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Abstract
Human trajectory prediction is a challenging task with important applications such as intelligent surveillance and

autonomous driving. We recognize that pedestrians in close and distant neighborhoods have different impacts on the

person’s decision of future movements. Local scene context and global scene layout also affect the movement decision

differently. Existing methods have not adequately addressed these interactions between humans and the multi-level con-

texts occurring at different spatial and temporal scales. To this end, we propose a multi-level context-driven interaction

modeling (MCDIM) method for human future trajectory learning and prediction. Specifically, we construct a multilayer

graph attention network (GAT) to model the hierarchical human–human interactions. An extra set of long short-term

memory networks is designed to capture the correlations of these human–human interactions at different temporal scales.

To model the human–scene interactions, we explicitly extract and encode the global scene layout features and local context

features in the neighborhood of the person at each time step and capture the spatial–temporal information of the inter-

actions between human and the local scene contexts. The human–human and human–scene interactions are incorporated

into the multi-level GAT-based network for accurate prediction of future trajectories. We have evaluated the method on

benchmark datasets: the walking pedestrians dataset provided by ETH Zurich (ETH) and the crowd data provided by the

University of Cyprus. The results demonstrate that our MCDIM method outperforms existing methods, being able to

generate more accurate and plausible trajectories for pedestrians. The average performance gain is 2 and 3 percentage

points in terms of the average displacement error and final displacement error, respectively.
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1 Introduction

Human trajectory prediction aims to predict the future

moving trajectory of a person based on past observations. It

has important applications in autonomous driving systems

[1, 2], social robots [3, 4], human–machine interactions

[5, 6], and smart environments [7, 8]. Humans can fully

understand the scene situation and estimate the motion

patterns of moving objects in the environment to avoid

collisions. Automated vehicles also need such a capability

to anticipate the pedestrians’ intentions and predict their

moving trajectories to reduce accidents [9]. This func-

tionality is critical in collision avoidance systems or

emergency braking systems [10]. Social robots navigating

in human crowds have to move collaboratively with the

surrounding people in a socially compliant way, in which

accurately predicting the trajectories of surrounding

& Zhiquan He

zhiquan@szu.edu.cn

Hao Sun

hshq7@mail.missouri.edu

Wenming Cao

wmcao@szu.edu.cn

Henry Z. He

hezhi@missouri.edu

1 Guangdong Multimedia Information Service Engineering

Technology Research Center, Shenzhen University,

Shenzhen 518000, China

2 Guangdong Key Laboratory of Intelligent Information

Processing, Shenzhen 518000, China

3 Video Processing and Communication Laboratory,

Department of Electrical and Computer Engineering,

University of Missouri, Columbia, MO 65211, USA

123

Neural Computing and Applications (2022) 34:20101–20115
https://doi.org/10.1007/s00521-022-07562-1(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07562-1&amp;domain=pdf
https://doi.org/10.1007/s00521-022-07562-1


humans is needed [11]. Human trajectory prediction is a

challenging task since it needs to learn and predict the

intentions and behaviors of humans in dynamic and com-

plex environments. As shown in Fig. 1, a human’s future

trajectory is affected by many factors, including the

behaviors of other persons in the scene, their social inter-

actions, and the surrounding environment in the scene. The

social norm and human intention govern the human–human

interactions, such as walking in groups, observing the

traffic rules, maintaining appropriate social distance, and

avoiding collisions. The human–scene interactions repre-

sent the movement constraints by the physical structure,

scene layout, and background motion, such as moving

vehicles.

Traditional methods for human behavior modeling and

prediction [12, 13] suffer from significant performance

degradation with complex scenes and crowded pedestrians.

The state-of-the-art methods are based on deep learning.

Social-LSTM [14] and SRA-LSTM [15] used the LSTM

[16] to model pedestrian movements at multiple time steps

and capture the dynamic interactions among pedestrians.

Its pooling mechanism shared the latent motion dynamics

of pedestrians in the neighborhood, which were represented

by the hidden states of the LSTMs. Social GAN proposed

by Gupta et al. [17] and Sophie by Sadeghian et al. [18]

developed generative adversarial networks (GAN) [19] to

learn the distributions of multi-modal trajectories. Atten-

tion-based methods [10, 20, 21] explored graph attention

networks (GAT) [22] to characterize the impact of different

pedestrians in the scene on the decision of human trajec-

tories. Huang et al. observed that both the spatial interac-

tions at the same time step and the temporal continuity of

interactions are important for predicting the future move-

ments [20]. These methods mainly focused on human–

human interactions. Scene-LSTM [23] considered the

human–scene interactions for human trajectory prediction.

Similar methods such as SS-LSTM [24], Sophie [18],

Social-BiGAT [21], and Reciprocal-GAN [25] encoded the

background global image features and combined them with

the trajectory features to improve the trajectory prediction.

However, we recognize that the human–human inter-

actions and the interactions between humans and multi-

level scene contexts occur at different spatial and temporal

scales in real scenarios, which is not thoroughly investi-

gated in existing works. For example, on the streets, the

trajectory of a person is immediately affected by the

movements of surrounding pedestrians in the local neigh-

borhood. It is also affected by pedestrians at a further

distance with whom the person will be interacting soon.

For human–scene interaction, the person’s trajectory is

affected not only by surface conditions on the local scale

(such as obstacles) but also by the overall scene structure,

such as the street layout or traffic patterns on the global

scale.

Motivated by this, we propose a multi-level context-

driven interaction modeling (MCDIM) method to capture

these complex interactions and decisions. As illustrated in

Fig. 2, our method exploits three sources of information,

the human trajectory information that captures each

pedestrian’s past trajectories, the global scene information

that extracts the scene layout from the whole scene image,

and the local image patch information that captures the

scene context within the local neighborhood. Specifically,

we construct a multilayer graph attention network (GAT)

to model the hierarchical human–human interactions, then

use an extra set of LSTMs to capture the correlations of

these human–human interactions at different temporal

scales. To model the human–scene interactions, we

explicitly extract and encode the global scene layout fea-

tures and local scene context features at each time step and

capture the spatial–temporal correlations of the human–

scene interactions using LSTMs and GATs.

Our experimental results demonstrate that this new

multi-level context-driven interaction modeling method

can successfully capture the joint impact of surrounding

persons and scene context on the decision of human future

movement at different spatial and temporal scales. The

method has significantly improved the performance of

human future trajectory prediction with respect to the state

of the art.

The major contribution of this work can be summarized

as follows:

Fig. 1 A human’s future trajectory in a real scenario is affected

differently by different people in the neighborhood and different

scene contexts. Our proposed method predicts socially and physically

plausible trajectories by hierarchically modeling the influence of all

involving pedestrians, the global scene layout, and the local context Fig. 2 The input information observed for our method
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1. We address the interactions between humans and

global and local scene contexts in the spatial–temporal

domain and propose a multi-level context-driven

interaction modeling method for human trajectory

prediction.

2. We construct a multilayer GAT network to model the

hierarchical human–human interactions and use an

extra set of LSTMs to capture the correlations of these

human–human interactions at different temporal scales.

3. We explicitly extract and encode the image features

from the global scene layout and the local scene

context along the moving trajectory and model the

spatial–temporal correlation of the interactions

between human and local scene contexts.

4. We present a systematic framework to model the

human–human and human–scene interactions in the

spatial–temporal domain to improve the learning and

prediction performance of human future trajectories.

The rest of the paper is organized as follows. Section 2

reviews the related work on human trajectory prediction

and GAT. Section 3 presents our proposed multi-level

context-driven interaction modeling method. Experimental

results and ablation studies are presented in Sect. 4. Sec-

tion 5 concludes the paper.

2 Related work

Our method addresses the human–human interactions and

interactions between humans and multi-level scene con-

texts at different spatial and temporal scales using LSTMs

and GATs. In this section, we review the existing works

related to these two kinds of interactions. We also review

the existing attention approaches for trajectory prediction,

especially those based on Graph Attention Network, which

is a central component of our proposed method.

2.1 Human–human interaction modeling
for trajectory prediction

Human–human interaction modeling focuses on learning

and predicting how the future trajectory of a person is

affected by the surrounding pedestrians in the scene. Social

Force Model proposed by Helbing et al. designed hand-

crafted functions to characterize pedestrian interactions

using coupled Langevin equations [26]. Recently, deep

neural networks, specifically recurrent neural networks,

have been successfully used for human–human interaction

modeling. Social-LSTM proposed a social pooling mech-

anism to share the hidden representations among pedes-

trians [14]. SRA-LSTM modeled the social interaction

based on social relationship attention [15]. The key

hypothesis of these works is that each pedestrian’s moving

direction and velocity are impacted by the surrounding

pedestrians within the neighborhood. Group LSTM

observed that persons tend to have coherent movement

patterns [27]. Thus, it proposed to cluster the trajectories

that have similar movements into groups and developed an

LSTM-based model to learn group dynamics. Gupta et al.

proposed an LSTM-based Generative Adversarial Network

(GAN) model to learn the human–human interactions by

considering all pedestrians in the scene [17]. Social-

Attention [11] argued that modeling interactions between

humans as a function of proximity is not necessarily true

and proposed a prediction model to capture the relative

importance of each individual in the scene with respect to

the target person. AC-VRNN [28] used a generative Con-

ditional Variational Recurrent Neural Network to model

the human–human interactions where past observed

dynamics were considered in predicting the multi-future

trajectories. These methods designed various network

architectures and learning algorithms to discover the

complex human–human interactions but did not give

enough consideration to scene context features and human–

scene interactions.

2.2 Human–scene interaction modeling
for trajectory prediction

The second category of methods considers the pedestrians’

interactions with their background scenes. Zhang et al.

proposed an adaptive trajectory prediction system to pre-

dict obstacle trajectories based on semantic-based dynam-

ics and adaptively select suitable trajectory prediction

methods for different types of dynamic objects [29]. SS-

LSTM [24] proposed social-scene-LSTM to use a CNN

(convolutional neural network) to extract the scene layout

features and combine them with human–human interaction

features for learning and predicting human movements.

The Sophie model proposed by Sadeghian et al. [18]

explored both the past trajectories of pedestrians and the

semantic context of the top-view images and took two

separate soft attention modules for both physical and social

features to predict human trajectories. Liang et al. utilized

rich visual features, such as each pedestrian’s bounding

box, key-point information, and scene semantic features for

better prediction of multiple feasible trajectories [30].

Scene-LSTM [23, 31] designed a two-level grid structure

to segment the static background scene into several cells

and then trained two coupled LSTMs to encode the

pedestrian’s past movements and the scene structure.

Matteo et al. proposed to integrate three different pooling

schemes, namely social, navigation, and semantic pooling,

to capture the human–human interactions, past observa-

tions from previously crossed areas, and the scene
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semantics, respectively [32]. This information was then fed

into an LSTM-based model to predict future trajectories.

Sun et al. developed the reciprocal twin networks, which

include a forward prediction network to predict future

trajectory from past observations and a backward predic-

tion network that performs the trajectory prediction back-

ward in time, to form a reciprocal constraint by utilizing

the property of cycle consistency [25]. Social-BiGAT [21]

considered both social and image features of the global

scenes to model the human–human interactions. Most of

these methods only considered the global scene informa-

tion. They did not adequately address the local context

around the pedestrian and the spatial–temporal correlation

in the interactions between human and local scenes. We

model the interactions between humans and the multi-level

contexts using global and local scenes. For the global

scenes, we model their hidden states using LSTMs and

further apply a GAT-based attention scheme to assign

adaptive weights to the scene features at different time

steps.

2.3 Attention approaches for trajectory
prediction

Attention mechanisms have been proven to be successful in

various tasks. Graph neural networks (GNNs) [33] have

achieved remarkable success in various machine learning

tasks [34, 35]. Graph Attention Networks proposed by

Velickovi et al. build upon the recent success of GNNs and

incorporate self-attention into its learning process [22].

Recently, several methods applied the GATs to human

trajectory prediction and have achieved state-of-the-art

performance. Social-BiGAT [21] was proposed to formu-

late the human–human interactions as a graph and applied

GATs as an attention mechanism to characterize the impact

of surrounding persons on the target person’s future tra-

jectory by considering both the social and physical features

of scenes. STGAT [20] shared the same problem formu-

lation with the Social-BiGAT to model the spatial inter-

actions between pedestrians and also designed an extra

LSTM to model the temporal correlations of these inter-

actions. Social-STGCNN [10] argued that modeling human

trajectories as a graph directly from the beginning is more

efficient than aggregation-based models, such as Social-

BiGAT.

Unlike the existing methods reviewed above, our

approach thoroughly investigates the three source factors

that can affect human trajectories, i.e., the motion trajec-

tories from surrounding people, the global scene layout,

and the local scene context, and models their interactions.

Furthermore, we also capture the spatial–temporal corre-

lations of these interactions.

3 Method

In this work, we recognize that the human–human inter-

actions and the interactions between humans and multi-

level scene contexts occur at different spatial and temporal

scales, which are not adequately addressed in existing

methods. Specifically, pedestrians in close neighborhoods

and those at a far distance have different impacts on the

person’s decision of future movements. Local ground sur-

face conditions and global scene layout affect the move-

ment decision differently in the spatial–temporal domain.

The following sections present a multi-level context-driven

interaction modeling (MCDIM) method to address this

multi-scale issue for human future trajectory learning and

prediction.

3.1 Problem formulation

Our problem is formulated as follows: given the observed

trajectories of a group of pedestrians in a crowded scene

and the contextual information of the background envi-

ronment, can we predict their future trajectories? The past

observed trajectories of each of the N currently visible

pedestrians, X ¼ X1; � � � ;Xn; � � � ;XN , are referred to as the

human trajectory information. The input trajectory for

pedestrian n is denoted as Xn ¼ ðxtn; ytnÞ, where 1� t� To
represents the time index (or video frame index) and To is

the duration of observation. For a particular scene, our

model extracts two parts of information for human trajec-

tory learning and prediction. The first one is the image of

the current scene It, which is used to capture the global

layout of the current moving environment and is referred to

as the global scene information. The second one is the local

image block centered at the current position of the target

person, Bt
n, which is used to capture the local context.

Given the above observed information, our goal is to pre-

dict the future trajectories of each visible pedestrian

n 2 f1; � � � ;Ng, Ŷn ¼ ðx̂tn; ŷtnÞ for time step

t ¼ To þ 1; � � � ; Tp. Here, Tp is the duration of future time

for prediction. The ground truth of the future trajectories is

denoted by Yn.

3.2 Method overview

An overview of our proposed multi-level context-driven

interaction modeling and trajectory learning system is

illustrated in Fig. 3, which mainly uses LSTMs and GATs

as building blocks. LSTM has been proven to have an

outstanding ability to capture the temporal correlations of

the input time-series trajectories. GAT applies self-atten-

tion to a graph neural network, and it is suitable for dif-

ferentially modeling the paired interactions between

20104 Neural Computing and Applications (2022) 34:20101–20115
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pedestrians where the importance of interaction is associ-

ated with the weights assigned to graph edges. Specifically,

we first use three feature encoding modules to extract

features from the past trajectories, the observed global

scene images, and the local image patches around the

pedestrian. Then we design three GAT-based modules to

model and learn the human–human interactions, global

human–scene interactions, and local human–scene inter-

actions. We further construct extra LSTMs to capture the

temporal correlations of human–human interactions and

local human–scene interactions. These extra LSTMs are

not applied to the global scene as the background context

remains quite stationary. Finally, the hidden states for each

pedestrian are then concatenated and fed into the LSTM

decoder to predict the future trajectories for every pedes-

trian in the scene. The following section will provide a

detailed explanation of these algorithm modules.

3.3 Spatial–temporal modeling of human–
human interaction

The prediction of future trajectories is based on the analysis

of past trajectories of all pedestrians in the scene, their

interactions, and human–scene interactions. For a suc-

cessful analysis of the past trajectories, we need to encode

them into features. The human trajectory encoder consists

of three major components: (1) A human motion extractor,

(2) A GAT-based human–human interaction modeling

module, and (3) An LSTM-based temporal correlation

learning module, as illustrated in Fig. 4.

3.3.1 Human motion extraction and encoding

The human motion extractor is designed to capture the

temporal pattern and dependency of each observed trajec-

tory. The observed trajectory of pedestrian n is denoted as

Xn ¼ ðxtn; ytnÞ, t ¼ 1; 2; � � � ; To. First, the relative position of

each pedestrian to the previous time step is calculated as

follows:

Dxtn ¼ xtn � xt�1
n ;

Dytn ¼ ytn � yt�1
n :

ð1Þ

Then, we use a multilayer perceptron (MLP) network [36]

to embed the relative coordinates into a fixed-size vector

etn:

etn ¼ wðDxtn;Dytn;WeÞ; ð2Þ

where wð�Þ is an embedding function with ReLU nonlin-

earity [37] and We is the embedding weight. etn is then fed

Fig. 3 The pipeline of our proposed system. We take input from three

sources of information: observed human trajectories, observed global

scene images, and observed local scene patches. The Encoder is

designed to extract spatial–temporal information from multiple

sources. The spatial and temporal information concatenated with

noise are summarized in the intermediate State and then form the

input for the Decoder to generate the predicted trajectory for each

observed human

Fig. 4 The framework of the human trajectory encoder. The upper-

level LSTMs are human motion extractors to capture the hidden

motion states of each pedestrian. The middle-level GATs are used to

model the human–human interactions. The lower-level LSTMs are

applied to learn the temporal correlation of the interactions. Then the

hidden motion states and the spatial–temporal vectors are concate-

nated as the output of the human trajectory encoder

Neural Computing and Applications (2022) 34:20101–20115 20105
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to the LSTM network to capture the hidden motion state

Mt
n for pedestrian n at time step t:

Mt
n ¼ LSTMh

eðMt�1
n ; etn;W

h
e Þ; ð3Þ

where LSTMh
e denotes the LSTM encoder for human

motion and Wh
e is the encoding weight for LSTMh

e which is

shared among all pedestrians involved in the scene and can

be optimized during the training process.

3.3.2 GAT-based human–human interaction modeling

When navigating in the environment, to ensure safety and

to follow the rules or social norms, humans know which

parts of the scene, including other pedestrians, oncoming

vehicles, or special surface features, they need to pay

attention to. They do not need to pay equal attention to all

objects. Or, different objects in the scene will have dif-

ferent impacts on their decisions of future trajectories.

Existing methods [14, 17, 18] use the Euclidean distance

between pedestrians to weight these impact levels. We

recognize that this is not necessarily true in practice. To

tackle this problem, recent methods [11, 20] explore the

idea of attention, where the impact levels of surrounding

objects are learned and represented by an attention vector.

In order to model the human–human interactions and

share information across all pedestrians in a crowded

scene, we propose to explore the approach of graph

attention networks by considering each pedestrian in the

scene as one node in the graph. As shown in Fig. 5, we

construct a complete graph at each time step, where the

nodes are the pedestrians in the current scene, and the

edges represent the human–human interactions. This

mechanism does not introduce any restriction on pedestrian

orders and allows all pedestrians to interact with each

other.

The GAT network has been successfully used to analyze

graph-structured data, being able to aggregate information

from all neighboring nodes based on a self-attention

strategy [20, 22]. Figure 6 shows the design of one single

attention layer. The input of the graph attention layer is the

hidden motion states Mt
n 2 fMt

1;M
t
2; � � � ;Mt

Ng for observed

pedestrians 1; 2; � � � ;N at time t, where Mt
n 2 RF , F is the

feature dimension of Mt
n. A new set of node features M0t

n 2
RF0

is produced by the graph attention layer. Note that the

input and output feature dimensions, F and F0, can be

different. At least one learnable linear transformation,

parametrized by a weight matrix Wh 2 RF0�F , is applied to

obtain sufficient expressive power to transform the input

features into high-level features. Then, we apply a self-

attention mechanism to the nodes to compute the attention

coefficients that indicate the importance of a node’s feature

to another node. In our work, the attention mechanism is

implemented with a single layer feed-forward neural net-

work, parameterized by a weight vector ah 2 R2F0
. The

Leaky ReLU nonlinearity, denoted by Uð�Þ, is also applied.

We use the attention mechanism to compute the attention

coefficients on each node. We then use the softmax func-

tion to normalize the attention coefficients across all nodes.

After expansion, the interaction coefficients atnm of pedes-

trian m to pedestrian n at time step t are given by:

atnm ¼ expðUðaTh ½WhM
t
n �WhM

t
m�ÞÞP

k2Wn
expðUðaTh ½WhMt

n �WhM
t
k�ÞÞ

; ð4Þ

where � denotes the concatenation operation, aTh represents

the transposition of ah, Wn represents the set of the

neighboring nodes of node n on the graph. The aggregated

output of the graph attention layer for pedestrian n at time

step t can be computed by a linear combination of the

interaction coefficients and the features corresponding to

them after applying the nonlinear exponential linear unit

(ELU) function Hð�Þ as follows:

Fig. 5 An illustration of the complete graph we build at each time

step. Each node denotes each human (h1; h2; � � � ; hn), and the edges

represent the human–human interaction

Fig. 6 An illustration of the computing mechanism of a single graph

attention layer. It aggregates information from each neighboring node

and follows a self-attention strategy. Mt
1;M

t
2; � � � ;Mt

N indicates the

hidden motion states for pedestrians 1; 2; � � � ;N, and a11; a12; � � � ; a1N

denotes the importance of the corresponding pedestrian with respect

to pedestrian 1
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M0t
n ¼ H

X

m2Wn

atnmWhM
t
m

 !

: ð5Þ

3.3.3 Correlation analysis for human–human interaction
modeling at multiple temporal scales

By far, we have modeled human–human interactions by

sharing hidden states among pedestrians at the same time

step. However, these operations only capture the spatial

information of human–human interactions. In order to

capture the human–human interactions at different tem-

poral scales, we design an extra set of LSTMs for learning

the temporal correlations between those interactions. Here,

we use the LSTMs because they can learn complex non-

linear dependencies and correlation within time-series data

[20]. The input of the temporal LSTM (LSTMh
t ) is the

output of the graph attention layers M0t
n from (5). The

operation of LSTMh
t is described by

Tt
n ¼ LSTMh

t ðTt�1
n ;M0t

n ;W
h
t Þ; ð6Þ

where Tt
n is the hidden temporal correlation state of

human–human interactions and Wh
t is the weight for

LSTMh
t and shared among all sequences. In the last step of

the human trajectory encoder, we concatenate the hidden

motion states Mt
n obtained from (3) and the temporal cor-

relations of human–human interactions Tt
n obtained from

(6) to form the spatial–temporal information learned from

the observed human trajectories:

He ¼ Mt
n � Tt

n: ð7Þ

3.4 Multi-level human–scene interaction
modeling

As discussed in Sect. 1, a person’s decision and choice of

future trajectory are impacted by the navigation scene

context and human–scene interactions at different spatial–

temporal scales.

3.4.1 Modeling the impact of global scene context

SS-LSTM [24] and Sophie [18] have recognized that the

chosen trajectory of a pedestrian is affected by the scene

layout, such as stationary obstacles, moving cars, entries,

and exits. In our work, we propose to extract global

information of the scene and use a GAT network to model

the global human–scene interactions. Fig. 7 illustrates the

design of our global scene layout encoder network which is

used to extract and encode the global scene layout

information. First, we use a CNN to extract the global

scene layout features lt from scene image It at each time

step t:

lt ¼ CNNðItÞ: ð8Þ

In our experiments, we choose the VGGNet-19 network

[38] that is pre-trained on the ImageNet [38]. The extracted

scene layout feature lt is then fed to an LSTM encoder

(LSTMl
e) to compute the hidden state vector Lt for each

observed pedestrian at time step t:

Lt ¼ LSTMl
e Lt�1; lt;Wl

e

� �
; ð9Þ

where Wl
e is the associated encoding weight [24].

Since the camera is stationary in our task, the back-

ground scene remains almost the same in most cases.

However, the pedestrians in the scene are moving. The

configuration of the observed scene images also changes

with time due to the movement of these pedestrians or

background objects, such as parked or moved vehicles.

Therefore, the difference between scene features at dif-

ferent time steps is mainly caused by the background

motion. In order to model these human–scene interactions,

we propose to use a GAT network to assign different and

adaptive attention weights to the hidden states of the scene

features at different time steps. Specifically, we first con-

struct a complete graph by considering each hidden state of

the scene features as graph nodes and their interactions as

edges, as shown in Fig. 6. The inputs to graph attention

layers are the hidden states of the scene features at each

time step of L1; L2; � � � ; LTo . The interaction coefficients akt
between the scene hidden states Lt and Lk are defined as

follows:

akt ¼
expðUðaTg ½WgL

t �WgL
k�ÞÞ

P
k2WTo

expðUðaTg ½WgLt �WgLk�ÞÞ
: ð10Þ

Similar to (4), ag is the weight vector of a single layer feed-

forward neural network that is normalized by a softmax

function with Leaky ReLU denoted by Uð�Þ. aTg is the

transpose of ag. WTo represents the set of the scene feature

hidden states from time step 1 to To. Wg is the weight

Fig. 7 The framework of global scene layout encoder. The inputs are

the observed scene images at each time step. A CNN is used to extract

the scene layout features, which are then fed to LSTMs to compute

the hidden state vectors. A GAT is applied to model the global

human–scene interactions
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matrix of a shared linear transformation that is applied to

each node. The aggregated output of the graph attention

layer for scene feature hidden state at time step t can be

computed by

L0t ¼ H
X

k2WTo

aktWgL
t

 !

; ð11Þ

where Hð�Þ is a nonlinear function, e.g., exponential linear

unit (ELU) function [20]. Finally, the global scene layout

hidden state and global human–scene interaction are con-

catenated together to form the output of the global scene

layout encoder for each pedestrian:

Ge ¼ Lt � L0
t
; ð12Þ

where � indicates the concatenation operation.

3.4.2 Modeling the impact of local context

Another important factor in determining the future trajec-

tory is the local context. The ground surface condition in

the local neighborhood, such as obstacles and potential

collision with incoming persons or vehicles, has a direct

impact on the pedestrian’s decision of future trajectory.

Note that this local context is evolving as the person is

walking. To capture this local context and analyze its

impact on the person’s decision on the future trajectory, we

propose to extract a sequence of local image patches

around the moving person, encode them into features, and

incorporate them into the GAT-based trajectory learning

and prediction framework, as illustrated in Fig. 8. The local

patch for pedestrian n at time step t is denoted as Bt
n, which

is segmented from the scene image with a fixed size. For

example, in our experiments, we set the patch size to

128�128. To encode the local context image patches, we

use a pre-trained CNN to extract the context features ctn of

the local patch Bt
n:

ctn ¼ CNN Bt
n

� �
: ð13Þ

These features are then fed into the LSTMs to capture the

hidden state of the local context:

Ct
n ¼ LSTMc

eðCt�1
n ; ctn;W

c
e Þ; ð14Þ

where Wc
e is the corresponding weight for LSTMc

e.

To incorporate the local scene context into the GAT

analysis framework, we construct a complete graph with

the hidden state of local context for each pedestrian at the

same time step as graph nodes and their interactions as the

edges. The interaction weight btnm between the local patch

Bt
m and Bt

n at time step t is computed by

btnm ¼ expðUðaTl ½WlC
t
n �WlC

t
m�ÞÞP

k2Wn
expðUaTl ½WlCt

n �WlC
t
k�ÞÞ

; ð15Þ

where Wl is the weight matrix of a shared linear transfor-

mation that is applied to each node, al is the weight vector

of a single layer feed-forward neural network normalized

by a softmax function with Leaky ReLU Uð�Þ, aTl is the

transpose of al, � represents the concatenation operation,

Wn represents the set of the neighboring nodes of node n on

the graph. With the normalized attention coefficients btnm,

the aggregated output of the graph attention layer for

pedestrian n at time step t is computed as follows:

C0t
n ¼ Hð

X

m2Wn

btnmWlC
t
mÞ; ð16Þ

where Hð�Þ is a nonlinear function, specifically, the expo-

nential linear unit (ELU) function [20].

3.4.3 Temporal correlation learning local human–scene
interactions

As in the human–human interaction modeling, the human–

scene interactions also occur at different temporal scales

with different correlation patterns. To address this issue,

we also design an extra set of temporal LSTMs to learn the

temporal correlation between the local human–scene

interactions modeled at the same time step:

Pt
n ¼ LSTMc

t Pt�1
n ;C0t

n ;W
l
t

� �
; ð17Þ

where Pt
n is the hidden temporal correlation state of local

human–scene interactions C0t
n, and Wl

t is the associated

weight. Both the local scene context of the target pedes-

trian and the local human–scene interactions are useful to

help us better learn human behavior. By taking advantage

of the spatial–temporal information, we combine these two

parts together, which is given by

Le ¼ Ct
n � Pt

n; ð18Þ

where � is the concatenation operation.

Fig. 8 The framework of local patch context encoder. The inputs are

the observed certain-sized local image patches centered on the

position of each pedestrian at each time step. A CNN is used to

extract the local context features, which are then fed to LSTMs to

capture the hidden state of the local context. A GAT is applied to

model the local human–scene interactions. An extra set of LSTMs is

designed to learn the temporal correlations of these interactions. The

tensors from the upper-level LSTMs and the lower-level LSTMs are

concatenated to form the output of the local patch context encoder
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3.5 Future trajectory prediction

As illustrated in Fig. 3, after the human–human and

human–scene interactions at different spatial–temporal

scales have been encoded, the intermediate state tensor Stn
for each pedestrian is formed by concatenating the hidden

states of the pedestrian motion He from (7), the global

scene layout Ge from (12), the local context Le from (18),

and a random noise Z with Gaussian distribution N ð0; 1Þ:
Stn ¼ He � Ge � Le � Z: ð19Þ

The purpose of Gaussian noise Z will be explained in the

following. Then the intermediate state tensor is fed into the

LSTM decoder as the initial hidden state to predict the

future relative coordinates Y for each pedestrian by

Ŝtn ¼LSTMd Ŝt�1
n ; Stn;Wd

� �
;

Yn
t ¼ðx̂tn; ŷtnÞ ¼ WoŜ

t
n þ bo;

ð20Þ

where Wd is the weight matrix of the LSTM decoder, Wo

and bo are the corresponding weight and bias term of the

linear output layer. The relative coordinates then can be

easily converted to the real coordinates according to (1).

Similar to the previous methods [17, 20], given the

observation of past human trajectories, our model aims to

learn human motion patterns and generate multiple both

physically and socially feasible trajectories. Methods in

[14, 24, 31] proposed to generate the future trajectory by

sampling from a Gaussian distribution, where the param-

eters for the distribution are trainable by minimizing the

negative log-likelihood loss of the ground truth. However,

as discussed in [17], the sampling process is not differen-

tiable, which does not allow an end-to-end learning

process.

Thus, in our work, we follow the strategy in previous

works [17, 20] to model the multi-modal property of

human movements by introducing a variety loss to

encourage diversity of generated trajectories from the

network. Specifically, for each pedestrian, k possible tra-

jectories are generated by introducing a random noise

Z�N ð0; 1Þ before the decoder stage. Then, the predicted

trajectory, which has the smallest distance to the ground

truth, is chosen as the final output. The variety loss is given

by

Lvariety ¼ min
k

jjYn � Ŷ t
njj2; ð21Þ

where Yn is the ground truth of pedestrian n, k is a hyper-

parameter, and Ŷ t
n is the predicted trajectory returned by

our network. This loss guides our model to generate the

outputs which are consistent with the observed

information.

In summary, our method has three context-driven

modules for modeling the interactions between human and

human, human and global scene, and human and local

context. The global scenes and local contexts are repre-

sented by the corresponding features extracted by pre-

trained CNNs. The spatial and temporal correlations based

on GATs and LSTMs are used throughout the method.

Specifically, we use GAT networks to learn the weights for

the human–human and local human–scene interactions

among all the pedestrians in the scene and LSTMs to model

the temporal correlation of these interactions, as shown in

Figs. 4 and 8. For global human–scene interaction, it is

processed differently. Although the background scene is

almost the same in most cases, there are still some back-

ground motions. In order to model these human–scene

interactions, a GAT network is used to assign attention

weights to the scene features at different time steps, as

shown in Fig. 7.

4 Experimental results

In this section, we compare the performance of our

MCDIM method against the state of the art on two public

and commonly used datasets: the walking pedestrians

dataset provided by ETH Zurich (ETH) [39] and the crowd

data provided by the University of Cyprus (UCY) [40]. In

order to evaluate the generalization ability of our method,

we also conduct experiments on another two datasets,

Town Centre [41] and Grand Central Station [42].

4.1 Datasets

Dataset ETH contains two videos (ETH and HOTEL), and

UCY contains three video sequences (UNIV, ZARA1, and

ZARA2). These sequences are recorded in 25 frames per

second (fps), consisting of 2D real-world human trajecto-

ries and bird’s-eye view images of four different scene

backgrounds. There are 1536 pedestrians in the crowded

scenes, which contain a wide variety of human movement

patterns, including challenging situations such as pedes-

trians walking in the same direction, crossing each other,

and collision avoidance.

The Town Centre dataset [41] is originally collected to

evaluate the performance of person tracking. It contains

hundreds of pedestrians in a real-world crowded scene. The

annotation file provides bounding boxes of each pedes-

trian’s body and head. Following previous methods

[23, 24], we define the location of a pedestrian as the center

position of his/her body bounding box. The trajectory data

is collected for every five frames. The Grand Central Sta-

tion dataset [42] is originally collected to analyze human

behaviors. It is a long video (about 33:20 minutes) recorded
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in a crowded station, which contains trajectories of about

12,600 pedestrians. Both Town Centre and Grand Central

Station datasets consist of large amounts of human–human

and human–scene interactions.

4.2 Implementation details

Our model is constructed using LSTMs and GATs. The

hidden state dimensions of the LSTM encoder, the tem-

poral LSTM, and the LSTM decoder are set to 32. Fol-

lowing prior work [18], the scene feature of size 512 is

extracted by the VGGNet-19 network [38] which is pre-

trained on the ImageNet [38]. The local image patch size is

128�128. Two graph attention layers [43] are used to learn

the interactions. The hidden state dimension and output

dimension of the graph attention layer are 16 and 32,

respectively. Our model is trained with the Adam optimizer

with an initial learning rate of 0.001 and a batch size of 64.

The hyper-parameter k in (21) is set as 20.

4.3 Evaluation metrics and protocol

We evaluate our performance using two standard metrics,

average displacement error (ADE) and final displacement

error (FDE), as in existing methods [14, 17, 18, 20]. ADE

defined in (22) computes the average Euclidean distance

between the predicted trajectories and the ground truth

trajectories from time step TO þ 1 to TP. FDE defined in

(23) computes the Euclidean distance between the final

position of the predicted trajectory and ground truth tra-

jectory at time step TP. ADE and FDE are defined as

follows:

ADE ¼
P

n2X
PTP

t¼TOþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx̂tn � xtnÞ

2 þ ðŷtn � ytnÞ
2

q

Xj j � TP
; ð22Þ

FDE ¼
P

n2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx̂TPn � xTPn Þ2 þ ðŷTPn � yTPn Þ2
q

Xj j ;
ð23Þ

where ðx̂tn; ŷtnÞ and ðxtn; ytnÞ are the predicted and ground

truth trajectory coordinates for pedestrian n at time t, X
represents the set of observed pedestrians and Xj j denotes

the total number of pedestrians.

We follow the standard leave-one-out protocol [17] for

performance evaluation with 4 datasets being used for

training and the remaining one for testing. During the

trajectory prediction, the number of time steps of the

observed trajectories is 8 (or 3.2 seconds), and the pre-

diction window size is 12 time steps (or 4.8 seconds). For

the generalization experiments on the Town Centre and

Grand Central Station datasets, we follow the previous

work [23] to normalize the location coordinates to [0, 1]

and split the whole data into two halves for training and

testing.

4.4 Baseline methods

We compare our method against the following state-of-the-

art methods: (1) S-GAN [17]: This is one of the first GAN-

based methods. It has two variants, S-GAN and S-GAN-P,

which are different in whether applying the pooling

mechanism. The hyper-parameter k in the variety loss is set

to 20 for evaluation. (2) Sophie [18]: This method observes

human trajectories and scene images and applies a soft

attention mechanism for both features. (3) Scene-LSTM

[23]: This method designs two coupled LSTMs to encode

both pedestrian’s past trajectories and the scene grids. (4)

Next [44]: This method extracts multiple visual features,

such as the pedestrian’s bounding box, pedestrian key-

points, and semantic scene features for encoding, and uses

an LSTM decoder to predict future trajectories. To

encourage the multiple feasible paths, the authors train 20

different models with random initialization by following

[17]. (5) STGAT [20]: This method captures the spatial

interactions by GAT and also designs an extra set of LSTM

to extract the temporal information along the observed time

steps. (6) Social-BiGAT [21]: This method uses the GAT to

model the human–human interactions and applies a soft

attention mechanism to the extracted visual features. (7)

Reciprocal-GAN [25]: This method constructs a forward

network and a backward network based on a reciprocal

consistency constraint. (8) SRA-LSTM [15]: This method

designs an LSTM as a social relationship encoder to model

the temporal correlation of the relative position among

pedestrians. (9) AC-VRNN [28]: This method proposes a

generative architecture based on Conditional Variational

Recurrent Neural Network, which relies on prior belief

maps to force the model to consider past observed

dynamics in generating future trajectories.

4.5 Quantitative results

The ADE and FDE performance comparison results of the

above methods on the ETH and UCY datasets are sum-

marized in Table 1. It can be seen that our method out-

performs existing methods in most cases, except on the

ETH dataset against the Scene-LSTM and ZARA1 dataset

against Reciprocal-GAN. S-GAN and S-GAN-P perform the

worst as expected since both methods do not utilize the

scene information and directly model the human–human

interactions based on their distance. Both Scene-LSTM and

Sophie perform better than S-GAN due to the use of the

scene information. Next encodes various visual features

extracted from the scene and employs the focal attention on

the encoded features, which helps it achieve a better result
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than Sophie. Background image features are also encoded

in Reciprocal-GAN. Although SRA-LSTM does not take

advantage of the physical scene features, it introduces a

social relationship attention module to capture the social

interactions, which makes a significant contribution to its

performance. Similar to SRA-LSTM, STGAT only takes

trajectories as input, but it captures the spatial–temporal

interactions among pedestrians using a complex GAT-

based network. Its average performance is 0.43 and 0.83

for ADE and FDE, respectively, the third best among all

these methods. AC-VRNN models the human–human

interactions using a Conditional Variational Recurrent

Neural Network and uses prior belief maps to force the

model to consider past observed dynamics in generating

future trajectories. It achieves the second best average

performance, namely, 0.42 and 0.83 for ADE and FDE,

respectively. Our method models the human–human and

human–scene interactions at different spatial and temporal

scales, in which the impact of global and local scene

context is fully considered using the scene context enco-

ders, and the spatial–temporal correlations of the interac-

tions are captured using LSTMs and GATs. The overall

performance of our method is the best, which is 0.40 and

0.80 for average ADE and FDE scores, respectively.

We also evaluate another performance metric called

near-collisions rate proposed in [18] to evaluate the ability

of our method in predicting reasonable and feasible paths

in crowded scenes. It represents the probability of two

persons moving closer than 0.1m. The average probability

(in percentage) of near-collisions across all frames in ETH

and UCY datasets are reported in Table 2. The results of S-

GAN and Sophie are cited from [18]. We can see that our

method outperforms both S-GAN and Sophie, which indi-

cates that our method is able to generate more reasonable

paths to prevent collisions.

Table 1 Comparison results of

all the baselines and our method

on ETH (Columns 3 and 4) and

UCY (Columns 5-7) datasets

Metric Method ETH HOTEL UNIV ZARA1 ZARA2 Avg

ADE S-GAN, CVPR’18 [17] 0.81 0.72 0.60 0.34 0.42 0.58

S-GAN-P, CVPR’18 [17] 0.87 0.67 0.76 0.35 0.42 0.61

Sophie, CVPR’19 [18] 0.70 0.76 0.54 0.30 0.38 0.54

Scene-LSTM, ISCV’19 [23] 0.36 0.95 0.63 0.45 0.40 0.56

Next, CVPR’19 [44] 0.73 0.30 0.60 0.38 0.31 0.46

STGAT, ICCV’19 [20] 0.65 0.64 0.52 0.34 0.29 0.43

Social-BiGAT, NIPS’19 [21] 0.69 0.49 0.55 0.30 0.36 0.48

Reciprocal-GAN, CVPR’20 [25] 0.69 0.43 0.53 0.28 0.28 0.44

SRA-LSTM, 2021 [15] 0.59 0.29 0.55 0.37 0.43 0.45

AC-VRNN, 2021 [28] 0.61 0.30 0.58 0.34 0.28 0.42

MCDIM (Our Work) 0.59 0.29 0.51 0.32 0.28 0.40

FDE S-GAN, CVPR’18 [17] 1.52 1.61 1.26 0.69 0.84 1.18

S-GAN-P, CVPR’18 [17] 1.62 1.37 1.52 0.68 0.84 1.21

Sophie, CVPR’19 [18] 1.43 1.67 1.24 0.63 0.78 1.15

Scene-LSTM, ISCV’19 [23] 0.67 1.77 1.41 1.00 0.90 1.15

Next, CVPR’19 [44] 1.65 0.59 1.27 0.81 0.68 1.00

STGAT, ICCV’19 [20] 1.12 0.66 1.10 0.69 0.60 0.83

Social-BiGAT, NIPS’19 [21] 1.29 1.01 1.32 0.62 0.75 1.00

Reciprocal-GAN, CVPR’20 [25] 1.24 0.87 1.17 0.61 0.59 0.90

SRA-LSTM, 2021 [15] 1.16 0.56 1.19 0.82 0.93 0.93

AC-VRNN, 2021 [28] 1.09 0.55 1.22 0.68 0.59 0.83

MCDIM (Our Work) 1.07 0.57 1.09 0.68 0.59 0.80

Given the eight previous time steps, the task predicts 12 future time steps. All methods take ADE / FDE in

meter scale as error metrics

Table 2 Average percentage of colliding pedestrians for each scene in

ETH and UCY datasets

GT S-GAN [17] Sophie [18] Ours

ETH 0.000 2.509 1.757 1.447

HOTEL 0.092 1.752 1.936 1.326

UNIV 0.124 0.559 0.621 0.514

ZARA1 0.000 1.749 1.094 1.172

ZARA2 0.732 2.020 1.464 1.315

Avg 0.189 1.717 1.361 1.155

The first column represents the ground truth
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4.6 Generalization capability evaluation
on the town centre and grand central station
datasets

We conduct experiments on two new datasets, the Town

Centre [41] and Grand Central Station [42], to further

evaluate the generalization capability of our method. The

experiment settings are exactly the same as [23]. For both

datasets, the training data is formed by combining the

training data from ETH and UCY datasets and 50% data

from this dataset. The remaining data is used for testing.

We compare the results of trajectory prediction for pre-

diction window sizes of 12 and 16 time steps against the S-

GAN [17] and Scene-LSTM [23] methods. As illustrated in

Table 3, our method clearly outperforms these two state-of-

the-art methods. Some qualitative examples from both

datasets are shown in Fig. 9.

4.7 Qualitative results

As mentioned before, human trajectory prediction is a

challenging task, and our goal is to predict both socially

and physically acceptable future paths. Many complicated

interactions may occur between pedestrians in a crowded

scene, such as group movements, walking toward each

other, and changing directions to avoid collisions with

other pedestrians or stationary obstacles.

Figure 10 shows some qualitative results of future tra-

jectory prediction with different human–human and

human–scene interactions. For example, in the first fig-

ure of the first row, a pedestrian walks out of the building,

and three other pedestrians walk in the same direction

without collisions. In the second figure of the first row and

the last figure of the second row, our model can learn the

interactions between the pedestrian and the obstacles (e.g.,

cars and trees), therefore changing the trajectories’ direc-

tions. From the last figure of the first row and the first

figure of the second row, we can see that our model can

generate reasonable and feasible paths for multiple pedes-

trians walking toward each other. Our model also performs

well for the pedestrians that are not moving. As shown in

the second and third figures of the second row, our model

can learn the future trajectories of the pedestrians standing

in the same place waiting for the train or chatting with each

other. These examples demonstrate that our method can

predict reasonable and feasible future trajectories in com-

plex and crowded scenes.

4.8 Ablation studies

Compared with the existing methods, our method has two

major new components, the global scene layout encoder,

and the local scene context encoder. In order to evaluate

the importance and contribution of each new component,

several ablation experiments are performed with the ADE

and FDE results reported in Table 4. From the second and

fifth rows of Table 4, we can see that the error metrics ADE

and FDE both increase when we exclude the global scene

layout encoder. With the global scene layout encoder, our

model can model and learn the impact of the entire scene

layout on the human trajectory to generate better and more

reasonable future trajectories. In the third and sixth rows of

Table 4, we list the results without the local scene context

encoder. Both ADE and FDE scores increase since the

model lacks the knowledge of the scene context in the local

neighborhood. From the last column of Table 4, we can see

that our two new components have significantly con-

tributed to the overall performance.

4.9 Discussion and future work

In the previous section, we have compared our method to

the state of the art. In Table 1, we have the following

observations on the factors that would improve the

Table 3 The quantitative results (ADE and FDE) on town centre and grand central station datasets with different prediction lengths of future

trajectories

Metrics Datasets Prediction Length S-GAN [17] S-GAN-P [17] Scene-LSTM [23] Ours

ADE Town center 12 0.22 0.21 0.09 0.07

16 0.37 0.38 0.14 0.10

Grand central station 12 0.21 0.40 0.11 0.08

16 0.32 0.79 0.14 0.11

FDE Town center 12 0.46 0.42 0.18 0.11

16 0.80 0.81 0.27 0.19

Grand central sation 12 0.45 0.74 0.17 0.14

16 0.62 1.50 0.25 0.17
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trajectory prediction performance. The first one is incor-

porating the scene features into the interaction modeling

scheme, as shown in the performance comparison between

Sophie, S-GAN, and ours. The second one is modeling the

spatial–temporal correlations of human interactions, as

demonstrated by the improvements achieved by STGAT.

Our method combines the two and models the interactions

between human and human, interactions between human

and global and local scenes. The spatial–temporal corre-

lations of these interactions are also captured using LSTM-

and GAT-based networks. These factors help our method

achieve the best average performance. The ablation study

in Table 4 shows that both global and local human–scene

interactions have made significant contributions to the final

performance.

On the other hand, in Table 1, our method fails to

achieve the best for some tests. For example, Scene-LSTM

and Reciprocal-GAN have better performance than ours on

ETH and ZARA1, respectively. In these two video

sequences, the background scenes are quite stationary,

especially the ETH. Therefore, the background image

features are almost the same for trajectory prediction at

different time steps. This suggests it benefits to design a

model to better understand the scene, such as utilizing the

Fig. 9 Qualitative examples of our method predicting future 12 time steps trajectories, given previous 8 time steps ones on town centre (1st row)

and grand central station (2nd row) dataset. Note that we crop and resize the original image for better visualization

Fig. 10 Qualitative examples of our method predicting future 12 time

steps trajectories, given previous 8 time steps ones on ETH and UCY

dataset. Note that we crop and resize the original image for better

visualization. We choose scenarios with multiple pedestrians and

complex interactions

Table 4 Ablation experiments

of our full algorithm without

different components

Metric Method ETH HOTEL UNIV ZARA1 ZARA2 Avg

ADE Our method (full algorithm) 0.59 0.29 0.51 0.32 0.28 0.40

Without global scene layout encoder 0.66 0.47 0.52 0.30 0.30 0.45

Without local scene context encoder 0.63 0.45 0.52 0.31 0.29 0.44

FDE Our method (full algorithm) 1.07 0.57 1.09 0.68 0.59 0.80

Without global scene layout encoder 1.25 0.72 1.10 0.69 0.60 0.87

Without local scene context encoder 1.28 0.78 1.11 0.68 0.61 0.89

Error metrics reported are ADE and FDE in meter scale
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semantic segmentation of the images, as the work of [32].

Furthermore, the comparison among those methods that

only utilize the trajectory information indicates that

applying a more advanced learning network or algorithm

will certainly improve the performance. Compared to the

network architectures of SRA-LSTM and AC-VRNN, our

network structure is quite straightforward, which may limit

its learning capacities. In future work, we can further

improve our method by designing a more advanced net-

work that is more capable of capturing the complex hidden

correlations and interactions among pedestrians and scenes.

We also plan to test the human trajectory prediction in

more crowded and dynamic scenarios, such as players in

sports games.

5 Conclusion

In this work, we have recognized that the human–human

interactions and the interactions between humans and the

multi-level scene contexts occur at different spatial and

temporal scales in real scenarios, which have not been fully

addressed for human trajectory prediction. To capture these

complex interactions, we propose a multi-level context-

driven interaction modeling (MCDIM) method for human

future trajectory learning and prediction. We construct a

multilayer GAT network to model the hierarchical human–

human interactions. An extra set of LSTMs has been

designed to capture the correlations of these human–human

interactions at different temporal scales. Both the global

scene layout features and local scene context features in the

neighborhood of the person at different time steps are

extracted and encoded with LSTMs. The hidden states are

fed into the GAT network for joint learning of human–

human and human–scene interactions. Experimental results

on several benchmark datasets demonstrate that, by jointly

modeling the human–human and human–scene interactions

at different spatial–temporal scales, our method outper-

forms the state-of-the-art methods and generates more

accurate and plausible trajectories for pedestrians.
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