Skip to main content

Advertisement

Log in

A hybrid teaching–learning slime mould algorithm for global optimization and reliability-based design optimization problems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

A Correction to this article was published on 24 August 2022

This article has been updated

Abstract

Slime mould algorithm (SMA) is a novel metaheuristic algorithm with good performance for optimization problems, but it may encounter premature or low accuracy in complex optimization problems. This paper presents a hybrid SMA using teaching–learning based optimization (TLBO), called TLSMA, for solving global optimization and reliability-based design optimization (RBDO) problems. The key point of TLSMA is to combine the capacities of exploration and exploitation from SMA and TLBO, which can enhance the convergence ability of SMA. Moreover, the TLSMA is extended for solving RBDO problems under probabilistic constraints, which are handled by the adaptive chaos control method. The proposed algorithm is tested by a series of experiments with two parts. First, TLSMA is verified by 24 well-known benchmark optimization problems with unimodal and multimodal functions, and is compared with several state-of-the-art metaheuristic algorithms. The results of benchmark optimization problems show that TLSMA outperforms PSO, BBO, GWO, WOA, SSA, TLBO and SMA. Then, TLSMA-RBDO is tested by five RBDO problems, including a numerical and four engineering problems. The results illustrate that the proposed algorithm has high performance in the RBDO problems, which is significantly superior to the compared algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

References

  1. Krishna AB, Saxena S, Kamboj VK (2021) A novel statistical approach to numerical and multidisciplinary design optimization problems using pattern search inspired Harris hawks optimizer. Neural Comput Appl 33:7031–7072. https://doi.org/10.1007/s00521-020-05475-5

    Article  Google Scholar 

  2. Li G, Hu H (2014) Risk design optimization using many-objective evolutionary algorithm with application to performance-based wind engineering of tall buildings. Struct Saf 48:1–14. https://doi.org/10.1016/j.strusafe.2014.01.002

    Article  Google Scholar 

  3. He W, Zeng Y, Li G (2020) An adaptive polynomial chaos expansion for high-dimensional reliability analysis. Struct Multidiscip Optim 62:2051–2067. https://doi.org/10.1007/s00158-020-02594-4

    Article  MathSciNet  Google Scholar 

  4. Meng Z, Pang Y, Zhou H (2021) An augmented weighted simulation method for high-dimensional reliability analysis. Struct Saf 93:102117. https://doi.org/10.1016/j.strusafe.2021.102117

    Article  Google Scholar 

  5. Nezhad HB, Miri M, Ghasemi MR (2019) New neural network-based response surface method for reliability analysis of structures. Neural Comput Appl 31:777–791. https://doi.org/10.1016/j.swevo.2021.100858

    Article  Google Scholar 

  6. Celorrio L, Patelli E (2021) Reliability-based design optimization under mixed aleatory/epistemic uncertainties: theory and application. ASCE-ASME J Risk Uncertain Eng Syst Part A Civil Eng 7(3):04021026. https://doi.org/10.1061/AJRUA6.0001147

    Article  Google Scholar 

  7. Meng Z, Ren S, Wang X, Zhou H (2021) System reliability-based design optimization with interval parameters by sequential moving asymptote method. Struct Multidiscip Optim 62:1767–1788. https://doi.org/10.1007/s00158-020-02775-1

    Article  MathSciNet  Google Scholar 

  8. Moustapha M, Sudret B (2019) Surrogate-assisted reliability-based design optimization: a survey and a unified modular framework. Struct Multidiscip Optim 60:2157–2176. https://doi.org/10.1007/s00158-019-02290-y

    Article  MathSciNet  Google Scholar 

  9. Jiang C, Yang Y, Wang D, Qiu H, Gao L (2021) Global and local Kriging limit state approximation for time-dependent reliability-based design optimization through wrong-classification probability. Reliab Eng Syst Saf 208:107431. https://doi.org/10.1016/j.ress.2021.107431

    Article  Google Scholar 

  10. Ghasemi MR, Camp CV, Dizangian B (2019) Novel decoupled framework for reliability-based design optimization of structures using a robust shifting technique. Front Struct Civ Eng 13(4):800–820. https://doi.org/10.1007/s11709-019-0517-7

    Article  Google Scholar 

  11. Zhang H, Mullen RL, Muhanna RF (2010) Interval Monte Carlo methods for structural reliability. Struct Saf 32:183–190. https://doi.org/10.1016/j.asoc.2018.01.007

    Article  Google Scholar 

  12. Menz M, Dubreuil S, Morio J, Gogu C, Bartoli N, Chiron M (2021) Variance based sensitivity analysis for Monte Carlo and importance sampling reliability assessment with Gaussian processes. Struct Saf 93:102116. https://doi.org/10.1016/j.strusafe.2021.102116

    Article  Google Scholar 

  13. Kroetz HM, Moustapha M, Beck AT, Sudret B (2020) A two-level Kriging-based approach with active learning for solving time-variant risk optimization problems. Reliab Eng Syst Saf 203:107033. https://doi.org/10.1016/j.ress.2020.107033

    Article  Google Scholar 

  14. Xu J, Dang C (2019) A new bivariate dimension reduction method for efficient structural reliability analysis. Mech Syst Signal Process 115:281–300. https://doi.org/10.1016/j.ymssp.2018.05.046

    Article  Google Scholar 

  15. Li G, Li B, Hu H (2018) A novel first-order reliability method based on performance measure approach for highly nonlinear problems. Struct Multidiscip Optim 57:1593–1610. https://doi.org/10.1007/s00158-017-1830-1

    Article  MathSciNet  Google Scholar 

  16. Huang X, Li Y, Zhang Y, Zhang X (2018) A new direct second-order reliability analysis method. Appl Math Model 55:68–80. https://doi.org/10.1016/j.apm.2017.10.026

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen G, Yang D (2021) A unified analysis framework of static and dynamic reliabilities based on direct probability integral method. Mech Syst Signal Process 158:107783. https://doi.org/10.1016/j.ymssp.2021.107783

    Article  Google Scholar 

  18. Nikolaidis E, Burdisso R (1988) Reliability-based optimization: a safety index approach. Comput Struct 28(6):781–788. https://doi.org/10.1016/0045-7949(88)90418-X

    Article  MATH  Google Scholar 

  19. Liang J, Mourelatos Z, Nikolaidis E. A single-loop approach for system reliability-based design optimization. J Mech Des Trans ASME, 129(12):1215−1224. https://doi.org/10.1115/1.2779884

  20. Qu X, Haftka RT (2004) Reliabilitiy-based design optimization using probabilistic sufficiency factor. Struct Multidiscip Optim 27:314–325. https://doi.org/10.1007/s00158-004-0390-3

    Article  Google Scholar 

  21. Hao P, Wang Y, Liu C, Wang B, Wu H (2017) A novel non-probabilistic reliability-based design optimization algorithm using enhanced chaos control method. Comput Methods Appl Mech Eng 318:572–593. https://doi.org/10.1016/j.cma.2017.01.037

    Article  MathSciNet  MATH  Google Scholar 

  22. Lee JO, Yang YS, Ruy WS (2002) A comparative study on reliability-index and target-performance-based probabilistic structural design optimization. Comput Struct 80(3–4):257–269. https://doi.org/10.1016/S0045-7949(02)00006-8

    Article  Google Scholar 

  23. Meng Z, Li G, Wang BP, Hao P (2015) A hybrid chaos control approach of the performance measure functions for reliability-based design optimization. Comput Struct 146:32–43. https://doi.org/10.1016/j.compstruc.2014.08.011

    Article  Google Scholar 

  24. Li G, Meng Z, Hu H (2015) An adaptive hybrid approach for reliability-based design optimization. Struct Multidiscip Optim 51(5):1051–1065. https://doi.org/10.1007/s00158-014-1195-7

    Article  MathSciNet  Google Scholar 

  25. Hao P, Ma R, Wang Y, Feng S, Wang B, Li G, Xing H, Yang F (2019) An augmented step size adjustment method for the performance measure approach: toward general structural reliability-based design optimization. Struct Saf 80:32–45. https://doi.org/10.1016/j.strusafe.2019.04.001

    Article  Google Scholar 

  26. Meng Z, Keshtegar B (2019) Adaptive conjugate single-loop method for efficient reliability-based design and topology optimization. Comput Methods Appl Mech Eng 344:95–119. https://doi.org/10.1016/j.cma.2018.10.009

    Article  MathSciNet  MATH  Google Scholar 

  27. Valdebenito MA, Schuëller GI (2010) A survey on approaches for reliability-based optimization. Struct Multidiscip Optim 42:645–663. https://doi.org/10.1007/s00158-010-0518-6

    Article  MathSciNet  MATH  Google Scholar 

  28. Meng Z, Zhang Z, Zhang D, Yang D (2019) An active learning method combining Kriging and accelerated chaotic single loop approach (AK-ACSLA) for reliability-based design optimization. Comput Methods Appl Mech Eng 357:112570. https://doi.org/10.1016/j.cma.2019.112570

    Article  MathSciNet  MATH  Google Scholar 

  29. Keshtegar B, Hao P (2018) Enhanced single-loop method for efficient reliability-based design optimization with complex constraints. Struct Multidiscip Optim 57:1731–1747. https://doi.org/10.1007/s00158-017-1842-x

    Article  MathSciNet  Google Scholar 

  30. Li G, Yang H, Zhao G (2020) A new efficient decoupled reliability-based design optimization method with quantiles. Struct Multidiscip Optim 61:635–647. https://doi.org/10.1007/s00158-019-02384-7

    Article  MathSciNet  Google Scholar 

  31. Du X, Chen W (2004) Sequential optimization and reliability assessment method for efficient probabilistic design. J Mech Des Trans ASME 126(2):225–233. https://doi.org/10.1016/10.1115/1.1649968

    Article  Google Scholar 

  32. Chen Z, Qiu H, Gao L, Li P (2013) An optimal shifting vector approach for efficient probabilistic design. Struct Multidiscip Optim 47:905–920. https://doi.org/10.1007/s00158-012-0873-6

    Article  Google Scholar 

  33. Torii AJ, Lopez RH, Miguel LF (2016) A general RBDO decoupling approach for different reliability analysis methods. Struct Multidiscip Optim 54:317–332. https://doi.org/10.1007/s00158-016-1408-3

    Article  MathSciNet  Google Scholar 

  34. Hao P, Wang Y, Liu X, Wang B, Li G, Wang L (2017) An efficient adaptive-loop method for non-probabilistic reliability-based design optimization. Comput Methods Appl Mech Eng 324:689–711. https://doi.org/10.1016/j.cma.2017.07.002

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou M, Luo Z, Yi P, Cheng G (2018) A two-phase approach based on sequential approximation for reliability-based design optimization. Struct Multidiscip Optim 57:489–508. https://doi.org/10.1007/s00158-017-1888-9

    Article  MathSciNet  Google Scholar 

  36. Meng Z, Li G, Wang X, Said SM, Yildiz AR (2021) A comparative study of metaheuristic algorithms for reliability-based design optimization problems. Arch Comput Methods Eng 28:1853–1869. https://doi.org/10.1007/s11831-020-09443-z

    Article  MathSciNet  Google Scholar 

  37. Houssein EH, Gad AG, Hussain K, Suganthan PN (2021) Major advances in particle swarm optimization: theory, analysis and application. Swarm Evol Comput 63:100868. https://doi.org/10.1016/j.swevo.2021.100868

    Article  Google Scholar 

  38. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  39. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  40. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  41. Rechenberg I (1978) Evolutions strategien. Springer, Berlin, pp 83–114

    Google Scholar 

  42. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713. https://doi.org/10.1109/TEVC.2008.919004

    Article  Google Scholar 

  43. Kennedy J, Eberhart R C (1995) Particle swarm optimization. In: Proceedings of IEEE International Conference on neural networks, Perth, 1942−1948. https://doi.org/10.1109/ICNN.1995.488968

  44. Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, Washington DC, pp 1470−1477. https://doi.org/10.1109/CEC.1999.782657

  45. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  46. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  47. Wang GG, Deb S, Cui Z (2019) Monarch butterfly optimization. Neural Comput Appl 31:1995–2014. https://doi.org/10.1007/s00521-015-1923-y

    Article  Google Scholar 

  48. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  49. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680. https://doi.org/10.1126/science.220.4598.671

    Article  MathSciNet  MATH  Google Scholar 

  50. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  51. Kaveh A, Khayatazad M (2012) A new metaheuristic method: ray optimization. Comput Struct 112–113:283–294. https://doi.org/10.1016/j.compstruc.2012.09.003

    Article  Google Scholar 

  52. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  53. Atashpax-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE Congress on Evolutionary Computation (CEC 2007), pp 4661−4662. https://doi.org/10.1109/CEC.2007.4425083

  54. Abualigah L, Diabat A, Mirjalili S, Elaziz MA, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609. https://doi.org/10.1016/j.cma.2020.113609

    Article  MathSciNet  MATH  Google Scholar 

  55. Wolpert DH, Macready WG (1997) No free lunch theorem for optimization. IEEE Trans Evolut Comput 1(1):67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  56. Cheng MY, Prayogo D (2018) Fuzzy adaptive teaching-learning-based optimization for global numerical optimization. Neural Comput Appl 29:309–327. https://doi.org/10.1007/s00521-016-2449-7

    Article  Google Scholar 

  57. Heidari AA, Aljarah I, Faris H, Chen H, Luo J, Mirjalili S (2020) An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Comput Appl 32:5185–5211. https://doi.org/10.1007/s00521-019-04015-0

    Article  Google Scholar 

  58. Bala I, Yadav A (2020) Comprehensive learning gravitational search algorithm for global optimization of multimodal functions. Neural Comput Appl 32:7347–7382. https://doi.org/10.1007/s00521-019-04250-5

    Article  Google Scholar 

  59. Tang D, Liu Z, Zhao J, Dong S, Cai Y (2020) Memetic quantum evolution algorithm for global optimization. Neural Comput Appl 32:9299–9329. https://doi.org/10.1007/s00521-019-04439-8

    Article  Google Scholar 

  60. Elaziz MA, Yousri D, Mirjalili S (2021) A hybrid Harris hawks-moth-flame optimization algorithm including fractional-order chaos maps and evolutionary population dynamics. Adv Eng Softw 154:102973. https://doi.org/10.1016/j.advengsoft.2021.102973

    Article  Google Scholar 

  61. Shehadeh HA (2021) A hybrid sperm swarm optimization and gravitational search algorithm (HSSOGSA) for global optimization. Neural Comput Appl 33:11739–11752. https://doi.org/10.1007/s00521-021-05880-4

    Article  Google Scholar 

  62. Khatir S, Tiachacht S, Le Thanh C, Ghandourah E, Mirjalili S, Abdel Wahab M (2021) An improved artificial neural network using Arithmetic optimization algorithm for damage assessment in FGM composite plates. Compos Struct 273:114287. https://doi.org/10.1016/j.compstruct.2021.114287

    Article  Google Scholar 

  63. Al Thobiani F, Khatir S, Benaissa B, Ghandourah E, Mirjalili S, Abdel Wahab M (2022) A hybrid PSO and grey wolf optimization algorithm for static and dynamic crack identification. Theoret Appl Fract Mech 118:103213. https://doi.org/10.1016/j.tafmec.2021.103213

    Article  Google Scholar 

  64. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  65. Houssein EH, Mahdy MA, Blondin MJ, Shebl D, Mohamed WM (2021) Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems. Expert Syst Appl 174:114689. https://doi.org/10.1016/j.eswa.2021.114689

    Article  Google Scholar 

  66. Naik MK, Panda R, Abraham A (2021) Adaptive opposition slime mould algorithm. Soft Comput 25:14297–14313. https://doi.org/10.1007/s00500-021-06140-2

    Article  Google Scholar 

  67. Yousri D, Fathy A, Rezk H, Babu TS, Berber MR (2021) A reliable approach for modeling the photovoltaic system under partial shading conditions using three diode model and hybrid marine predators-slime mould algorithm. Energy Convers Manage 243:114269. https://doi.org/10.1016/j.enconman.2021.114269

    Article  Google Scholar 

  68. El-Fergany AA (2021) Parameters identification of PV model using improved slime mould optimizer and Lambert W-function. Energy Rep 7:875–887. https://doi.org/10.1016/j.egyr.2021.01.093

    Article  Google Scholar 

  69. Houssein EH, Helmy BE, Rezk H, Nassef AM (2022) An efficient orthogonal opposition-based learning slime mould algorithm for maximum power point tracking. Neural Comput Appl. https://doi.org/10.1007/s00521-021-06634-y

    Article  Google Scholar 

  70. Hu J, Gui W, Heidari AA, Cai Z, Liang G, Chen H, Pan Z (2022) Dispersed foraging slime mould algorithm: continuous and binary variants for global optimization and wrapper-based feature selection. Knowl-Based Syst 237:107761. https://doi.org/10.1016/j.knosys.2021.107761

    Article  Google Scholar 

  71. Jia H, Zhang W, Zheng R, Wang S, Leng X, Cao N (2022) Ensemble mutation slime mould algorithm with restart mechanism for feature selection. Int J Intell Syst 37(3):2335–2370. https://doi.org/10.1002/int.22776

    Article  Google Scholar 

  72. Abdel-Basset M, Mohamed R, Chakrabortty RK, Ryan MJ, Mirjalili S (2021) An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection. Comput Ind Eng 153:107078. https://doi.org/10.1016/j.cie.2020.107078

    Article  Google Scholar 

  73. Abdollahzadeh B, Barshandeh S, Javadi H, Epicoco N (2021) An enhanced binary slime mould algorithm for solving the 0–1 knapsack problem. Eng Comput. https://doi.org/10.1007/s00366-021-01470-z

    Article  Google Scholar 

  74. Vashishtha G, Chauhan S, Singh M, Kumar R (2021) Bearing defect identification by swarm decomposition considering permutation entropy measure and opposition-based slime mould algorithm. Measurement 178:109389. https://doi.org/10.1016/j.measurement.2021.109389

    Article  Google Scholar 

  75. Liu Y, Heidari AA, Ye X, Liang G, Chen H, He C (2021) Boosting slime mould algorithm for parameter identification of photovoltaic models. Energy 234:121164

    Article  Google Scholar 

  76. Othman AM, El-Fergany AA (2021) Optimal dynamic operation and modeling of parallel connected multi-stacks fuel cells with improved slime mould algorithm. Renew Energy 175:770–782. https://doi.org/10.1016/j.renene.2021.04.148

    Article  Google Scholar 

  77. Hassan MH, Kamel S, Abualigah L, Eid A (2021) Development and application of slime mould algorithm for optimal economic emission dispatch. Expert Syst Appl 182:115205. https://doi.org/10.1016/j.eswa.2021.115205

    Article  Google Scholar 

  78. Weng X, Heidari AA, Liang G, Chen H, Ma X (2021) An evolutionary Nelder-Mead slime mould algorithm with random learning for efficient design of photovoltaic models. Energy Rep 7:8784–8804. https://doi.org/10.1016/j.egyr.2021.11.019

    Article  Google Scholar 

  79. Draz A, Elkholy MM, El-Fergany AA (2021) Slime mould algorithm constrained by the relay operating time for optimal coordination of directional overcurrent relays using multiple standardized tripping curves. Neural Comput Appl 33:11875–11887. https://doi.org/10.1007/s00521-021-05879-x

    Article  Google Scholar 

  80. Yu C, Heidari AA, Xue X, Zhang L, Chen H, Chen W (2021) Boosting quantum rotation gate embedded slime mould algorithm. Expert Syst Appl 181:115082. https://doi.org/10.1016/j.eswa.2021.115082

    Article  Google Scholar 

  81. Houssein EH, Mahdy MA, Shebl D, Manzoor A, Sarkar R, Mohamed WM (2022) An efficient slime mould algorithm for solving multi-objective optimization problems. Expert Syst Appl 187:115870. https://doi.org/10.1016/j.eswa.2021.115870

    Article  Google Scholar 

  82. Jafari-Asl J, Ohadi S, Ben Seghier MEA, Trung NT (2021) Accurate structural reliability analysis using an improved line-sampling-method-based slime mold algorithm. ASCE-ASME J Risk Uncertain Eng Syst Part A Civil Eng 7(2):04021015. https://doi.org/10.1061/AJRUA6.0001147

    Article  Google Scholar 

  83. Agarwal D, Bharti PS (2021) Implementing modified swarm intelligence algorithm based on slime mould for path planning and obstacle avoidance problem in mobile robots. Appl Soft Comput 107:107372. https://doi.org/10.1016/j.asoc.2021.107372

    Article  Google Scholar 

  84. Tiachacht S, Khatir S, Thanh CL, Rao RV, Mirjalili S, Wahab MA (2021) Inverse problem for dynamic structural health monitoring based on slime mould algorithm. Eng Comput. https://doi.org/10.1007/s00366-021-01378-8

    Article  Google Scholar 

  85. Wang HJ, Pan JS, Nguyen TT, Weng S (2022) Distribution network reconfiguration with distributed generation based on parallel slime mould algorithm. Energy 244:123011. https://doi.org/10.1016/j.energy.2021.123011

    Article  Google Scholar 

  86. Durmus A (2020) The optimal synthesis of thinned concentric circular antenna arrays using slime mold algorithm. Electromagnetics 40(8):541–553. https://doi.org/10.1080/02726343.2020.1838044

    Article  Google Scholar 

  87. Deb K, Gupta S, Daum D, Branke J, Mall AK, Padmanabhan D (2009) Reliability-based optimization using evolutionary algorithms. IEEE Trans Evol Comput 13(5):1054–1074. https://doi.org/10.1109/TEVC.2009.2014361

    Article  Google Scholar 

  88. Dimou CK, Koumousis VK (2009) Reliability-based optimal design of truss structures using particle swarm optimization. ASCE J Comput Civil Eng 23(2):100–109. https://doi.org/10.1061/(ASCE)0887-3801(2009)23:2(100)

    Article  Google Scholar 

  89. Yang IT, Hsieh YH (2011) Reliability-based design optimization with discrete design variables and non-smooth performance functions: AB-PSO algorithm. Autom Constr 20:610–619. https://doi.org/10.1016/j.autcon.2010.12.003

    Article  Google Scholar 

  90. Chen CT, Chen MH, Horng WT (2014) A cell evolution method for reliability-based design optimization. Appl Soft Comput 15:67–79. https://doi.org/10.1016/j.asoc.2013.10.020

    Article  Google Scholar 

  91. Hamzehkolaei NS, Miri M, Rashki M (2016) An enhanced simulation-based design method coupled with meta-heuristic search algorithm for accurate reliability-based design optimization. Eng Comput 32:477–495. https://doi.org/10.1007/s00366-015-0427-9

    Article  Google Scholar 

  92. Gholaminezhad I, Jamali A, Assimi H (2017) Multi-objective reliability-based robust design optimization of robot gripper mechanism with probabilistically uncertain parameters. Neural Comput Appl 28(Suppl 1):S659–S670. https://doi.org/10.1007/s00521-016-2392-7

    Article  Google Scholar 

  93. Chakri A, Yang XS, Khelif R, Benouaret M (2018) Reliability-based design optimization using the directional bat algorithm. Neural Comput Appl 30:2381–2402. https://doi.org/10.1007/s00521-016-2797-3

    Article  Google Scholar 

  94. Hamzahkolaei NS, Miri M, Rashki M (2018) An improved binary bat flexible sampling algorithm for reliability-based design optimization of truss structures with discrete-continuous variables. Eng Comput 35(2):641–671. https://doi.org/10.1007/10.1108/EC-06-2016-0207

    Article  Google Scholar 

  95. Lim J, Jang YS, Chang HS, Park JC, Lee J (2020) Multi-objective genetic algorithm in reliability-based design optimization with sequential statistical modeling: an application to design of engine mounting. Struct Multidiscip Optim 61:1253–1271. https://doi.org/10.1007/s00158-019-02409-1

    Article  Google Scholar 

  96. Jafari-Asl J, Ben Seghier MEA, Ohadi S, van Gelder P (2021) Efficient method using whale optimization algorithm for reliability-based design optimization of labyrinth spillway. Appl Soft Comput 101:107036. https://doi.org/10.1016/j.asoc.2020.107036

    Article  Google Scholar 

  97. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

Download references

Acknowledgements

The supports of the National Key Research and Development Program (Grant No. 2019YFA0706803), the National Natural Science Foundation of China (Grant Nos. 11872142 and 11972143), the Foundation of State Key Laboratory of Structural Analysis for Industrial Equipment from Dalian University of Technology (Grant No. GZ21101) are greatly appreciated. The authors gratefully appreciate for useful comments from editor and reviewers to improve the quality of this paper.

Funding

National Basic Research Program of China (973 Program), 2019YFA0706803, Gang Li, National Natural Science Foundation of China, 11872142, Gang Li, 11972143, Zeng Meng, State Key Laboratory of Structural Analysis for Industrial Equipment, GZ21101, Zeng Meng

Author information

Authors and Affiliations

Authors

Contributions

CZ: Conceptualization, Methodology, Software, Validation, Writing – original draft, Writing—review & editing. GL: Conceptualization, Methodology, Supervision, Funding acquisition, Writing—review & editing. ZM: Conceptualization, Methodology, Software, Supervision, Funding acquisition, Writing—review & editing.

Corresponding authors

Correspondence to Gang Li or Zeng Meng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figure 6 is included in the article.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, C., Li, G. & Meng, Z. A hybrid teaching–learning slime mould algorithm for global optimization and reliability-based design optimization problems. Neural Comput & Applic 34, 16617–16642 (2022). https://doi.org/10.1007/s00521-022-07277-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07277-3

Keywords

Navigation