Skip to main content
Log in

Surrogate modeling for spacecraft thermophysical models using deep learning

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Thermal modeling is a critical technology in spacecraft thermal control systems, where the complex spatially and temporally variable parameters used as inputs to the spacecraft usually result in long operation times, which hinders sensitivity analysis and control strategies. The uniqueness of both the space environment and the working conditions of each spacecraft, make thermal models differ in different space environments; thus, traditional thermal modeling methods that rely heavily on physical knowledge need to build more than one corresponding thermal model, and they also cannot generalize well. Therefore, an intelligent surrogate modeling strategy for spacecraft thermophysical models that uses deep learning, called SMS-DL, is proposed. An intelligent batch processing system for thermal analysis based on NX TMG Thermal Analysis was designed to automate the input of the thermal design parameters and the output of the thermal analysis results through macro-recording and playback using a state-of-the-art biconjugate gradient solver to provide superior speed, reliability, and accuracy, thus achieving a trade-off between high accuracy and low computational cost. One deep neural network based on Bayesian optimization was pre-trained using the thermal analysis data of the spacecraft in the source domain calculated using a batch processing system, which had a computational speed that was 1000+ times faster than that of the traditional thermophysical model and high computational accuracy of 99%+. Then, it was applied to the target domain with a limited amount of thermal analysis data using model fine-tuning. The theoretical and experimental results from the thermal analysis modeling of the near-ultraviolet radiation detector on the China Space Station Telescope developed in China demonstrated that deep transfer learning effectively adapted the pre-trained model from one working condition to another, improved the prediction accuracy by at least 86.4% over the direct prediction accuracy using the pre-trained model, and had better predictive performance than learning from scratch with only a limited amount of data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Miao J, Zhong Q, Zhao Q, Zhao X (2021) Spacecraft thermal control technologies. Springer, Singapore

    Book  Google Scholar 

  2. Meseguer J, Pérez-Grande I, Sanz-Andrés A (2012) Spacecraft thermal control. Elsevier, Cambridge

    Book  Google Scholar 

  3. Chin J, Panczak T, Fried L (1992) Spacecraft thermal modelling. Int J Numer Meth Eng 35(4):641–653. https://doi.org/10.1002/nme.1620350403

    Article  MATH  Google Scholar 

  4. Bulut M (2018) Thermal simulation software based on excel for spacecraft applications. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 6(4):592–600. https://doi.org/10.15317/Scitech.2018.154

  5. Zhong Y-f, Zhu M-b, Wei F (2006) Application of i-deas in thermal-analysis of spacecraft. Comput Eng Design 12. https://doi.org/10.16208/j.issn1000-7024.2006.12.066

  6. Panczak T, Rickman S, Fried L, Welch M (1991) Thermal synthesizer system: an integrated approach to spacecraft thermal analysis. SAE Trans 1851–1867

  7. Liu L, Sun S, Cao D, Liu X (2019) Thermal-structural analysis for flexible spacecraft with single or double solar panels: A comparison study. Acta Astronaut 154:33–43. https://doi.org/10.1016/J.ACTAASTRO.2018.10.024

    Article  Google Scholar 

  8. Lee S, Mudawar I, Hasan MM (2016) Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (tcs) for future spacecraft. Appl Therm Eng 100:190–214. https://doi.org/10.1016/j.applthermaleng.2016.01.018

    Article  Google Scholar 

  9. Shi R, Liu L, Long T, Liu J, Yuan B (2017) Surrogate assisted multidisciplinary design optimization for an all-electric geo satellite. Acta Astronaut 138:301–317. https://doi.org/10.1016/J.ACTAASTRO.2017.05.032

    Article  Google Scholar 

  10. Wu Z, Huang Y, Chen X, Zhang X, Yao W (2018) Surrogate modeling for liquid-gas interface determination under microgravity. Acta Astronaut 152:71–77. https://doi.org/10.1016/J.ACTAASTRO.2018.07.001

    Article  Google Scholar 

  11. Lal A, Raghunandan B (2005) Uncertainty analysis of propellant gauging system for spacecraft. J Spacecr Rocket 42(5):943–946. https://doi.org/10.2514/1.9511

    Article  Google Scholar 

  12. Zheng Y, Yan C, Zhao Y (2020) Uncertainty and sensitivity analysis of inflow parameters for hyshot ii scramjet numerical simulaiton. Acta Astronaut 170:342–353. https://doi.org/10.1016/J.ACTAASTRO.2019.12.020

    Article  Google Scholar 

  13. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. Wiley, London

    MATH  Google Scholar 

  14. Sun Y, Li F, Yang W, Yang J (2017) Thermal effects of optical antenna under the irradiation of laser. In: AOPC 2017: space optics and earth imaging and space navigation. International Society for Optics and Photonics, vol 10463, p 104631. https://doi.org/10.1117/12.2285378

  15. Putz B, Wurster S, Edwards TEJ, Völker B, Milassin G, Többens DM, Semprimoschnig CO, Cordill MJ (2020) Mechanical and optical degradation of flexible optical solar reflectors during simulated low earth orbit thermal cycling. Acta Astronaut 175:277–289. https://doi.org/10.1016/J.ACTAASTRO.2020.05.032

    Article  Google Scholar 

  16. Jiang Z, Lee YM (2019) Deep transfer learning for thermal dynamics modeling in smart buildings. In: 2019 IEEE international conference on Big Data (Big Data). IEEE, pp 2033–2037. https://doi.org/10.1109/BigData47090.2019.9006306

  17. Asher MJ, Croke BF, Jakeman AJ, Peeters LJ (2015) A review of surrogate models and their application to groundwater modeling. Water Resour Res 51(8):5957–5973. https://doi.org/10.1002/2015WR016967

    Article  Google Scholar 

  18. Buhmann MD (2000) Radial basis functions. Acta Numerica 9:1–38. https://doi.org/10.1017/S0962492900000015

    Article  MathSciNet  MATH  Google Scholar 

  19. Blanning RW (1975) The construction and implementation of metamodels. Simulation 24(6):177–184. https://doi.org/10.1177/003754977502400606

    Article  MATH  Google Scholar 

  20. Willcox K, Peraire J (2002) Balanced model reduction via the proper orthogonal decomposition. AIAA J 40(11):2323–2330. https://doi.org/10.2514/2.1570

    Article  Google Scholar 

  21. O’Hagan A (2006) Bayesian analysis of computer code outputs: a tutorial. Reliab Eng Syst Saf 91(10–11):1290–1300. https://doi.org/10.1016/j.ress.2005.11.025

    Article  Google Scholar 

  22. Stein ML (1999) Interpolation of spatial data: some theory for kriging. Springer, New York

    Book  Google Scholar 

  23. Bieker HP, Slupphaug O, Johansen TA (2007) Real-time production optimization of oil and gas production systems: a technology survey. SPE Prod Oper 22(04):382–391. https://doi.org/10.2118/99446-PA

    Article  Google Scholar 

  24. Yang D-C, Jang I-S, Jang M-H, Park C-N, Park C-J, Choi J (2009) Optimization of additive compositions for anode in ni-mh secondary battery using the response surface method. Met Mater Int 15(3):421–425. https://doi.org/10.1007/s12540-009-0421-0

    Article  Google Scholar 

  25. Mohammadi-Amin M, Entezari MM, Alikhani A (2018) An efficient surrogate-based framework for aerodynamic database development of manned reentry vehicles. Adv Space Res 62(5):997–1014

    Article  Google Scholar 

  26. Peter T (2018) Using deep learning as a surrogate model in multi-objective evolutionary algorithms. Otto-von-Guericke-Universität, Magdeburg

    Google Scholar 

  27. Chen X, Zhao X, Gong Z, Zhang J, Zhou W, Chen X, Yao W (2021) A deep neural network surrogate modeling benchmark for temperature field prediction of heat source layout. Preprint at https://arxiv.org/abs/2103.11177

  28. Hutzenthaler M, Jentzen A, Kruse T, Anh Nguyen T, von Wurstemberger P (2020) Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations. Proc R Soc A 476(2244):20190630. https://doi.org/10.1098/rspa.2019.0630

    Article  MathSciNet  MATH  Google Scholar 

  29. Hutzenthaler M, Jentzen A, Kruse T, Nguyen TA (2020) A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations. SN Partial Differ Equ Appl 1(2):1–34. https://doi.org/10.1007/s42985-019-0006-9

    Article  MathSciNet  MATH  Google Scholar 

  30. Grohs P, Hornung F, Jentzen A, Von Wurstemberger P (2018) A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations. Preprint at https://arxiv.org/abs/2103.11177

  31. Vasudevan RK, Ziatdinov M, Vlcek L, Kalinin SV (2021) Off-the-shelf deep learning is not enough, and requires parsimony, bayesianity, and causality. NPJ Comput Mater 7(1):1–6. https://doi.org/10.1038/s41524-020-00487-0

  32. Peng H, Wang W (2016) Adaptive surrogate model based multi-objective transfer trajectory optimization between different libration points. Adv Space Res 58(7):1331–1347. https://doi.org/10.1016/j.asr.2016.06.023

    Article  Google Scholar 

  33. Xiong Y, Guo L, Huang Y, Chen L (2020) Intelligent thermal control strategy based on reinforcement learning for space telescope. J Thermophys Heat Transfer 34(1):37–44. https://doi.org/10.2514/1.t5774

    Article  Google Scholar 

  34. Huang H, Xie X, Gu J (2020) Modelling and analysis of spacecraft external heat flux environment for the solar array. Spacecraft Environ Eng 37(3):275–279. https://doi.org/10.12126/see.2020.03.011

  35. Li J, Yan S, Cai R (2013) Thermal analysis of composite solar array subjected to space heat flux. Aerosp Sci Technol 27(1):84–94. https://doi.org/10.1016/j.ast.2012.06.010

    Article  Google Scholar 

  36. Huabin Y, Qingwen W, Liheng C, Fei H, Xusheng Z (2015) Calculation of external heat fluxes on space camera with changing attitudes frequently in geomagnetic coordinate system. Infrared Laser Eng 44(6):1923–1928

    Google Scholar 

  37. Pan SJ, Zheng VW, Yang Q, Hu DH (2008) Transfer learning for wifi-based indoor localization. In: Association for the Advancement of Artificial Intelligence (AAAI) workshop, vol 6. The Association for the Advancement of Artificial Intelligence Palo Alto

  38. Motiian S, Piccirilli M, Adjeroh DA, Doretto G (2017) Unified deep supervised domain adaptation and generalization. In: Proceedings of the IEEE international conference on computer vision, pp 5715–5725

  39. Conneau A, Kiela D, Schwenk H, Barrault L, Bordes A (2017) Supervised learning of universal sentence representations from natural language inference data. Preprint at https://arxiv.org/abs/1705.02364

  40. Muandet K, Balduzzi D, Schölkopf B (2013) Domain generalization via invariant feature representation. In: International conference on machine learning. PMLR, pp 10–18

  41. Xiong Y, Guo L, Tian D, Zhang Y, Liu C (2020) Intelligent optimization strategy based on statistical machine learning for spacecraft thermal design. IEEE Access 8:204268–204282. https://doi.org/10.1109/ACCESS.2020.3036548

    Article  Google Scholar 

  42. Peeters J, Van Houtte J, Martinez A, van Muiden J, Dirckx J, Steenackers G (2016) Determination of stratospheric component behaviour using finite element model updating. Aerosp Sci Technol 56:22–28. https://doi.org/10.1016/j.ast.2016.06.024

    Article  Google Scholar 

  43. Knutson KJ, Briggs C (2005) Innovative computing techniques for nx analysis and post processing to fill emerging needs

  44. Azarkish H, Rashki M (2019) Reliability and reliability-based sensitivity analysis of shell and tube heat exchangers using monte carlo simulation. Appl Therm Eng 159:113842. https://doi.org/10.1016/j.applthermaleng.2019.113842

    Article  Google Scholar 

  45. Chen X, Chen X, Zhou W, Zhang J, Yao W (2020) The heat source layout optimization using deep learning surrogate modeling. Struct Multidiscip Optim 62(6):3127–3148. https://doi.org/10.1007/s00158-020-02659-4

    Article  Google Scholar 

  46. Sun L, Gao H, Pan S, Wang J-X (2020) Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput Methods Appl Mech Eng 361:112732. https://doi.org/10.1016/j.cma.2019.112732

    Article  MathSciNet  MATH  Google Scholar 

  47. Marcelino P (2018) Transfer learning from pre-trained models. Towards Data Science

  48. Jasper Snoek RPA, Hugo Larochelle (2012) Practical bayesian optimization of machine learning algorithms. Preprint at https://arxiv.org/abs/1206.2944

  49. Inkawich N (2021) Finetuning Torchvision Models - PyTorch Tutorials 1.2.0 documentation. https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html. Accessed 29 Aug 2021

  50. Pan SJ, Tsang IW, Kwok JT, Yang Q (2010) Domain adaptation via transfer component analysis. IEEE Trans Neural Networks 22(2):199–210. https://doi.org/10.1109/TNN.2010.2091281

    Article  Google Scholar 

  51. Li W, Xiao M, Peng X, Garg A, Gao L (2019) A surrogate thermal modeling and parametric optimization of battery pack with air cooling for evs. Appl Therm Eng 147:90–100

    Article  Google Scholar 

  52. Fang K-T, Lin DK, Winker P, Zhang Y (2000) Uniform design: theory and application. Technometrics 42(3):237–248. https://doi.org/10.1080/00401706.2000.10486045

    Article  MathSciNet  MATH  Google Scholar 

  53. Box GE (1954) The exploration and exploitation of response surfaces: some general considerations and examples. Biometrics 10(1):16–60. https://doi.org/10.2307/3001663

    Article  Google Scholar 

  54. McKay MD, Beckman RJ, Conover WJ (2000) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1):55–61. https://doi.org/10.1080/00401706.2000.10485979

    Article  MATH  Google Scholar 

  55. Zhou W-H, Yuen K-V, Tan F (2013) Estimation of maximum pullout shear stress of grouted soil nails using bayesian probabilistic approach. Int J Geomech 13(5):659–664. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000259

    Article  Google Scholar 

  56. Xiong Y, Guo L, Yang Y, Wang H (2021) Intelligent sensitivity analysis framework based on machine learning for spacecraft thermal design. Aerosp Sci Technol 118:106927. https://doi.org/10.1016/j.ast.2021.106927

    Article  Google Scholar 

  57. Sheikholeslami R, Razavi S (2017) Progressive Latin hypercube sampling: an efficient approach for robust sampling-based analysis of environmental models. Environ Model Softw 93:109–126. https://doi.org/10.1016/j.envsoft.2017.03.010

    Article  Google Scholar 

  58. Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C (2018) A survey on deep transfer learning. In: International conference on artificial neural networks. Springer, pp 270–279

  59. Barnett SM, Ceci SJ (2002) When and where do we apply what we learn? A taxonomy for far transfer. Psychol Bull 128(4):612. https://doi.org/10.1037/0033-2909.128.4.612

    Article  Google Scholar 

  60. Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359. https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  61. Inc., TM (2021) MATLAB - MathWorks - MATLAB & Simulink. https://ch.mathworks.com/de/products/matlab.html?s_tid=hp_products_matlab. Accessed 6 Sept 2021

  62. Mallapaty S (2021) China’s space station is preparing to host 1000 scientific experiments. Nature 22(596):20–21. https://doi.org/10.1038/d41586-021-02018-3

    Article  Google Scholar 

  63. Zhan H (2019) An update on the Chinese space station telescope project. In: ISSI-BJ Workshop: Weak Gravitational Lensing Studies from Space Missions, Beijing, pp 270–279

  64. Zhan H (2018) An overview of the Chinese space station optical survey. In: 42nd COSPAR Scientific Assembly, Beijing, pp 1–16

  65. Xiong Y, Guo L, Tian D (2021) Application of deep reinforcement learning to thermal control of space telescope. J Therm Sci Eng Appl. https://doi.org/10.1115/1.4051072

    Article  Google Scholar 

  66. Mahan JR (2019) The Monte Carlo Ray-trace method in radiation heat transfer and applied optics. Wiley, West Sussex

    Book  Google Scholar 

  67. Michael D, Suderlandb M, Reissb P, Czupallac M (2015) Development and evaluation of thermal model reduction algorithms for spacecraft. Acta Astronaut 110:168–179. https://doi.org/10.1016/j.actaastro.2015.01.018

    Article  Google Scholar 

  68. Liaw R, Liang E, Nishihara R, Moritz P, Gonzalez JE, Stoica I (2018) Tune: a research platform for distributed model selection and training. Preprint at https://arxiv.org/abs/1807.05118

  69. PyTorch: Welcome to PyTorch Tutorials - PyTorch Tutorials 0.3.1.post2 documentation (2021). https://pytorch.org/tutorials/. Accessed 10 Sept 2021

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61605203); and the Youth Innovation Promotion Association of the Chinese Academy of Sciences [No.2015173). We thank Maxine Garcia, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Guo, L., Zhang, Y. et al. Surrogate modeling for spacecraft thermophysical models using deep learning. Neural Comput & Applic 34, 16577–16603 (2022). https://doi.org/10.1007/s00521-022-07257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07257-7

Keywords

Navigation