after its first publication, and after that the

retweeting number decreases apparently [13]. Concerning

the ideas of ‘‘earliest influence,’’ ‘‘recent influence’’ and

‘‘average influence’’ in sociology, we extract four temporal

information. The first one is the time span between the time

when the tweet is published and the time when the user

wants to predict, we denote it as s1; The second one is the

time span between the time when the tweet t is published

and the first time when the user posts a tweet after t’s

publishing, we denote it as s2; The third one is the time

span between the time when the tweet is published and the

most recent time when the user posts a tweet, we denote it

as s3; The last one is the time span between the time when

the tweet’s published and the time when the user’s active

neighbors retweet the tweet, we denote it as s4. We set s4 as

a 20-dimensional vector. Specifically, we randomly select

20 active neighbors to record the time span. If the user does

not have 20 neighbors or the neighbor does not retweet the

tweet, we fill in the vector with 0. We concatenate these

features after standardization by Eq. (2).

3.1.2 Social influence

Social influence means the dependency of the retweeting

behavior between two users, which is also an important

factor for the retweeting behavior. As shown in Fig. 3, u1
follows the users u6; u7; u8; u9. It is obvious that the

behavior of u1 will be influenced by the behavior of

u6; u7; u8; u9 if they have similar topic preference. This

factor has been considered as explicit influence in many

recent studies [35, 36]. Actually, there exist some implicit

social relations between these users that play an important

role in influencing one users’ behaviors. For example, if

u1; u2; u3; u4; u5 have one or more common followees, they

may tend to have similar retweeting behavior. If two users

follow more common followees, more similar retweeting

behaviors can be observed. We name this ‘‘co-follow’’

relation as common following degree. Similarly, if two

users have retweeted the same tweets before, they tend to

retweet the same tweet in the future. We name this ‘‘co-

retweet’’ relation as common retweeting degree. The user

group fu1; u2; u3; u4; u5g having ‘‘co-follow’’ relationship

and the user group fu1; u10; u11; u12; u13g having ‘‘co-

retweet’’ relationship tend to retweet the same tweets.

Besides, if two users follow each other, they are more

likely to retweet the same tweet. We name this relation as

mutual following degree. If two users have retweeted each

other’s tweet more frequently, they are more likely to have

similar topic preference and therefore are more likely to

retweet the same tweet in the future. We name this relation

as mutual retweeting degree. To effectively obtain the user

embedding, we should consider both explicit and implicit

social influence. In the following, we will introduce how to

calculate these factors.

(1) Topic preference similarity

If two users ui and uj have similar topic prefer-

ence, they tend to have a similar retweeting behavior

for one tweet t. Due to the sparsity of short tweets,

we perform topic analysis on aggregated user history

[37]. We aggregate the historical tweets of user ui as

the document di and aggregate the historical tweets

of user uj as the document dj, and then we utilize

standard LDA (Latent Dirichlet Allocation) model to

calculate the probability distribution of top 30 topics

between di and dj. Next, we use cosine similarity to

calculate the topic similarity for the top 30 topics.

After that, we can get a 30-dimensional topic

preference feature vector.

Fig. 2 The steps of user attribute extraction

Fig. 3 Social influence between two users
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(2) Mutual following degree and common following

degree

We set the mutual following degree to 1 if two

users ui and uj follow each other, and set the mutual

following degree to 0 if they do not follow each

other.

When two users follow a large number of

identical users, they are more likely to retweet the

same tweet simultaneously. Thus, the common

following degree between two users is defined as

the ratio of the number of their common followees to

the total number of their followees, which is defined

as follows:

Cij ¼
Ui \ Uj

Ui [ Uj
; ð3Þ

where Ui denotes the number of ui’s followees.

(3) Mutual retweeting degree and common retweeting

degree

If two users ui and uj have retweeted each other’s tweet

more frequently, they are more likely to retweet the same

tweet in the future. The mutual retweeting degree between

two users can be defined as:

Rij ¼ max
Tij
Ti

;
Tji
Tj

� �
; ð4Þ

where Tij indicates the number of uj’s tweets retweeted by

ui, Ti indicates the total number of tweets retweeted by ui.

Equation (4) shows that if Rij is higher, ui and uj are more

likely to retweet each other’s tweets.

The number of tweets retweeted by two users measures

their common interest and their retweeting tendency. The

common retweeting degree can be calculated as the ratio

between the common retweeting number and the total

number of their retweeting number, which is defined as:

Mij ¼
Ti \ Tj
Ti [ Tj

: ð5Þ

Except for the above features, we also extract some

content information in tweets, such as the number of times

that the query tweet is retweeted, whether the query tweet’s

content contains URL, pictures, videos or @, hot topic

label, etc. These specific information cannot be extracted

directly in tweet content embedding space, but can affect

the user’s tweeting intention. After extracting the above

features, we concatenate these features as vu after stan-

dardization. Table 1 lists the details of three kinds of basic

features.

3.1.3 Dual auto-encoder (DAE) network

After extracting the above features, we obtain a k-dimen-

sional basic attribute space vu. However, besides these

attributes, group retweeting behavior also has an important

impact on the prediction of one user’s retweeting behavior.

As shown in Fig. 3, the retweeting behavior of u1 will not

only be affected by the connected users, but can also be

affected by some indirectly connected users, such as the

users (u2 and u3) from the second-order neighborhood. In

other words, the user retweeting behavior on social net-

works has global influence between two users. If many

user’s friends retweet a tweet, he will probably retweet it

too, although he is not interested in it. We name this kind

of potential influence as group retweeting factor. However,

the existing prediction models often ignore this factor,

which makes it difficult to obtain a high accuracy. To

incorporate the group retweeting factor into our model, we

first average the basic attributes of the users from ui’s first-

order and second-order neighborhood, and denote it as vu.

Then, we design a dual auto-encoder network DAE net-

work to extract the fusion embedding for vu and vu. Based

on the above analysis, we can see that the user embedding

features in our model contain implicit local and global

structural information, which comes from the social influ-

ence between two users and the average feature vector

calculated from the user’s first-order and the second-order

neighborhood.

The DAE network, which extends from a traditional

deep auto-encoder model, is designed as a two-input and

two-output network with a common fully connected hidden

layer. The architecture of the DAE network is shown in

Fig. 4. It uses two separate deep encoders and two separate

decoders. In this way, the attribute information vu and vu
are tightly inter-connected, which ensures that the low-

dimensional embedding feature space can preserve the

attributes from both the user and his neighbors. In this way,

some features that reflect the group retweeting prior can

also be preserved and incorporated into the output of DAE

network. As shown in Fig. 4, the encoder part contains the

layers fh1l ; h1r ; h2g, the decoder part contains the layers

fĥ1l ; ĥ
1

r ; ĥ
2g.

The right part of DAE network is the encoding for the

user attribute vector vu, and the left part is for the user’s

neighborhood attribute vector vu. Take vu for example, the

latent representation vectors for vu are represented as h1l
and h2 in the combination module. The differences

between our model and traditional auto-encoder are the

combination part and the dispatch part. The combination

part combines the node attribute vectors from the user and

his neighborhood, which can preserve both of their attri-

bute proximity. The dispatch part dispatches the
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embedding vector ve u back to the hidden vectors, which

are represented as ĥ
2
and ĥ

1

l . Formally, the relationship

between these layers in the encoder module can be repre-

sented as follows:

h1l ¼ rðW1
l va þ b1l Þ

h1r ¼ rðW1
rvu þ b1r Þ

h2 ¼ rðW2
l h

1
l þ b2l þW2

rh
1
r þ b2r Þ

ve u ¼ rðW3h2 þ b3Þ

8>>>><
>>>>:

ð6Þ

where rð�Þ denotes a nonlinear activation function, and we

utilize tanh function in our experiments. Wm and bm denote

the weight matrix and bias vector in the m - th layer. For

example,W1
l represents the weight matrix in the hidden

layer 1 in the left part of DAE network.

During the decoder module, we input the embedding

vector ve u and reconstruct vu to v̂u,vu to v̂u. The rela-

tionship between the layers in the decoder module can be

represented as follows:

ĥ
2 ¼ rðŴ3

ve u þ b̂
3Þ

ĥ
1

l ¼ rðŴ2

l ĥ
2 þ b̂

2

l Þ

ĥ
1

r ¼ rðŴ2

r ĥ
2 þ b̂

2

r Þ

v̂u ¼ rðŴ1

l ĥ
1

l þ b̂
1

l Þ

v̂u ¼ rðŴ1

r ĥ
1

r þ b̂
1

r Þ

8>>>>>>>>><
>>>>>>>>>:

: ð7Þ

The meaning of the variables in the above equations is

similar to the variables in Eq. (6). Each auto-encoder

should make sure that the input feature vector has to be as

similar to the reconstruction space as possible. To train the

DAE network, we need to minimize the distance L between

the input vectors and its reconstructions for all the instan-

ces in the network.

L ¼
X
i

viu � v̂
i

u

��� ���2þ viu � v̂iu
�� ��2� �

: ð8Þ

Table 1 The details of basic features

Number Category Information

1 User attributes The number of followees

2 The number of followers

3 The authentication label

4 The number of tweets

5 The number of retweeted tweets

6 The degree of retweeting activity

7 Temporal

information

The time span between the time when the tweet is published and the time when the user wants to predict

8 The time span between the time when the tweet t is published and the first time when the user posts a tweet after

t’s publishing

9 The time span between the time when the tweet is published and the most recent time when the user posts a tweet

10 The time span between the time when the tweet’s published and the time when user’s active neighbors retweet

the tweet

11 Social influence Topic preference similarity between the user and the author

12 Mutual following degree between the user/the user’s active neighbors and the author

13 Common following degree between the user/the user’s active neighbors and the author

14 Mutual retweeting degree between the user/the user’s active neighbors and the author

15 Common retweeting degree between the user/the user’s active neighbors and the author

Fig. 4 The architecture of DAE model
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3.2 Tweets embedding

3.2.1 The overview of A_ F_BLSTM_CNN

It has been proved that CNN can obtain good performance

for embedding local semantic information for short texts.

However, a short tweet tends to contain context semantic

information and apparent sequential features, which cannot

be captured only by CNN model. Therefore, we propose an

attention-based F_BLSTM_CNN(A_F_BLSTM_CNN)

network combining BLSTM [38] and CNN to encode the

content of the author’s historical tweets and the content of

user’s historical tweets. Besides, not all of history tweets

contribute equally to the embedding of user interests. Thus,

to model the representation of user’s historical tweet, we

introduce an attention mechanism to achieve the different

weights for different tweets in history memory. Figure 5

shows the architecture of the A_F_BLSTM_CNN model.

This model can take the historical tweets from the author/

user and the query tweet as input. In Fig. 5, t1; t2; :::; tN
represents user/author history,vq is the embedding of the

query tweet, v1; v2; :::; vN are the embedding vectors of

t1; t2; :::; tN , ~v
�
h is the final representation for user/author’s

historical tweets.

3.2.2 Model construction

There are several steps to encode tweets in the user/au-

thor’s historical tweets. A tweet can be represented as a

sequence of words t ¼ fw1;w2; :::;wng, where n is the

number of words. We summarize the steps of

A_F_BLSTM_CNN construction in Algorithm 1.

Fig. 5 The architecture of the A_F_BLSTM_CNN model
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In the following, we describe each step in detail.

Firstly, each word wi can be mapped into a word vector

ei through word2vec model and keep them static. In each

tweet matrix, each column is a feature vector and repre-

sents a word. The feature matrix of tweet t can be denoted

as:

t ¼ e1 � e2 � � � � � en: ð9Þ

In this way, we obtain a word-level representation for

the tweet t.

Secondly, we employ BLSTM for further embedding for

the tweet t to get a high-quality representation t0, which can
ideally model complex semantics of word use and poly-

semy. LSTM (long short-term memory) is a specific RNN

model, which uses three multiplicative gates to solve the

gradient vanishing and gradient exploration problem in

RNN. It has been reported that BLSTM can better under-

stand both the future and the past context information, and

it is suitable to be used on short tweets [39]. BLSTM is

composed of two LSTM models, one of which processes

the context features forward, while the other processes the

context features backward. The architecture of the further

embedding learning for tweet content is shown in Fig. 6.

We take the word et as input and outputs hidden states ht
and h0t, which can be represented as follows:

ht ¼ LSTMf ðet; ht�1Þ; ð10Þ

h0t ¼ LSTMbðet; h0tþ1Þ: ð11Þ

Finally, we concatenate the forward hidden states and

the backward hidden states after BLSTM modeling:

wt ¼ ½ht; h0t�; ð12Þ

where ht is the forward output of BLSTM,h0t is the back-

ward output of BLSTM. In this way, each word can obtain

different embeddings in different context sentences and can

disambiguate the meaning of words using their context.

Thus, the embedding for tweet can be represented as:

t0 ¼ w1 � w2 � � � � � wn: ð13Þ

Thirdly, we design a convolutional layer to extract local

features for the input representation matrix. We generate a

filter matrix m 2 Rl�k, where l means the window size and

k is the dimension of word vector wi. For example, we can

use the following equation to generate a new feature for

wj:jþl�1 with window size l:

aj ¼ rðm � wj:jþl�1 þ bÞ; ð14Þ

where b is a bias term,r is a nonlinear function. We use

ReLu function in our experiments. We employ m to dif-

ferent continuous parts of the feature matrix

fw1:l;w2:lþ1; � � � ;wn�lþ1:ng to generate a feature vector a:

Fig. 6 BLSTM for tweets embedding

˜

˜
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a ¼ ½a1; a2; :::; an�lþ1�: ð15Þ

The length of the output of pooling layer depends on the

number of words in the tweet t. We need to combine the

tweet embedding feature with other features to generate a

global feature vector. Thus, we need a fixed length for the

tweet encoded features. To solve this problem, we use max

pooling operation to extract the max value for each a. In

this way, the most important feature can be extracted by

keeping the highest value.

â ¼ maxða1; a2; :::; an�lþ1Þ: ð16Þ

We vary the window size and obtain several filters for

each size to obtain multiple features. These features are

concatenated into a fixed length feature vector

z ¼ ½â1; â2; :::; âm�(note that here we have m filters). Thus,

the output of the pooling layer is a feature vector with a

fixed length.

Finally, to make full use of rich features obtained from

the pooling layer, we use a nonlinear full connection hid-

den layer and set tanh as the activation function to make

the output embedding space and the user embedding space

in the same range. The output embedding vector is denoted

as vi,vi 2 Rd.

Following the above steps, we get an embedding vector

for each tweet in user/author’s historical tweets. However,

not all tweets in the user/author’s history contribute equally

to the modeling of history embedding. Thus, we utilize an

attention mechanism to get a new representation of user/

author’s historical tweets ~v�h based on the tweet’s attention

probability distributions. We use the query tweet’s

embedding vector vq to query the representations of each

history tweet and generate attention probabilities over the

author’s tweet histories and the user’s tweet histories:

sNh ¼ ðWq
hvqÞ

TWN
h v

N ; ð17Þ

ahN ¼ softmax shN=
ffiffiffiffiffi
dk

p� �
; ð18Þ

~v�h ¼
XN
i¼1

ahi v
i; ð19Þ

where N is the number of historical tweets of the user/

author, vN 2 Rd�N is the embedding matrix for all tweets, �
denotes the user or the author’s historical tweets and

ffiffiffiffiffi
dk

p

denotes the scaling factor,Wh
q 2 Rdk�d,dk\d.

3.3 Training

After the above features are extracted, we use a concate-

nation layer to combine different features. Then, we design

a nonlinear hidden layer to make full use of the features

obtained from the concatenation layer. This layer can be

represented as follows:

h ¼ rðwc � c½ve u; ~v
a
h; ~v

u
h� þ bÞ; ð20Þ

where wc is the parameter matrix,b is the bias term, r is a

nonlinear function, which is designed as tanh function. We

also utilize dropout for the regularization by randomly

setting the elements in feature vector to zero with proba-

bility p.

We define all parameters in our model as h. It has to be

noted that the user embedding is designed as an extension

of Auto-encoder, which can be trained independently under

an unsupervised way. Thus, the parameters in DAE net-

work are not included in h. For the training feature set

xi 2 X, and its corresponding tweeting label set

Y ¼ fy1; y2; :::ymg, the network needs to calculate a value

sðyiÞ for each xi, then we use a softmax function operation

to convert this value to a probability distribution:

pðyi ¼ jjxiÞ ¼
expðsðyiÞÞP
k expðsðykÞÞ

sðyiÞ ¼ Wj � hi þ bj;

ð21Þ

where yi 2 f0; 1g.Wj denotes the weight vector for i-th

class. The objective of our training process is to minimize

the following log-likelihood function:

h� ¼ argmin
X
xi2X

� logðpðyijxiÞÞ: ð22Þ

We utilize mini-batch SGD [40] to optimize the training

process. The details of some hyper-parameter are discussed

in Sect. 4.3.4.

4 Experiments

4.1 Datasets

We conducted several experiments on the following two

datasets:

1. Sina Weibo dataset [13]

This dataset contains 1,787,443 core users and their

social relationships. Each user has 1000 most recent

microblogs for each user. Each microblog contains id,

original microblog id, user id, author id, content, time and

so on. The original microblog id indicates whether

microblog is retweeted or not. The user attributes include

name, gender, verification status, #followers, #followees,

creating time and so on.

2. Twitter

We collected a new corpus by ourselves for validation

from Twitter API.1 We randomly select several users from

1 https://developer.twitter.com.
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Twitter and iteratively collect their followers and fol-

lowees. We get 400 historical tweets posted by each user.

Then we remove some non-English tweets, the tweets less

than five words and the tweets contain some unexplainable

characters. We finally collect 5213 users for training and

testing. Each user contains 300 historical tweets. Each

tweet contains id, original tweet id, author id, user id,

content, time and so on. The user attributes include screen

name, account name, location, #followers, #followees,

individual resume, creating time and so on.

Suppose that ui is uk’s follower, if ui retweets the

microblog in the dataset, we consider it as a positive

instance; if ui is not observed to retweet the microblog

posted by uk, we consider it as a negative sample.

4.2 Experiment settings

FEBDNN model contains several hyper-parameters. We

set them empirically in our experiment. Table 2 shows the

details of some crucial hyper-parameters. The details of

some crucial parameters analysis is provided in Sect. 4.3.4.

The experiments were implemented by using Python,

Keras library and Tensorflow.

The complexity of A_F_BLSTM_CNN contains three

parts, which are CNN part, BLSTM part and Attention part.

The complexity of CNN part is O½M2 � ðl � kÞ � cin � cout�,
where M is the size of the output feature map,l � k is the

size of filter, cin is the number of units in input layer, cout is

the number of units in output layer. The complexity of

BLSTM part is determined by the number of cell blocks,

the size of cell blocks, the number of hidden units, etc.

Since we directly utilize Keras library to implement

BLSTM part, we use W to denote the total number of

weights optimized in the network. Thus, the complexity of

BLSTM can be denoted as OðWÞ. The complexity of

Attention part is OðN � d3Þ, where N is the number of

historical tweets of the user/author,d is the embedding

dimension.

The DAE network is trained independently. 5 hidden

layers are set in the DAE network, including two hidden

layers in encoder module, two hidden layers in decoder

module and one fusion hidden layer. The embedding size

of ve u is 64. The batch size in DAE network is set to 50

for both two datasets. We use word2vec model to train the

word embedding for each tweet. The metric for our eval-

uation contains precision, recall and F1_score.

To validate the effectiveness of our algorithms, we

conducted several experiments:

(1) To evaluate the performance influenced by several

factors, we conducted several experiments with a

single factor, such as the user embedding, the user

embedding without group retweeting factor, tweets

embedding, tweets embedding without BLSTM

module;

(2) Performance comparison on retweeting prediction

between FEBDNN and other state_of_the_art

algorithms;

(3) Performance comparison on retweeting path predic-

tion between FEBDNN and other baseline

algorithms.

To support the above experiments, we compared our

framework with other traditional and state-of-the-art

methods:

(1) SVM: We extract the user basic features, temporal

information and social influence between the user

and the author, and denote them as vu. Next, we

extract the average features from the user’s first-

order and second-order neighborhood

N,uk 2 N; k 6¼ i, and denote them as vu. Then, we

average the embedding vectors of all the words as

the feature vector of the tweet and also average all

the tweets’ embedding vectors for the user/author’s

historical tweets. Finally, we use these features to

train a SVM model to make a prediction.

(2) LR: We implement the algorithm proposed in [41],

which uses Logistic Regression algorithm to clas-

sify each tweet as positive or negative. The tweets

are encoded by TF-IDF, and all the tweets’

embedding vectors are averaged as the user/

author’s historical tweets. Similar to the SVM, we

consider the same information to train a LR model

to make a prediction.

Table 2 Hyper-parameters
Parameter Sina dataset Twitter dataset

Filter sizes [1,2] [1,2,3]

Feature maps 100 for each filter size 100 for each filter size

Dropout rate 0.5 0.5

Learning rate 0.01 0.01

The dimension of word embedding 300 300

The dimension of tweet embedding 100 100

The batch size 60 50
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(3) BERT: The BERT pre-trained language model2 is

learned based on large-scale corpora and can

calculate context representation for each word and

enhance the representation ability for each sen-

tence. In our task, we need to use BERT to get the

embedding space for the user history and the author

history. Firstly, we input each tweet into BERT to

get the embedding space by using the CLS-token

output. We use 12-layer BERT-base model in our

experiment. In this model, the train-batch-size is set

to 16, the learning rate is set to 0.0001, and the drop

out rate is set to 0.5. Then, we use the attention

mechanism to obtain the embedding of user/author

history ~v�h. The following steps are the same as in

our model.

(4) ASC-HDP [11]: In this method, we combine user

attributes, author attributes and content information

to generate this topical model. We also average the

embedding vectors of all the words in a tweet as the

content information. We use the source code

released in original paper.

(5) C_RBF [18]: In this model, we design a RBF neural

network with cloud model to predict user’s

retweeting behavior. The cloud model is combined

to optimize the activation function in the hidden

layers of RBF model. The input of the model is set

to the features used in our model. We obtain the

source code released in original paper.

(6) AUT-MSAM [31]: This model utilizes a novel

masked self-attentive model and a hierarchical

attention mechanism to jointly perceive hot topics

and user interests. We calculate the history interests

similarity between author and user in our experi-

ment, and randomly sample 30 tweets from users’

history, and set the parameters as the default values

in the original paper.

(7) DAE_UE: DAE_UE is designed as a variant of

FEBDNN to test the performance of user embed-

ding features. In this method, we remove the tweet

encoding and the group retweeting factor, so that

the DAE module is converted to a traditional auto-

encoder network to embed the user feature vu, not

including vu. Then, the output embedding vector is

directly set as the input of a MLP.

(8) DAE: Based on DAE_UE, this method adds the

factor of group tweeting prior in the user embed-

ding process. The architecture of DAE can be seen

in Fig. 4.

(9) A_F_BLSTM_CNN: This is the attention-based

F_BLSTM_CNN in our paper. The architecture of

A_F_BLSTM_CNN can be seen in Fig. 5. In this

method, we only concatenate user history embed-

ding feature and author history embedding feature

in Eq. (20).

(10) F_CNN: F_CNN is designed as a variant of

A_F_BLSTM_CNN to test the performance of

history tweet encoding only by CNN model. We

remove the BLSTM part in A_F_BLSTM_CNN.

4.3 Experimental results

4.3.1 Performance on different factors

To evaluate the performance influenced by a single factor,

we conducted several experiments by DAE_UE, DAE,

F_CNN, A_F_BLSTM_CNN and FEBDNN, respectively.

For two datasets, since the ratio between the positive

samples and the negative samples is unbalanced, we sam-

pled a balanced dataset with a ratio of 1:1. Specifically, we

randomly sampled a negative sample for each positive

sample. We evaluated our performance in terms of preci-

sion, recall and F1_score.

Table 3 shows the performance on the variants of

FEBDNN. These experimental results show that

A_F_BLSTM_CNN obtains better performance than DAE.

It means that the tweets embedding module for the query

tweet and user/author’s historical tweets plays a more

important role for our prediction task. DAE obtains a little

improvement over DAE_UE (? 3.20% in terms of F1 on

Sina, ? 5% in terms of F1 on Twitter), which demonstrates

that incorporating group tweeting prior factor into DAE

model can improve the prediction performance.

A_F_BLSTM_CNN performs better than F_CNN on both

two datasets. This is due to that A_F_BLSTM_CNN

implements BLSTM for further embedding on the micro-

blogs/tweets, which can model the complex semantic of the

words and obtain a better representative embedding vector.

Compared with the methods based on a single factor, we

can see a clear improvement on FEBDNN when we com-

bine the user embedding feature and the tweets embedding

feature together. This indicates that all of these factors can

Table 3 Prediction performance of the variants of FEBDNN

Methods Sina Twitter

Prec Rec F1 Prec Rec F1

DAE 0.722 0.654 0.686 0.723 0.623 0.669

DAE_UE 0.691 0.622 0.654 0.644 0.596 0.619

F_CNN 0.681 0.624 0.651 0.628 0.587 0.607

A_F_BLSTM_CNN 0.745 0.695 0.719 0.753 0.621 0.681

FEBDNN 0.784 0.761 0.772 0.772 0.759 0.765

2 https://github.com/google-research/bert
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contribute a lot on predicting retweet behavior, and

FEBDNN is indeed an effective way to incorporate these

factors into a unified framework. Also, FEBDNN improves

a lot on recall, this demonstrates that the extracted

embedding features can detect more potential positive

instances.

4.3.2 Performance on different methods

We compared FEBDNN with other traditional and sta-

te_of_the_art methods, such as SVM, LR, BERT, ASC-

HDP, C_RBF and AUT-MSAM. The results are shown in

Fig. 7.

As shown in Fig. 7, it is clear that FEBDNN performs

best compared with other methods. The performance of

SVM and LR model is unsatisfactory. They only use the

original feature vector as the input without embedding

analysis, which cannot catch the good representation of

features. The results of BERT-only model can achieve

better results than SVM and LR model. This is because the

BERT model can achieve high-quality embedding space,

which can represent word syntax, word semantics and

place ambiguous words into distinct embedding space.

Compared with BERT, FEBDNN produces about 5.8%

improvement on F1 on two datasets. This demonstrates that

A_F_BLSTM_CNN can obtain better representative

embedding space than BERT. This may due to that the

embeddings from the pre-trained Bert cannot suit very well

for our task, and the tweeting embedding based on CLS-

token output cannot capture complex semantic information.

Compared with ASC-HDP, FEBDNN produces about 15%

improvement on F1_score. ASC-HDP only uses the user

basic features and content information to generate a topical

model and neglects the group retweeting factor and the

social influence. Actually, the social relationships between

users will cause mutual influence on their retweeting

behaviors and will even change the user’s own interests

and cause the local consistency of the users’ retweeting

behavior. Thus, it is important to incorporate the social

influence and the group retweeting factor into user

embedding analysis. Compared with AUT-MSAM,

FEBDNN produces about 4.3% improvement on F1_score.

This shows that considering users’ interest similarity can-

not obtain better performance than the perspective of user

embedding and effective tweet encoding. Also, AUT-

MSAM cannot reflect the factor of group retweeting factor

and social influence between the user and the author, which

may lead to an unsatisfactory result.

Compared with C_RBF, FEBDNN produces about 5.8%

improvement on F1_score. Although C_RBF is designed as

a deep neural network model, and it incorporates cloud

model to model the ambiguity and randomness for the

relationships between the features and user behaviors, the

features are extracted without embedding analysis, which

would result in a decrease in precision and recall. The

results also show that the perspective of the embedding

analysis for user features and tweet features can apparently

benefit our performance.

4.3.3 Prediction of retweeting path

In order to verify the performance of our algorithm in

social network message diffusion, we also conducted some

experiments on the tweet retweeting path prediction. When

a tweet is retweeted by several cascade users until no user

retweets the tweet, we define these cascade users as a

cascade set ci ¼ fu1; u2; :::; ujcijg.jcij is the length of the

retweeting path. For this retweeting path, the prediction is

Fig. 7 The experimental results on different methods
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successful when the retweeting behaviors of all users are

all accurately predicted.

We compared our method with BERT model and

information diffusion model FOREST [42] and SNIDSA

[43]. If a tweet is retweeted by several cascade users, it can

be considered as a kind of information diffusion. FOREST

combines GRU model and structural context information,

which comes from user attributes and structural informa-

tion extracted by neighborhood sampling [44]. We imple-

ment RNN-based microscopic diffusion prediction

objective for our task, which predicts the next infected user

who may retweet the tweet given last m infected users who

have retweeted the tweet. The window size m is set to jcij-1
in our experiment. SNIDSA employs RNN to model the

sequential information and incorporates the attention

mechanism into RNN to capture the diffusion context. The

experimental results are shown in Table 4. It has to be

noted that if we want to predict the retweeting path with

jcij= 3, it has to be conducted based on the retweeting path

with jcij= 2.

As shown in Table 4, FOREST outperforms SNIDSA

and performs an average improvement of 7.1% on two

datasets. This is due to the encoding of structural context in

FOREST, which considers second-order neighborhoods

while SNIDSA only considers the first-order neighbor-

hoods. BERT and FEBDNN can achieve better perfor-

mance than information diffusion models. FEBDNN

performs best. It consistently outperforms other methods,

except for the long prediction path(jcij ¼ 6). This result can

demonstrate that the systemically combination of basic

features, social influence and group-aware retweeting fac-

tor can achieve better prediction performance, while

FOREST and SNIDSA only consider attribute and struc-

tural information. Furthermore, the user embedding fea-

tures in our model contain implicit local and global

structural information, which comes from the social influ-

ence between two users and the average feature vector

calculated from the user’s first-order and the second-order

neighborhood.

4.3.4 Parameter analysis

The parameters in our model are mostly included in the

DAE part and the A_F_BLSTM_CNN part. The DAE part

Table 4 The performance of the

prediction of retweeting path
jcij Sina Twitter

BERT FEBDNN FOREST SNIDSA BERT FEBDNN FOREST SNIDSA

2 0.705 0.784 0.683 0.619 0.719 0.772 0.706 0.628

3 0.591 0.628 0.532 0.502 0.547 0.642 0.523 0.498

4 0.497 0.542 0.458 0.386 0.428 0.489 0.462 0.422

5 0.402 0.437 0.351 0.317 0.392 0.417 0.387 0.310

6 0.307 0.325 0.213 0.192 0.201 0.302 0.305 0.215

Fig. 8 Performance on different window sizes
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is trained independently, we do not discuss this part in this

subsection. The A_F_BLSTM_CNN part has several

important hyper-parameters. They are: (1) the window size

of the filter mask; (2) the tweet embedding size; (3) the

batch size. When we evaluate one parameter’s perfor-

mance, the other parameters are set to an optimal value.

Based on the experimental results, we can observe that the

proposed model could achieve stable performance, in the

condition of various parameter settings.

Figure 8 lists the performance on different window sizes

of filter masks in tweet embedding. Firstly, we set the

window size to [1–4] to test the performance on different

window sizes, respectively. Then we test the performance

on a serial of the combinations (1,2), (1,2,3), (1,2,3,4),

(2,3), (2,3,4). From the results of a single window size, we

find that when the window size is set to 3 on Twitter

dataset, it gets the best performance. This is because that

the window size 3 can catch the information from trigrams,

and the window size 1 and 2 mean that the encoding steps

focus on unigrams and bigrams, respectively. Trigrams

may contain more semantic and context information.

However, when the window size is set to 2 on Sina dataset,

it gets the best performance. This is because the semantic

structure in Chinese words is different with the semantic

structure in English words. From the results of the com-

binations, we find that the window size (1,2,3) gets the best

performance on Twitter dataset, and the size (1,2) gets the

best performance on Sina dataset.

Figure 9 shows the performance of different embedding

sizes of the tweet. We vary the size from 50 to 200 for both

Fig. 9 Influence of the embedding size

Fig. 10 Influence of the batch size
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two datasets. The results in Fig. 9a show that the embed-

ding size 100 gets the best performance on Sina dataset.

We can get better results when we increase the size from 50

to 100, and the results of the size 200 are worse than the

size 150. Thus, the embedding size 100 is good enough to

represent the tweet in semantic space. We can observe the

similar results on Twitter dataset.

Figure 10 shows the performance of different batch

sizes. It has been reported that the batch size for training

the neural networks should not be too big or too small. If

we set the batch size to the size of whole dataset, it may

cause the local optimal problem. Small batch size may

introduce gradient correction for the noise and more

probably to find the optimal value. In our experiments, we

vary the batch size from 10 to 100. As shown in Fig. 10,

the optimal batch size is different for different datasets. For

Sina dataset, the performance increases when we vary the

batch size from 10 to 60. However, we get worse perfor-

mance when the batch size is greater than 60. For Twitter

dataset, we can obtain the optimal batch size 50.

5 Conclusion

In this paper, we propose a novel integrated neural network

FEBDNN to predict the user retweeting behavior. Con-

sidering that most existing research focuses only on the

surface features or network structures, our method incor-

porates lots of necessary and important factors into a uni-

fied framework from the perspective of user embedding

and tweeting embedding. We propose a novel network

DAE to conduct the user embedding through the combi-

nation of surface features, social influence between the user

and the author and the group retweeting factor. The social

influence shows the topic similarity and both the explicit

and implicit structure influence between two users.

Besides, our work is the first exploration to incorporate the

group retweeting factor into our model. For tweet embed-

ding, we propose A_F_BLSTM_CNN to utilize an atten-

tion mechanism based on the combination of CNN and

BLSTM for deep representative embedding for history

tweets’ content, which can enhance the representative

ability for the tweets, and also can represent the interests of

the user and the author. Our method can not only catch the

user surface feature and tweet content features, but also

considers the structure information and group-aware

retweeting prior, which are very important supplementary

information for our task. Experimental results on two real

social networks show that our proposed unified model can

achieve better performance than state-of-the-art methods.

Besides retweeting, our model can also be applied to other

behaviors across social networks [45], such as liking,

commenting or favoriting.
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