
Amateur Football Analytics using

Computer Vision
by

Panagiotis Mavrogiannis

Submitted

in partial fulfilment of the requirements for the degree of

Master of Artificial Intelligence

at the

UNIVERSITY OF PIRAEUS

July 2021

University of Piraeus, NCSR “Demokritos”. All rights reserved.

AuthorPanagiotis Mavrogiannis

II­MSc ”Artificial Intelligence”

July 13, 2021

Certified by .

Ilias Maglogiannis,

Professor,

Thesis Supervisor

Certified by .

Theodoros Giannakopoulos,

Researcher (B),

Member of Examination

Commitee

Certified by .

Orestis Telelis,

Assistant Professor,

Member of Examination

Commitee

2

Amateur Football Analytics using Computer Vision

By

Panagiotis Mavrogiannis

Submitted to the II­MSc “Artificial Intelligence” on July 13, 2021,

in partial fulfillment of the

requirements for the MSc degree.

Abstract

Purpose of this thesis is to develop an application that draws conclusions

from football games that have been obtained through a single point of view,

like TV broadcast, for the needs of which the minimum necessary equipment

is used in terms of cost, so that it is accessible by football clubs with low­

budget. The results of the application can be used by coaches of clubs to

identify useful insights in order to improve the performance of the clubs. It is

based on the use of existing research in the field of football, computer vision

and deep learning, combining methods that have been developed and fur­

ther improving themwhere possible, without the need to generate additional

training data. Another purpose of this work is to achieve the fastest possible

processing of input data, while at the end, theoretical solutions are proposed

to further improve the presented method.

Περίληψη

Σκοπός αυτής της διπλωματικής εργασίας είναι η αναπτυξη μίας εφαρμο­

γής για την εξαγωγήσυμπερασμάτωναπόπλάναποδοσφαιρικώναγώνων, τα

οποία έχουν ληφθεί μέσω κλασσικής τηλεοπτικής κάλυψης, για τις ανάγκες

της οποίας αξιοποιείται ο ελάχιστος απαραίτητος εξοπλισμός από πλευράς

κόστους, ώστε αυτή να καθίσταται προσβάσιμη από ποδοσφαικούς συλλό­

γους με χαμηλό ­ περιορισμένο προϋπολογισμό. Τα αποτελέσματα της εφαρ­

μογής μπορούν να αξιοποιηθούν από τους προπονητές των συλλόγων για τον

εντοπισμό χρήσιμων συμπερασμάτων με στόχο της τελική βελτίωση της από­

δοσης των συλλόγων. Η ίδια η μέθοδος δε, βασίζεται στην αξιοποίηση της

υπάρχουσας έρευνας που έχει γίνει στο χώρο του ποδοσφαίρου, την μηχα­

νική όραση και τη βαθιά μάθηση, συνδυάζοντας μεθόδους που έχουν ανα­

πτυχθεί και βελτιώνοντας ’τες περαιτέρω όπου αυτό ήταν εφικτό, χωρίς την

ανάγκη δημιουργίας επιπλέον δεδομένων εκπαίδευσης. Άλλος σκοπός της

εργασίας είναι η κατά το δυνατό ταχύτερη επεξεργασία των δεδομένων ει­

σόδου, ενώ στο τέλος προτείνονται και θεωρητικές λύσεις για τη περαιτέρω

βελτίωση της παρουσιαζόμενης μεθόδου.

3

Acknowledgments

First of all, I would like to sincerely thank my supervisor Dr. Ilias Maglogiannis,

for his guidance, advice and cooperation during this thesis project, as well as, Dr.

Theodoros Giannakopoulos and Dr. Orestis Telelis.

This thesis is dedicated to my beloved parents who helped me accomplish my

goals all this time. I would also like to thank my sister Katerina, my close friends:

Panagiotis, Efi, Saif, Eirini, Manos and Kostas all of whom supported me psycho­

logically to accomplish this master’s course. Apart from them, I would also like to

thank my classmates Vicky, Panagiotis and Eirini for their collaboration, knowl­

edge sharing, andprimarily, supportwe gave each other for the last two years. Last

but not least, I would like to thank one of my best friends, Pavlos, who believed in

me more than I did and was present with his counseling from the very beginning

of this journey. Finally, my cat who stood literally by my side, accompanying me

all those long days and nights.

Any opinions, findings, conclusions or recommendations expressed in thisma­

terial are those of the author(s) and do not necessarily reflect the views of the

«funding body» or the view of University of Piraeus and Inst. of Informatics and

Telecom. of NCSR “Demokritos”.

4

Contents

1 Introduction 1

1.1 Problem Definition . 1

1.2 Challenges . 2

1.3 Initial Implementation . 3

2 RelatedWork 5

2.1 Existing works . 5

2.2 Contribution . 10

3 Methodology 10

3.1 Architecture . 12

3.2 Computer Vision Packages & Tools 13

3.3 Court Detection . 13

3.3.1 Pix2Pix model . 14

3.3.2 Grass mask refinement . 16

3.4 Camera Estimation . 17

3.4.1 Initial camera pose estimation 19

3.4.2 Tracking ­ ECC method . 21

3.4.3 Tracking ­ Lucas­Kanade method 23

3.4.4 Feature­camera pose database 26

3.5 Team Detection . 26

3.5.1 Object detection . 27

3.5.2 Team classification . 31

3.5.3 Object tracking . 35

3.6 Analytics Extraction & Visualization 36

4 Experiments & Results 41

4.1 Court Detection ­ Dataset . 41

4.2 Camera Estimation . 42

4.2.1 Initial approach . 42

4.2.2 Synthetic Camera Pose Dataset 43

4.2.3 Current approach . 46

4.3 Object Detection . 46

4.3.1 Data sets . 46

4.3.2 Data augmentation . 47

4.4 Team Classification . 48

4.5 Real World Videos . 51

5 Conclusions & FutureWork 52

6

List of Figures

1 Initial implementation architecture 4

2 Application architecture . 12

3 Court detection functionality . 14

4 From left to right: Masked edge map output ­ Unmasked edge map

with false­positive line behind goal post. 16

5 From left to right: Original grassmask ­ Contour points (redmarks)

found on mask ­ The contour that corresponds to the largest group

of points ­ Result after applying Gaussian blur. 17

6 Camera estimation procedure . 18

7 Image coordinates of the static, binary, top view of the court, rep­

resented as image . 19

8 Camera estimation task. First row shows how an inferred­inverted

homography matrix translates points from TV broadcast view to

static top­view. Second row shows schematic representation of cam­

era poses (in red) depending on current frames 19

9 Distance transformation for edgemaps. First row shows target edge

map on the left and source edge map on the right. Second row

shows respective edge maps after distance transformation 21

10 Original frames with edgemap outputs applied on top. From left to

right: Edge map from Court Detector ­ Edge map estimation from

database search ­ Edgemap estimation after homography refinement 22

11 Siamese network training . 25

12 Feature­camera pose database generation 26

13 Team detection procedure . 27

7

14 High­level architecture of FootAndBall detector. The input image

is processed bottom­up by five convolutional blocks producing fea­

ture maps with decreasing spatial resolution and increasing num­

ber of channels. The feature maps are then processed in the top­

down direction. Upsampled feature map from the higher pyramid

level is added to the feature map from the lower level. 1x1 convolu­

tion blocks decrease the number of channels to the same value (32

in our implementation). Resultant feature maps are processed by

three components: ball classification component, player classifica­

tion component and player bounding box regression component.

Numbers in brackets denote size of feature maps (width, height,

number of channels) produced by each block, where w, h is the in­

put image width and height. 28

15 Input image and the related player confidence map. Confidence

map has been resized; its original dimensions are 45 × 80. White

marks in black background represent cells with higher confidence

values for player presence. 29

16 Color histogram classifier architecture 33

17 Segmentation classifier architecture 34

18 Game analytics architecture . 37

19 Team sides inference process . 38

20 Information about team sides is represented with a colored line in

each goal post. Line color is the same as the team it relates to. . . . 38

21 Logistic regression is used to determine team sides from player top

view points . 39

22 Current way of depicting analytics results. On the left, TV broad­

cast frame is shown, with player colormarkings that represent their

identified teamand court linemarkings inwhite color. On the right,

static top view with players and ball represented as colored dots.

Note that red team defends left side, denoted by a red line in left

goal post. Accordingly, blue team defends right side. Semantic in­

formation are shown below top view. 40

23 Exemplary images fromWorld Cup data set. Right: pairs of images

used for image segmentation task. Left: pairs of images used for

feature extraction task. 41

24 Initial implementation example output. For cases such as this, in­

tersection points do not suffice for robust perspective transformation. 42

8

25 The origin of the world coordinate is at the left bottom of the foot­

ball court template. 44

26 Pinhole camera model . 44

27 Use cases that depict failed camera estimations. Note that top­left

image estimation is not fixed even after refinement process 45

28 Exemplary images from ISSIA­CNR (top­right image) and Soccer

Player Detection data sets (rest images) 47

29 Developed tool to simulate PyTorch transformations results on im­

age during augmentation . 48

30 Color models used during experimentations. From left to right:

RGB model­ HSV model­ Spherical model 48

31 Test images used for validation. From top to bottom: AEK ­ Bel­

gium ­ ISSIA­CNR ­Manchester ­ Egaleo. There is annotation above

each image: G_T represents ground truth, Pred represents pre­

dicted value. Ground truth and Pred take values 0, 1, 2 according

to the cluster they belong. Predicted values in this figure are the

results from Color Histogram method. 50

32 Source image for Egaleo test images. 51

List of Tables

1 Team classification methods comparison 49

1 Introduction

1.1 Problem Definition

Sports analytics are used to extract information regarding game plays, playing

style, tactics, performance and insights, among other. Such information is in­

valuable to professionals in order to increase the competitiveness of a player or

a team, by identifying strengths and weaknesses of players. Furthermore, useful

game statistics can be deduced automatically for applications that aim consump­

tion or entertainment.

Especially regarding football games, such information requires large amounts

of tedious manual work and sometimes, expensive equipment, thus restricting

the privilege of acquiring such insights only to high profile sport events and pres­

tigious football clubs who can afford such costs.

However, basis formeaningful extraction of any information in a footballmatch,

1

is the ability for a viewer to determine the positions of all players from his/her

point of view and render them on a top­down view of football court. Given the

possibility of having a panoramic view of his/her team and the opponent team,

a coach could have a better grip of a situation, in real time or after game, just

like he/she does on his/her tactical map during team coaching sessions. During

such sessions, team formation is a principal component of any strategy, in order

to adapt to and eventually, counter the opponent’s game style/strategy. Deriving

the selected formation of a football team is an achievable target for a computer

vision application, given a central viewpoint of the game, with a decent elevation

and a decent low­end pan­tilt­zoom camera.

1.2 Challenges

Important challenges regarding the implementation of the aforementioned appli­

cation range among the following areas:

Player Occlusion during which players hide one another at certain moments,

when they strive for ball possession. Such cases necessitate player inference from

previous frames or implementing an approach that utilizes a person’s still visible

members to detect his/her presence. Another challenge regards the fact that the

application uses only one PTZ camera to cover the entire game. Thus, viewing

all the players is not possible unless, someone uses additional cameras or use the

same one camera from a greater elevation, for a more panoramic view in order to

cover a larger space of the court, if not all of it.

Ball occlusion may happen partially or completely owing to a player’s body.

Also, it maybe too close to a player so that, given a case where a player wears

white shoes­socks and the ball is white, the object detector can miss ball pres­

ence. Same approach as with player occlusion, can be used so that missing ball

is predicted from previous frames. Final case for ball occlusion is when the ball

is sent high up in the air in which case it is blended with the audience or parts

of the frame, outside the court area. In that case, perhaps extracting information

from ball trajectory, may help determine its mid­air position along with the help

of object movement physics.

Court recognition is affected by factors such as lighting conditions, court field

maintenance and image resolution of used camera, therefore play a significant

part. Court lighting can either be artificial or natural. Natural lighting may vary

in different locations within the court or different times during the game, depend­

ing on the time of the day, especially when the sun is low enough in the sky, so that

2

shadows are cast from objects outside football terrain. Furthermore, depending

onweather conditions, due to humidity increased levels inside the court, ”glaring”

may occur on the grass, also depending on camera point of view. This problem

may obstruct important elements such as court lines, players or the ball. Regard­

ing court field maintenance, low contrast between grass and court lines due to

poor maintenance, results to difficulties in line detection which in turn deterio­

rates the procedure of determining court boundaries. Finally, images with low

resolution may obscure terrain boundaries, notably those in the far edges of the

court.

Camera registration is perhaps the most significant of all challenges and relates

to the ability of an application to determine the location of the court that is de­

picted in a givenmoment. In general, camera­based applications for sport analyt­

ics, mainly use court lines for localization but, what happens when frames are not

panoramic enough to include useful lines or marks on terrain. Such frames may

result from zoomed in camera takes, particularly around midfield areas. Some

approaches have been implemented so far but also, there is certainly a continuity

in frames taken, which maybe prove helpful.

Team formation inference relates much to player occlusion. That is because

some team formations slightly differ depending on the position of each player, in

conjunction with others from the same team and so, every one must be visible.

More panoramic views of the terrain help with this scenario but, so does placing

one or two more static, non­PTZ cameras. All the same, even knowing the exact

location of each player, can result to multiple inferred team formations, due to

the aforementioned slight difference between some of them. This is a difficult

task even for an expert human annotator.

1.3 Initial Implementation

The initial implementation consists mainly of two basic modules, as shown in Fig­

ure 1 the object detector and the court detector, with parallelograms representing

functionalities and ellipses representing feature outputs. Object detector utilizes

anYOLOv3CNNwhich is a general purpose object detector and then, filters YOLO

output detections that are neither person, nor ball. Court detector identifies court

lines in order to extract their intersection points. Both modules take as input a

preprocessed frame, in which everything except for the grass area of the image,

has been discarded, so that detector takes into account only information inside

the court. Additionally, a team classifier handles the team classification of players

between teams.

3

Figure 1: Initial implementation architecture

4

2 Related Work

Relatedwork has been studied in the premises of this thesis. A review ofmilestone

works is done and papers are cited below according to problem they are related

to.

2.1 Existing works

Player & ball detection on footballmatches has been addressednumerous times

in the past, using a variety of methods. A common approach has been to extract

foreground information from an image, since players and the ball are the only

objects constantly in motion, then extract higher level features from the image

which will finally be used as input for a classifier.

Gaussianmixturemodel has been used to divide image pixels into background

and foreground pixels [2]. Another method is to apply a global color filter to ex­

tract player regions from background [6]. Features based on edge orientations,

like histograms of oriented gradient (HOG) [9] and edge orientation histograms

(EOH) [29], [8] have been used for human detection and finally, SVM is the pre­

ferred algorithm for the classification task [9], [8]. Multiple detections relating to

the same object may occur in which case, non­maximum suppression method is

applied [16]. For ball detection, circular Hough transform has been used for ball

detection [11], [38]. Especially for the cases of partial or total occlusion of the ball,

motion history images, along with Freeman chain­code have been employed [21].

Deep learning methods have been proved to be more robust with the advent

of CNNs for object detection. There are two­stage methods like R­CNN [18] that

combine two key insights: a) one can apply high­capacity convolutional neural

networks (CNNs) to bottom­up region proposals in order to localize and segment

objects and b) when labeled training data is scarce, supervised pre­training for an

auxiliary task, followed by domain­specific fine­tuning, yields a significant perfor­

mance boost. R­CNN employs Selective Search [46] which combines the strength

of both an exhaustive search and segmentation, to generate candidate bounding

boxes (object proposals) then, applies CNNs to classify objects from these propos­

als. Thereafter, Fast R­CNN [17] employs several innovations to improve training

and testing speed while also increasing detection accuracy, through training the

very deep VGG16 network and exposing region proposal computation as a bot­

tleneck. Faster R­CNN [40] introduced a Region Proposal Network (RPN) that

shares full­image convolutional featureswith the detectionnetwork, thus enabling

nearly cost­free regionproposals. TheRPN is trained end­to­end to generate high­

quality region proposals, which are used by Fast R­CNN for detection and both

networks aremerged into a single network by sharing their convolutional features

5

using ”attention”mechanisms. ThoughR­CNNs ([18], [17]& [40]) have improved

performance over their predecessors however, they have objectively slow infer­

ence times.

One­stage approaches like You Only Look Once ­ YOLO, Redmon et al., 2016

[39] utilize a single neural network to predict bounding boxes and class probabil­

ities directly from full images in one evaluation. This is done by framing object

detection as a regression problem to spatially separated bounding boxes and as­

sociated class probabilities. Liu et al., 2016 in their Single ShotMultiBox Detector

(SSD) [32] also use a single deep neural network to discretize the output space of

bounding boxes into a set of default boxes over different aspect ratios and scales

per feature map location. Scores are generated for the presence of each object

category in each default box and adjustments are produced to the box to better

match the object shape. Both methods are simple relatively to others that require

object proposals because, they completely eliminate proposal generation and sub­

sequent pixel or feature re­sampling stages and encapsulates all computation in

a single network. They boast fastest inference times, though with less accuracy

since their small object detection performance is unsatisfactory. Such networks

of course, due to their general purpose nature, tend to be large, with millions of

parameters.

Following the successful applications of convolutional neural networks to solve

many computer vision problems, a few neural network­based ball and player de­

tection methods were recently proposed. Lu et al., 2017 [33], which is modelled

after AlexNet [1], presents a cascaded convolutional neural network (CNN) for

player detection. The network is lightweight and thanks to cascaded architecture

the inference is efficient. The training consists of two phases: branch­level train­

ing and whole network training. Cascade thresholds are found using grid search.

Advancements have also been done on ball detection with DeepBall, Komorowski

et al., 2019 [27] and [26] where a deep network based detector is presented. It

specializes in ball detection in long shot videos by means of using hypercolumn

concept, where feature maps from different hierarchy levels of the deep convo­

lutional network are combined and jointly fed to the convolutional classification

layer. Hypercolumn concept introduced in Hariharan et al., 2015 [22], utilizes

larger visual context into consideration in order to correctly classify fragments

of the scene containing objects similar to a ball. DeepBall itself is inspired from

methods like SSD and YOLO networks and its purpose is small objects detection

and reduced processing time. It eventually became part of FootAndBall detec­

tor [28], a method which operates on a single video frame and is intended as the

first stage in the soccer video analysis pipeline. The detection network is designed

with performance in mind to allow efficient processing of high definition video.

Compared to the generic deep neural­network based object detector it has two or­

6

ders of magnitude less parameters (e.g. 199 thousand parameters versus 24 mil­

lion parameters in SSD300 [32]. Feature Pyramid Network design pattern [31]

exploits the inherent multi­scale, pyramidal hierarchy of deep convolutional net­

works to construct feature pyramids with marginal extra cost. A top­down ar­

chitecture with lateral connections is developed for building high­level semantic

feature maps at all scales. This method is applied in the aforementioned [28] to

achieve detection of the two different in size classes, small objects such as the ball

and large ones, such as players.

Object tracking is also utilized in this application in conjunction with object de­

tection. The Lucas­Kanade algorithm [34], as originally proposed in 1981, can be

applied in a sparse context because it relies only on local information that is de­

rived from some small window surrounding each of the points of interest. The

disadvantage of using small local windows in Lucas­Kanade is that large motions

can move points outside of the local window and thus become impossible for the

algorithm to find. This problem led to development of the “pyramidal” Lucas­

Kanade algorithm [5], which tracks starting from highest level of an image pyra­

mid (lowest detail) and works down to lower levels (finer detail). Tracking over

image pyramids allows large motions to be caught by local windows. Danelljan

et al., 2014 [10] proposed approach works by learning discriminative correlation

filters based on a scale pyramid representation. It learns separate filters for trans­

lation and scale estimation, and showed that this improves the performance com­

pared to an exhaustive scale search.

Color classification regarding players, is handled in this application in order for

them to be grouped into their respective teams. In specific, players have to be dis­

tinct in their bounding boxes and afterwards, colors features are extracted from

their outfits. GrabCut algorithm [42] was studied to that end and other papers

inspired by it. In Li et al., 2015 [30] KM_GrabCut algorithm uses K­means clus­

tering to cluster pixels in foreground and background respectively, and then con­

structs a Gaussian Mixture Model based on each clustering result and cuts the

corresponding weighted graph only once. Works that utilize deep learning for the

task have also been studied like Gunduz et al., 2021 [19] who sought to extract

the dominant colors of a salient object from an image even if the objects overlap

each other. Their method SALGAN is a network that follows Inception­ResNet

architecture to semantically segment objects in an image. They apply SALGAN to

find the salient object in the image and eventually, apply k­means clustering on

the combined resulting outputs, to partitions samples. However, finding a salient

object (player) in a more or less stable background (grass), is much simpler task.

Inspired from the aforementioned papers and techniques, classic machine learn­

7

ing practices are utilized for image segmentation and color classification.

Camera registration in court­based sports, like football, requires identifying the

court within image, then find the homography that relates to the court as depicted.

(homography is a 3 × 3 matrix that allows perspective transformation of a point

y from an image, to a point y′ in the same image.) In certain cases, homography

estimation has been donemanually for key frames of the court, then propagated to

the next ones or it was estimated through searching over a large parameter space,

with the purpose of initializing the system.

Previous methods have been exploiting geometric primitives such as lines and

circles for court detection, usingHough transformorRANSAC in conjunctionwith

color and texture heuristics that are specifiedmanually [15], [14], [23]. In his work

for tennis courts, Farin et al. [15], [14] performs system initialization using a few

frames from the beginning of a video sequence, depicting a whole court during

which, lines are detected using the aforementioned methods and refined. Then,

lines are divided in vertical­horizontal couples and used in search for the best set

whose intersection points correspond to the four corners of the court. Those were

used to estimate camera parameters, concluding the initialization process. For

each next frame, lines are tracked and camera registration is updated.

However, football fields are enormous and a single frame cannot contain all

four corners. In this case, Homayounfar et al. [24] formulated this problem as

a branch and bound inference in a Markov random field where an energy func­

tion is defined in terms of semantic cues such as the field surface, lines and cir­

cles obtained from a deep semantic segmentation network. Sharma et al. [43],

exploiting the edge information from the line markings on the field, they formu­

lated the registration problem as a nearest neighbour search over a synthetically

generated dictionary of edgemap and homography pairs. The synthetic dictionary

generation allows them to exhaustively cover a wide variety of camera angles and

positions and reduces this problem to a minimal per­frame edge map matching

problem. Chen & Little, 2019 [7] developed a novel camera pose engine that gen­

erates camera poses by randomly sampling camera parameters. The camera pose

engine has only three significant free parameters [7] so that it can effectively gen­

erate diverse camera poses and corresponding edge (i.e. field marking) images.

Then, they learn compact feature descriptors via a siamese network and build a

feature­pose database. After that, they use a novel generative adversarial network

(GAN)model to detect field markings in real images. Finally, they query an initial

camera pose from the feature­pose database and refine the camera pose by using

distance images.

8

Camera pose tracking can help in the reduction of processing time during cam­

era registration task. In their work, Evangelidis et al.,2008 [13] proposed using

a new similarity measure called Enhanced Correlation Coefficient (ECC) for es­

timating the parameters of the motion model. There are two advantages of us­

ing their approach. Firstly, unlike the traditional similarity measure of difference

in pixel intensities, ECC is invariant to photometric distortions in contrast and

brightness. Secondly, although the objective function is nonlinear function of the

parameters, the iterative scheme they developed to solve the optimization prob­

lem is linear. In other words, they took a problem that looks computationally ex­

pensive on the surface and found a simpler way to solve it iteratively. ECC is used

in this work, both for camera registration as well as for tracking camera motion.

It does so by aligning an initially estimated camera pose or previous frame cam­

era pose, to a target desirable one that corresponds much more to ground truth.

Previously mentioned “pyramidal” Lucas­Kanade algorithm [5] can also handle

camera motion tracking, given right conditions. It is used in experiments and

while it has issues regarding its results, due to its processing speed, may evolve to

a decent solution.

Team formation recognition is a complex task during a football match because

players constantly change positions. In his work, Bialkowski et al. [4] introduce

an algorithm that defines the formation as a set of role­aligned player positions.

However, it is assumed that the dominant formation is stable within a halftime

but, in fact modern football tactics change according to current phases in order to

cope with opponent’s playstyle, thus making the problem more complex.

In addition, Bialkowski et al. [3] extend theirwork andutilize the role­assignment

algorithm todiscover in­match formation variations, using twomethods as a proof­

of­concept: (1) clustering of role­aligned player positions and (2) calculating the

distance of each frame to the mean formation of the halftime.

Nevertheless, the aforementioned application relies on the detection of the

most prominent formations and so, such an approach cannot automatically pre­

dict a numerical tactical scheme such as ”4­4­2” for short match phases. Alterna­

tively, Machado et al. [35] developed a match analysis tool and applied k­means

clustering to the one dimensional y player positionswith respect to the field length

(from goal to goal) itself. Each player is then assigned to one of three tactical

groups to create a rough but well­known numeric representation. However, this

approach completely neglects the x­coordinates of the players’ positions for clas­

sification.

Recently, Muller et al. [37] proposed a methodology to create a visual forma­

tion summary that serves to classify the team formation played in single of a foot­

ball match. Finally, Shaw&Glickman [44] presented a data­driven technique that

9

classifies team formations, divides them into offensive­defensive and detects ma­

jor changes tactical changes during the course of a match.

2.2 Contribution

What is missing from existing work is a method that unifies progress done so far

on the fields of object detection, camera registration and information extraction

from sports, in order to tackle a realistic problem, like sport analytics in football,

with an end­to­end approach. Existingwork examines specific cases, based on im­

age datasets that have been produced to allow training and evaluation purposes

however, the process of producing such data is rather expensive; objects have to

be annotated within images regarding object detection task and camera registra­

tion requires researchers to estimate camera poses for different point of views for

the court along with the ground truth. Finally, football experts have to watch nu­

merous snapshots from games and decide related facts that will serve as ground

truth for a method to be trained. Sometimes concluding some facts requires a se­

quence of images, a period of seconds in other words, than merely an image from

the same sequence.

This work is a prototypemethod that observes football games, recognizes play­

ers, ball and their location in the court and exports conclusions about the teams

while at the same time, it does not require any preparation to do this job. Input

video sequence may come from any football match that was shot with a simple

HD camera, from the middle field area, with a decent elevation regarding point

of view, just like TV broadcasts. It learns from the first moments to distinct the

teams, their respective goal posts and during course of the game, is able to extract

basic, useful information. At the same time, it achieves a frame processing rate

of 2.5­3 FPS while using low­end hardware and a simplistic implementation that

does utilize neither parallel jobs, except for the GPU part that runs deep learning

models, nor any sophisticated software development methods to minimize pro­

cessing time, though there is room for such improvements, analyzed later on.

3 Methodology

As mentioned before, video frames are used as input for the application. Each

frame is segmented in grass/non­grass area, then court lines are detected from

the grass area, a task that is handled by a dual­GAN model [7] which forms the

basis of Court Detector module. Afterwards, both outputs are used by subsequent

modules for object detection and camera registration tasks.

Regarding object detection, the FootAndBall CNNmodel implemented and an­

alyzed in [28], initially helps to detect players and the ball within football court, in

10

each frame. The grassmask output from previous segmentation task is applied on

each frame in order to narrow searching space. Detected players and ball are then

tracked for a series of N frames until next detection, which helps to correct any

misses during tracking phase. The selected object tracking method is based on

Lucas­Kanade algorithm for optical flow described in [5]. Apart from the ball, de­

tected individuals are clustered in groups according to the coloured­pixel values of

their bounding box images using a dual K­means module called Team Classifier

which handles the task of labeling each one as a member of a group. This label

is carried across each frame during tracking. The aforementioned functionality

comprises Team Detector module, which outputs are detected bounding boxes

that contain information about their location in the frame and their group­team

label, should they relate to players or the referees.

Regarding camera registration task, detected court lines or ”edge map” as it

will be called from now on, is used as input for Camera Estimator module which

is used to estimate a camera pose for the original frame. Work done in [7] forms

the basis for this module which in essence, extracts a feature vector from the edge

map, then uses this as a key to search the closest camera pose representation

within a database. The resulting candidate from the search helps as an initial

camera pose estimation, used for further refinement by means of applying the

Enhanced Correlation Coefficient Maximizationmethod [13]. Said method is also

used for N subsequent frames, to help track camera pose updates and also, reduce

processing time.

Acquiring both object bounding boxes and their related camera pose, unlocks

the ability to map those objects on a static top­view of the football court and gives

the ability to deduce useful insights, a task that is handled byGameAnalyticsmod­

ule. Specifically, both teams and their players are extracted as information from

the retrieved, labeled groups, leaving out any detected referees. Given a top­view,

Game Analytics module infers which goal post belongs to which team, whether

a team possesses the ball and finally, whether or not teams are in defensive or

attacking position.

11

Figure 2: Application architecture

3.1 Architecture

Application architecture (Figure 2) consists of four modules with distinct roles,

described below:

• CourtDetectormodule handles detection of the lines that comprise the court

and its limits. It precedes in the processing pipeline.(3.3)

• TeamDetectormodule handles the tasks of detecting individuals players and

grouping them in teams, alongside the referees and the soccer ball, using

court limits from Court Detector to narrow its field of search.(3.5)

• CameraEstimatormodule registers broadcast video frames on the static top­

view model of the court surface, using court lines from Court Detector.(3.4)

• Game Analytics module accepts input from the latter twomodules and visu­

alizes top­view model while also, infers semantics about the teams.(3.6)

The first three modules make use of computer vision techniques and deep

learning thus, are explained in the 3.2 Computer Vision Modules section. Game

Analytics makes use of simpler methods and we delve in its implementation at the

3.6 section.

12

3.2 Computer Vision Packages & Tools

While Tensorflow­Keras 2.3 was the initial choice as a deep learning library, Py­

Torch 0.8.2 with CUDA support was eventually used to implement the neural net­

work models mentioned in related papers. The reason behind this decision is its

ease of use and the considerable training speed achieved during experimentation,

compared to Tensorflow ­ Keras library. The comparison was made by imple­

menting court detector module using both deep learning libraries and observing

training results.

OpenCV library has also been used for the rest of computer vision tasks. Ver­

sion 4.2.0 was selected because it is compatible with the available GPU hardware.

The librarywas compiled natively so that it utilizes available CUDA support, which

proved useful since processing speed is improved compared to the default CPU

version of OpenCV library.

Apart from those, NumPy 1.20.2 and SciPy 1.5.4 libraries are used for com­

putation tasks, scikit­learn 0.23.2 library is used for the clustering task described

in Team Detector module, PyFlann 0.1.0 (Fast Library for Approximate Nearest

Neighbor) is used for database search in Camera Estimator module and finally,

Dlib 19.22.0 library is used to track objects in Team Detector module.

Hardware equipment used for development is a low­end gaming laptop with

an Intel i7 ­ 2.8GHz ­ 8core CPU and a Nvidia GTX 1060 graphics card with 6GB

of virtual memory.

3.3 Court Detection

Court detection task is handled solely by Court Detector module (Figure 3) which

helps to extract features regarding the court. It utilizes two identical Pix2Pix neu­

ral networks [25], which in essence are conditional generative adversarial net­

works ­ CGANs. A conditional GAN differs from simple GAN model regarding its

input during training. A CGAN has both the generator and discriminator condi­

tioned on some extra input information, while a simple GAN does not.

The idea for this dual­CGAN concept is described in [7] where the first CGAN

handles an image segmentation task, then feeds its output to the second CGAN

which handles a feature detection task.

In this work, the dual­CGAN model has been kept intact and has been pro­

grammatically wrappedwithinmodule. Themodule is instantiated on application

launch by loading both pre­trained CGANs. It uses a user­defined image resolu­

tion which corresponds to the output resolution. Its API contains only a single

method which purpose is to retrieve module outputs, described above, and its in­

ner workings are shown in Figure 3. Regarding grass mask retrieval, a refinement

13

process is applied in order to eliminated any randommask ”islands” thatmay exist

in the mask. The process is described later on.

Figure 3: Court detection functionality

3.3.1 Pix2Pix model

, Pix2Pixmodel as a conditionalGAN, learns amapping for y, fromobserved image

x and random noise vector z, G : {x, z} → y. In contrast, a simple GAN learns a

mapping for y, from a random noise vector z, G : z → y. The generator G is

trained to produce outputs that cannot be distinguished from “real” images by an

adversarially trained discriminator D, which is trained to do as well as possible at

detecting the generator’s ”fakes”.

Image­to­image translation problems include image segmentation and feature

extraction in the current context since the desired output is a translation of infor­

mation from the original input frame. A defining feature of image­to­image trans­

lation is that it maps a certain resolution input grid to an output grid of the same

resolution. Input and output differ in surface appearance, but both are render­

ings of the same underlying structure. Therefore, structure in the input is roughly

aligned with structure in the output.

Architecture for Pix2Pix uses encoder­decoder network architecture regarding

its generator G, where the input is passed through a sequence of layers that pro­

gressively reduce feature map resolution, until a bottleneck layer. Then the pro­

cess is inverted until final output resolution achieves same resolution as the input.

For many image translation problems, there is a great deal of low­level informa­

tion shared between the input­output and in order to achieve described results,

information is required to be transfered directly across the net.

14

To give the generator G ameans to circumvent the bottleneck for information,

skip connections are used, following the general shape of a “U­Net”. For a network

withN layers, each skip connection simply concatenates all channels at layer i with

those at layer N − i.

Regarding, discriminator D architecture, it is known that the L2 and L1 losses

produce blurry results on image generation and in the current context, this is the

case. This drives discriminator D to model high­frequency structure, relying on

an L1 term for low­frequency correctness. High­frequency structure is modeled

by attending structure in local image patches. Isola et al. 2017 [25] termed their

designed discriminator architerture PatchGAN which only penalizes structure at

the scale of patches. This discriminator tries to determine whether each N × N

patch is fake or real. It is run convolutionally across the image, averaging all re­

sponses to provide the ultimate output of D.

Loss function for a CGAN is described from

LcGAN(G,D) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))] (1)

where x represents the observed image, z a random noise vector and y the desir­

able output. Generator G tries to minimize this loss against an adversarial D that

tries to maximize it. For comparison, unconditional GAN discriminator does not

observe x

LGAN(G,D) = Ey[logD(y)] + Ex,z[log(1−D(G(x, z)))] (2)

Generator G loss function uses L1 distance,

LL1(G) = Ex,y,z[∥ y −G(x, z) ∥1] (3)

and so, the final objective is modeled as follows

G∗ = argmin
G

max
D

LcGAN(G,D) + λLl1(G) (4)

Training procedure has been implemented from scratch and additional code has

been added so that now is possible to save model and continue training from se­

lected checkpoints. This helped very much with experimentation. Modifications

have also been made so that training procedure utilizes the available GPU prop­

erly.

During training phase, each Pix2Pix model accepts a pair of source­target im­

ages and input pairs differ for each trained model. Before forward propagation,

15

data augmentation part has been kept as in the original paper, where each input

image is converted to tensor, then cropped to 256 × 256 size using a random off­

set, from an initial size of 286× 286, then normalized, then flipped horizontally at

random and finally loaded to GPU memory as CUDA tensors. Thus, each model

is trained on partially different data each epoch, achieving a form of data aug­

mentation. Models are set to train independently, without interfering with one

another, however the original implementation has the option for them to train

jointly, which was not tested for its performance. Input tensors for both segmen­

tation and feature extraction tasks have shape 3 × 256 × 256 for the RGB input

image and 1 × 256 × 256 shape for the input binary mask, with values ranging in

[­1.0, 1.0] for both all tensors. Training duration is set to 200 epochs with batch

size equal to 1. Learning rate is set 2× 10−4 and is reduced linearly by 2× 10−6 for

each epoch after 100th epoch.

Inference process utilizes the generator parts of each Pix2Pix model as shown

in Figure 3. Input images are resized and fed to the first Pix2Pix generator that

handles segmentation and returns an estimated grass mask which is then applied

on the input image. The resulting image becomes input for the second Pix2Pix

generator which outputs an edge map of the court. Grass mask is also applied on

the edgemap output from the second Pix2Pix generator. The reason for this is the

fact that Camera Estimator module was found to achieve better results on its part

because, Court Detector found false­positive lines on some cases like in Figure 4.

Figure 4: From left to right: Masked edge map output ­ Unmasked edge map with
false­positive line behind goal post.

3.3.2 Grass mask refinement

process, removes any island­like white or black patches, within binary grassmask.

It does so by finding image contours, then assumes the largest group of points that

forma contour, as the one corresponding to the grassmask. That contour is drawn

in white color on a black image which assumes the role of grass mask. Finally, a

Gaussian blur is applied along the edges of the mask so that lines that may reside

16

on those edges, can still be detected from feature extraction task. Figure 5 displays

outputs from this process.

It must be noted that both grass mask and edge map outputs from CGANs are

tensors with shape 256×256×1 andmay be translated to binary images. However

they are reshaped to 256×256×3, to be further used around the application. Court

Detector’s processing speed is estimated at 15.5FPS.

Figure 5: From left to right: Original grass mask ­ Contour points (red marks)
found on mask ­ The contour that corresponds to the largest group of points ­
Result after applying Gaussian blur.

3.4 Camera Estimation

Camera estimation task contains two distinct phases: a) estimation and b) track­

ing phase. Estimation phase is handled by Camera Estimator module itself which

is initialized on application launch and remains alive indefinitely, while tracking

phase is handled by a camera tracker that ”lives” for the duration of each tracking

period. Both estimator and tracker share functionality though their inner work­

ings differ in the way they achieve their purpose and those workings are specified

below. After each frame, both phases output a homography matrix that results

from an estimated camera pose.

17

Figure 6: Camera estimation procedure

Camera pose model used to describe a camera pose in this work is the Pinhole

camera model (it is explained in more detail at 4.2 section)

P = KR[I| − C], (5)

where K is the intrinsic matrix, R is a rotation matrix from world to camera co­

ordinates, I is an identity matrix and C is the camera’s center of projection in the

world coordinate. P is the 3×4 projectionmatrix fromwhich homography results.

This is a 3×3matrixH thatmaps the homogeneous normalized image coordinates

y to he homogeneous transformed image coordinates y’:

y′ = H y (6)

In the current context and given a homographyH, perspective transformation

of image coordinates y produces the corresponding edge map. These coordinates

represent a static, binary, top view of the court when depicted as an image (Figure

7). Inverse homography H−1 is used to map player coordinates back on top view

18

as described before (Figure 8).

Figure 7: Image coordinates of the static, binary, top viewof the court, represented
as image

Figure 8: Camera estimation task. First row shows how an inferred­inverted ho­
mographymatrix translates points fromTVbroadcast view to static top­view. Sec­
ond row shows schematic representation of camera poses (in red) depending on
current frames

3.4.1 Initial camera pose estimation

donebyCameraEstimatormodule is based onpreviouswork from [43] andmainly

[7] where a database was used for the task of camera estimation. Module consists

of a siamese model [20] and a database containing feature­camera pose pairs.

Siamesemodel extracts a feature vector from the edgemap output of Court Detec­

tor. This features vector is used to search within a database for the closest match.

Each database record is a pair of a features vector and a camera pose, with the

feature vector functioning as the search key which has been generated with the

19

aforementioned siamese model. The resulting camera pose is a set of parameters

that correspond to the best approximate neighbor of the point of view the RGB

court image­frame was shot. Given this camera pose, homography matrix can be

extracted.

Even the best camera pose approximation however, still differs, significantly

on occasion, from ground truth camera pose and the reason for this depends on

the number of available poses stored in database. Current implementationmakes

use of a database with the same specifications as the ones used in [7] and contains

90,000 records, in order to approximate ground truth camera pose, a procedure

that is time­consuming. Thus, there must be a balance between approximation

performance and time constraints, given the fact that a real time processing speed

is among the purposes of the application.

Homography refinement method, applied in source code1 implementation of

[7], solves the problem of inaccuracy after camera pose approximation, by ap­

plying a refinement process that makes use of Enhanced Correlation Coefficient

Maximization ­ ECC method [13], a method that is built­in function in OpenCV2.

The process accepts an initial homography estimation that resulted from database

search andproduces the corresponding edgemap, whichwewill refer to as ”source”

edge map. Ground truth camera pose has also a related homography and a cor­

responding edge map which resembles the edge map output from Court Detector

module. We will refer to it as ”target” edge map. Given source and target edge

maps, distance transformation is applied for both and the resulting images are

used as input for ECCmethod, which is tasked with finding a homography matrix

adjustment. Finally, the adjustment is applied on source homography, resulting to

a close­to­target homography which is returned as output from refinement. This

procedure is also time expensive, depending on selected parameters but, results

are rather satisfying.

Distance transformation for source­target edge maps (Figure 9) is proven to

benefit ECCmethod in terms of speed, while retaining quality of result. In specific,

inverted binary threshold is applies on both edge maps and then, euclidean dis­

tance transformation is applied. Pixel values for resulting images are float num­

bers that represent distances from nearest black pixel (zero valued pixels). In the

end, distance threshold is applied with a selected value of 15. This sets a maxi­

mum pixel value and is the actual reason why ECC method gets benefited from

the transformation.
1https://github.com/lood339/SCCvSD, June 2021
2though in their paper, they refer to Lucas­Kanade algorithm as their selected solution for the

problem

20

https://github.com/lood339/SCCvSD

Figure 9: Distance transformation for edge maps. First row shows target edge
map on the left and source edge map on the right. Second row shows respective
edge maps after distance transformation

3.4.2 Tracking - ECC method

ECC method explained just below, resulted as further optimization from the re­

finement process but this time, regarding processing speed. The implemented

tracking method is in essence the repeated application of the refinement process

discussed above, with updated input data for each consecutive frame. Changes re­

garding the part of the court currently displayed, are usually small between con­

secutive frames, owing to the panoramic point of view that ensures coverage of

actions within court. Given also a decent frame rate of at least 24 FPS and no

abrupt changes in broadcast camera shots (i.e. due to a ball kick from players),

after initial estimation and refinement for a frame, resulting output can be used

as the new ”source”. Thus, the expensive process of database search is removed

and furthermore, it may be an even better initial estimation than the result from

the search. ”Target” edge map becomes the output from Court Detector for the

current frame and so, refinement process is applied as described.

21

Figure 10: Original frames with edge map outputs applied on top. From left to
right: Edgemap fromCourt Detector ­ Edgemap estimation fromdatabase search
­ Edge map estimation after homography refinement

Enhanced Correlation Coefficient Maximization method [13] is an L2­based

iterative algorithm tailored to solve the image alignment problem. It is used in

both estimation and tracking phases, though with different hyperparameters in

each case. Hyperparameters refer to the number of maximum iterations and the

accuracy threshold used by the algorithm to converge. In our context, ECC is given

two similar edge maps and running iteratively, seeks to align them and thus, cal­

culate the homography matrix that will transform the source image to the target

one. It was observed during experiments that source edgemap has to be as similar

to the target as possible because it took less time for the algorithm to converge.

During estimationphase, this similarity is affected by the output fromdatabase

search, which depends on the number of database records and their specifica­

tions; the distributions used to generated the camera pose records. Less database

records means less probable similarity between source edge map and the target,

which in turn is translated to more iterations for ECC algorithm. On the other

hand, more database records take more time for the search to complete. Keeping

22

database specifications and record number intact, it was decided that estimation

phase should use ECC algorithm with 1000 iterations and epsilon/accuracy value

1× 10−4.

During tracking phase, similarity is greatly affected fromcamerapan/tiltmove­

ments, especially when those are quick or abrupt. Even so, a source edge map re­

sulting fromprevious, either estimated or tracked frame, is definitelymore similar

to the target than a source edge map that results from a database search during

estimation. Given these conclusion after experimentation, it was decided that this

phase should use ECC algorithmwith only 50 iterations and epsilon value 1×10−3.

Output stabilization is applied in the end for both estimation and tracking phases

and aims to smooth differences between homography estimations for a sequence

of frames. Without smoothing estimations so that they are more coherent to their

previous ones, the result would be a jittery display of players’ depicted positions

on static top­view as if they were constantly jumping. Thus, a homography history

is kept by the module for the selected N frames of a video sequence. Each homog­

raphy estimation is saved and then, an weighted average is produced among the

frames. The process result is the final output for Camera Estimator module.

3.4.3 Tracking - Lucas-Kanade method

Lucas­Kanade method [5] was an initial thought on how to tackle the tracking

problem, apart from the ECC tracking method. The method would track camera

movement itself from four points depicted on the original frame then, a perspec­

tive transformation would calculate the homography adjustment. This approach

however has issues that render its use impractical. First of all theremust be a cred­

ible way to acquire the necessary points to be tracked. Shi­Tomasi method [45]

which is a built­in function in OpenCV3, was used to detect good features to track,

such as corners, both in the original input frame and the edgemap fromCourt De­

tector. From output points, those four that were most far apart from each other

were used with poor results. This is due to the fact that each of the four points to

be tracked, must tend to be as much close to the corners of the frame as it gets so,

the next thought was to acquire arbitrary points from the neighborhood of each

corner. Though this solution yields better results than the previous, it still fares

poorly because the points close to the corners are not necessarily unique; bottom

corners usually depict some grassy areawhich is hard to track and top corners usu­

ally depict the bleachers where image gets a noisy due to the crowd. Additionally,

even unique points in this case would require more frequent camera pose estima­

3https://docs.opencv.org/4.5.2/d4/d8c/tutorial_py_shi_tomasi.html,June2021
accessed in June 2021

23

https://docs.opencv.org/4.5.2/d4/d8c/tutorial_py_shi_tomasi.html, June 2021

tion than ECC method because due to camera pan movement, left or right points

are bound to get lost, thus untrackable, so new ones must be acquired. Lucas­

Kanade method is further explained in 3.5 where it is used for object tracking.

Siamese model is used as an approach by Chen et al [7] who trained one in or­

der to use its trained branch to produce encodings from input edge maps. To do

so, they also generated a synthetic data set which contains camera poses and used

it to train their network. Network learns to distinct similar edge maps from dis­

similar ones and eventually produce similar encodings from similar edge maps.

Specifically, the more similar are two edge maps, the closer are their respective

encodings and vice versa. After the training, they used the trained branch to en­

code edge maps that resulted from all synthetic camera poses and then stored

each camera pose along with its encoding, inside a database. Camera Estimator

database resulted with that procedure.

Network architecture has been kept intact as in the original paper. Each

branch of the network contains aCNN that ends up to a linear output layer. Branch

accepts input tensors of shape 1×180×320 that correspond to binary edge maps ,

while output tensor is of shape 1×16 and serves as an encoding of the input image,

henceforth referred to as features vector and contains normalized values. During

forward propagation, input images A and B are pushed through the same branch,

hence the siamese nature of the model, producing a features vector per image.

Loss function accepts as inputs the resulting features vectors along with an

image similarity label, which represents the level of similarity between images A

and B:

L(w, x1, x2, y) = yDw(x1, x2) + (1− y)max(0,m−Dw(x1, x2)) (7)

where Dw(x1, x2) represents the Euclidean distance between features vectors x1

and x2, y represents the similarity label andm stands formargin, a value that helps

the model maximize the distance between dissimilar features vectors.

Training phase is shown in Figure 11. Model accepts pairs of edge maps as

input images A­B and a similarity label. A similar/positive pair input consists

of edge maps that correspond to camera poses that differ minimally and a label

equal to 1. A dissimilar/negative pair input consists of edgemaps that correspond

to camera poses that differ greatly and a label equal to 0. Positive­negative pairs

succeed each other during epoch iterations, meaning that each positive pair input

is followed by a negative one in the next iteration, then a positive, then a negative,

24

etc.. A pair of positive­negative pairs share the same image A and differ in the im­

age B that each pair uses. This is demonstrated in Figure 11 and basically means

that image A is used once as an input with the positive pair, and then a second

time with the negative pair. An iteration during training is completed using a pair

of positive­negative pairs for a total of 4 input images per iteration step. Before

forward propagation, input images are resized to 320x180, then converted to ten­

sor and finally, normalized with mean=0.0188 and std=0.128 as in the original

paper.

Figure 11: Siamese network training

Training duration was set to 10 epochs, with 128 batches of 64 image pairs

per epoch and a static learning rate of 0.01 was used. Training for more epochs

results in an increased positive­negative pair distance ratio and reduced loss, how­

ever that doesn’t matter since model achieves its purpose with only 10 epochs of

training.

25

3.4.4 Feature-camera pose database

As mentioned previously, it contains camera poses along with the features vec­

tors of their respective edge maps. The procedure that populates the database is

fairly simple and is shown in Figure 12. For each of the 90,000 camera poses, the

relevant edge map is produced, then is used as input for the siamese model and

a features vector is returned. The latter is saved in the database along with the

camera pose. The produced database file is then ready to be used by Camera Esti­

mator during test/inference, as has been already described. Note that alternating

siamesemodel architecture, makes it necessary to re­create the database since the

siamese is the mechanism that creates search keys for the database.

The database file is loaded from memory by Camera Estimator during its ini­

tialization, on runtime. Fast Library forApproximateNearestNeighbors ­ FLANN4

is the method used to search within database. It takes the features vector output

from Siamese branch and the list of features vectors from database, as input ar­

guments. The result is an index for the closest features vector match, which cor­

responds to a unique camera pose.

Figure 12: Feature­camera pose database generation

3.5 Team Detection

Team detection task (Figure 13) follows the same philosophy as in camera esti­

mation and contains two distinct phases: a) detection and b) tracking phase. De­

tection phase consists of an object detection task followed by a color classification

task for each detected object, except for the ball. Tasks are handled by Player­Ball

Detector and Team Classifier sub­modules respectively, both of them are initial­

ized on application launch and remain alive indefinitely. Results are used both as

output for Team Detector module and as input for tracking task. Object trackers

4https://github.com/primetang/pyflann, June 2021

26

handle the latter and they are initialized when detection phase ends while live for

the duration of each tracking phase.

3.5.1 Object detection

The task is handled by Player­Ball Detector sub­module which has the sole pur­

pose to detect persons and the ball within image. Input used for the task comes

from Court Detector and as mentioned before, it is a masked version of the orig­

inal video frame so that people or balls outside football court are ignored. Team

classification task is the main beneficiary from the framemasking; it uses the first

N frames from a video sequence to group players into teams using their outfits

and so, there is no point in training its classifier using irrelevant individuals from

outside the court.

Figure 13: Team detection procedure

FootAndBall deep neural network [28] forms the basis for the object detection

task. It is single stage detector, developed specifically for person and ball detection

which means that compared to other object detectors, has small number of train­

27

able parameters (198,840 trainable parameters) and therefore is much faster. It

lacks anchor boxes since it detects only two classes, with specific shape and size

variance, from a relatively default distance. High­level architecture from original

paper, is shown in Figure 14 and is based on Feature Pyramid Network [31] which

is the basic building block for the network. It produces feature maps, each cell

of which corresponds to a group of pixels from the input image. Feature maps

are then processed by three components: player classifier, player bounding box

regressor and ball classifier. Given an image with w × h dimensions:

Figure 14: High­level architecture of FootAndBall detector. The input image is
processed bottom­up by five convolutional blocks producing feature maps with
decreasing spatial resolution and increasing number of channels. The feature
maps are then processed in the top­down direction. Upsampled featuremap from
the higher pyramid level is added to the feature map from the lower level. 1x1
convolution blocks decrease the number of channels to the same value (32 in our
implementation). Resultant feature maps are processed by three components:
ball classification component, player classification component and player bound­
ing box regression component. Numbers in brackets denote size of feature maps
(width, height, number of channels) produced by each block, where w, h is the
input image width and height.

• Player classifier extracts a 1 × w/16 × h/16 confidence map that denotes

detected player locations, from a feature map with spatial resolution 2 ×
w/16 × h/16. Each location in the player confidence map corresponds to a

16× 16 pixel block in the input image.

• Player bounding box regressor extracts a 4× w/4× h/4 tensor that denotes

player bounding box coordinates for each location in player confidence map

28

and uses the same feature map as player classifier.

• Ball classifier extracts a 1×w/4×h/4 confidencemap that denotes probable

ball locations, from a featuremapwith spatial resolution 2×w/4×h/4. Each

location in the player confidence map corresponds to a 4 × 4 pixel block in

the input image.

Given above for ball classifier, along with the fact that there is only one ball per

image, there is no need to have ball bounding box regressor.

Non­maximum suppression method is applied on both confidence maps so

that grouped boxes with high confidence value are merged into the one with the

highest value. Regarding player bounding boxes, each one is represented with 4

values: its center point coordinates, width and height, all of which are normalized

and relative. Center point values x and y represent the offset of each box center

within bounding box map cells. Width and height values represent a percentage

value of width and height of player featuremap (where 1 is the width/height of the

player feature map). A default size bounding box is used for ball predictions.

Figure 15: Input image and the related player confidence map. Confidence map
has been resized; its original dimensions are 45× 80. White marks in black back­
ground represent cells with higher confidence values for player presence.

Final bounding box values are translated to absolute image values while also,

midpoint coordinates, width and height are substituted by coordinates for top

left and bottom right bounding box corners. Before used as output, a confidence

threshold is applied to reject probable false positives.

Feature Pyramid Network design pattern allows using both low­level features

from the first convolutional layers and high­level features computed by higher

convolutional layers. Precision in spatial location of the object results from the

first convolution layers contrary to later layers operate on lower spatial resolution

feature maps. On the other hand, later layers have greater receptive field, there­

fore improve classification accuracy.

29

Loss function for the neural network is a modified version of the loss used in

SSD [32] and consists of three component losses: player classification loss, ball

classification loss and player bounding box loss. Both player and ball classifiers

use binary cross­entropy loss function:

LO = −
∑

(i,j)∈PosO

log cOij −
∑

(i,j)∈NegO

log(1− cOij) (8)

where O notation is substituted either by B for ball classifier or P for player clas­

sifier case, cOij is the value of the object confidencemap at the spatial location (i, j).

PosO is a set of positive object examples, that is the set of locations in the object

confidence map corresponding to the ground truth object position (for ball clas­

sifier and for one input image it’s only one location). NegO is a set of negative

examples, that is the set of locations that does not correspond to any ground truth

player position. Player bounding box loss is Smooth L1 loss as in [40] between the

predicted and ground truth bounding boxes. As in SSD [32] detector, the offset

of the bounding box is regressed with respect to the cell center and its width and

height:

Lbbox =
∑

(i,j)∈PosP

smoothL1(l(i,j) − g(i,j)) (9)

where l(i,j) ∈ R4 denotes coordinates for a predicted bounding box in the location

(i, j) and g(i,j) ∈ R4 are coordinates for a ground truth bounding box in the location

(i, j). Finally, the total loss sums all component losses, averaged by the number

of training examples N:

L =
1

N
(αBLB + βPLP + Lbbox), (10)

where αB and βP are weights for the LB and LP respectively and are chosen ex­

perimentally.

Training phase makes use of ISSIA­CNRSoccer [12] andSoccer PlayerDetection

[33] data sets. The former contains Full­HD, long shot views of football court from

a specific match, with player­ball annotations and is used for both training and

evaluation purposes. The latter contains HD long shots of 3 other matches, with

player­only annotations and is only used during training.

A pre­trained model is available in GitHub from the authors of [28]. It was

used during experiments with ISSIA­CNR and real world videos. In summary,

it was concluded that it seems to lack performance in very long shots of players

and there was also a great problem in ball detection even in more close shots.

Available GPU hardware made impossible for training process to have the exact

same parameterisation as in the original paper thus, using described model as a

30

baseline for further improvements, was not an option. Be that as it may, hyper­

parameter tuning revolved around achieving a better result in selected real world

videos. Νo annotated video sequences (like ISSIA­CNR) were found in order to

be used for metrics and so, model evaluation was done by sight.

Parameters that differ from the original paper are image resolution used for

training samples and batch size. Thorough experimentation was conducted to

achieve the final model that is used by Object Detector. Adam optimizer was used

and learning rate was set to 0.001 (both same as original) and decreased by a fac­

tor of 0.1 at epochs 8, 16 and 20. Total training epochs were 22, with batch size

set to 10.

Regarding image training samples, resolution was changed from Full­HD to

HD for ISSIA­CNR data. This improved detection results for HD video sequences

compared to original model. The reason for this is that original model is trained

mostlywithFull­HDsamples through ISSIA­CNRand lesswith simpleHD through

SPD data set. In addition, only ISSIA­CNR contains ball annotations so, ball de­

tection on HD real world videos is definitely low.

Data augmentation procedure was also changed. Apart from random affine

transformation which remained the same, random image distortions were com­

pletely changed to simulate better images from real video. Distortions include

changing brightness, contrast, saturation and hue with random values from cer­

tain ranges. Random scaling was also applied, contrary to original model which

did not use it, to improve long shot detections. Random cropping image was re­

moved from augmentation. Ground truth object bounding boxes were updated

accordingly to comply with image transformations during augmentation. Finally,

checkpoints are saved after each training epoch. Codewas refit so that it is possible

to continue training from a specific checkpoint in order to acquire better results.

This is the main reason why only 22 epochs were used.

Due to network architecture, input tensors may have both Full­HD or HD di­

mensions. Because most real world videos are at least HD and since Full­HD res­

olution can be resized to HD, training samples use HD resolution. Input tensor

during traininghave shape batch_size×3×720×1280. Output consists of three ten­

sors, mentioned earlier: a) player confidence map tensor with shape batch_size×
45× 80× 2, b) player bounding boxes tensor with shape batch_size× 45× 80× 4

and c) ball confidence map tensor with shape batch_size× 180× 320× 2

3.5.2 Team classification

task is handled by TeamClassifier sub­module, given output fromobject detection

task. It involves only­player related bounding boxes and is called only at detec­

31

tion phase. Inferred labels per box are carried for the duration of tracking phase.

Current implementation as well as other experimented methods, are initialized

automatically using the first N frames from a video sequence, to train a K­means

classifier for the task. TeamClassifier uses the trainedmodel during the rest of the

video sequence to distinct the 2 teams and the referee. Goalkeepers are required

from FIFA to wear different colors than their teams and in this implementation

are not handled so they are classified randomly.

Training procedure relies heavily on Object Detector’s precision and accuracy.

Bounding boxes have to be precise so that only players are include, ignoring any

human­looking objects. Masking frame during object detection so that only court

field is depicted, works to that end asmentioned earlier or else non­player individ­

uals would be detected, thus affecting team classification task with garbage data.

Bounding boxes have also to be accurate meaning that they have to have just the

size of each player, depicting exactly one player per box, as possible as that may

be given the nature of the sport. This affects team classification in cases where

players contest for the control of the ball, an area or tackling each other etc.

Currently, player bounding boxes are extracted from the first 50 frames, using

object detection, no tracking. Ideally, in real world this would require camera to

shot players for 2 seconds before game starts, given 24 FPS video capture. From

said boxes, color features are extracted which are different for each method and

are explained per case later on. Each feature extraction returns samples to be

used during training process of Team Classifier model. Training samples differ in

dimension for each method and the eventually selected one is the segmentation

method.

Dominant colors method is used in the initial implementation described in sec­

tion 1.3. In short, color features used for training, are the dominant pair of 2 or

more colors per bounding box. The insight for this method is that players of the

same team, will have the same dominant colors on their outfits.

Number of dominant colors within pair is a hyper­parameter. Before extract­

ing those pairs, pre­processing bounding boxes is necessary because green pixels

from grass, dominate against other colors inside boxes. This is considered back­

ground noise and has to be handled or else green color is guaranteed to be one of

the dominant colors within pair. As a problem, it is a recurring one among meth­

ods tested. A fixed green colormask is applied to help remove those pixels, leaving

only those of different colors which are converted from RGB to HSV color model.

Resulting pixels are clustered in M clusters using a relevant algorithm, such as

K­means and with M representing number of dominant colors within pair. Con­

sequently, colors for each pair are sorted by frequency, with the aid of histograms,

32

so that the most dominant color of all is the first element of each pair. Pairs from

this process are finally used as color features for training.

To deduce the dominant colors, apart from K­means, experiments were also

conducted with Gaussian Mixture and different parameterizations. Polar coordi­

nates were also used to model colors in space

Fixed green color mask has the disadvantage of not adapting to different light­

ing conditions, whether theymaybenatural or artificial. Remainingnon­suppressed

green pixels affect estimation for dominant colors, leading to misclassifications

depending on the court setting where the player is located. Another issue is when

a team’s outfit is green where in this case, the only colors left after green pixel

suppression, is the color of players skin or hair.

Color histograms method is the one used in this application for team classifica­

tion task. Its workings are simple as it relies on extracting color histograms that

will be used as color features for training. Green color suppression is applied as

before. RGB and HSV histograms were tested for their results, along with differ­

ent number of histogram bins. It seems that an HSV histogram, with 36 bins for

hue value and 32 + 32 bins for saturation and value properties, is the most robust

color feature to be used. Histograms are normalized before used.

This method is susceptible to fixed green color mask drawback regarding play­

erswith green outfits but, it is not affectedmuch fromnon­suppressed greenpixels

to during classification. It is also the fastest among the methods described here.

Figure 16: Color histogram classifier architecture

Segmentation method , as its name suggests, segments the image, inferring any

salient objects (player) and subsequently extracting color information to be used

33

for training. Inspiration came from GrabCut method and its implementation in

OpenCV library alongside related work in image segmentation and implementa­

tions from internet5. The difference from the previous method is the way of han­

dling green color suppression problem.

Described methods above do not handle grass masking dynamically. Here,

foreground/background segmentation is done with the admission that green will

always be the dominant segment in the bounding box image. Apart from that,

there has to be at least one or two colors (depending on player uniforms) that will

be translated to equal number of segments. Number of segments to be identi­

fied is a hyper­parameter and is set to 3. That is, to handle dual­color uniforms

or else, if a uniform is single­colored, the third segment usually is assigned to

player’s color skin which pretty much is ignored since all people have brownish

skin color and thus, is common among bounding boxes. Segmentation task is

handled by OpenCV implementation of K­means in order to benefit from GPU

processing speed. Input for the algorithm is the bounding box image itself.

Consequently, dominant segment correlates to grass image part and it is re­

moved using amasking process, leaving the rest of the image as foreground. From

this, an HSV color histogram is produced, which is then, normalized and used as

color feature for training.

Figure 17: Segmentation classifier architecture

Inference process for eachmethod is the same. Each image bounding box has its

color features extracted. All of them together are used as input for TeamClassifier

model which returns related team labels.
5https://www.kdnuggets.com/2019/08/introduction-image-segmentation-k-means-clustering.

html, June 2021

34

https://www.kdnuggets.com/2019/08/introduction-image-segmentation-k-means-clustering.html
https://www.kdnuggets.com/2019/08/introduction-image-segmentation-k-means-clustering.html

3.5.3 Object tracking

It is executed for N frames and detection task has to precede before tracking. De­

tections are used to initialize trackers, after each bounding box is assigned a team

label, at the end of detection phase. Current implementation has N value set to 5

which resulted after experimentation. Trackers process each subsequent frame,

during tracking phase, using it as input along with information from their respec­

tive bounding boxes. They update boxes in each iteration and then, return them as

outputs. Two implementationsweremainly tested during development: a) Lucas­

Kanade and b) Correlationmethod, both using implementation fromOpenCV and

dlib libraries respectively. OpenCV provides a number of other tracking methods

as well, but produced poor results at first, compared to the ones described below

and were also not tested so much.

Lucas-Kanade method [5] is an approach for which inspiration came during

camera estimation task development and after reading relevant paper [7] where

the authors of cite it as an improvement method for camera pose refinement.

OpenCVdocumentationdescribes the use of this algorithm6 and itwas foundmore

suitable for object tracking task.

The original method [34] is an optical flow algorithm which can provide an

estimate of the movement of interesting features in successive images of a scene.

It makes some implicit assumptions:

• Two successive images are separated by a small time increment∆t, in such a

way that objects have not been displaced significantly (that is, the algorithm

works best with relatively, slow moving objects)

• The images depict textured objects that exhibit shadeswhich change smoothly.

Also, it does not use color information. It works by trying to guess in which di­

rection an object has moved so that local changes in intensity can be explained.

The method used for the tracking task is a pyramidal implementation of the orig­

inal algorithm described in [5]. It basically reduces resolution of images first and

then applies the algorithm. This improves performance in cases were the motion

between two images is larger than what the original algorithm is able to handle.

During tracker initialization, parameters and termination criteria for the algo­

rithm are set. Window size was set to 50 × 50, max iterations was set to 10 and

epsilon was set to 0.03. Also, a feature to be tracked is extracted from the input

bounding box image.

6https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html, June 2021

35

https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html

Good features to trackmethod by Shi­Tomasi [45] was initially considered to

extract a trackable feature. Multiple cornerswere identified in the image box then,

a middle point among them was calculated. The insight is that corners would be

found on player’s feet, hands and head thus, the middle point would lie some­

where at player’s abdomen. However, this method did not always yield points

fromwhich amiddle point could result. In that case, (cx, cy) point was used where

cx = h/2, cy = w/2 and w, h refer to the height and width of the bounding box.

Eventually, using (cx, cy) from the beginning of the procedure was tested and

was used as default. This was because there were no noticeable differences in the

output.

The process executed for a frame by a tracker is simple. Existing middle point

is used as input, along with previous and current frame, for Lucas­Kanade algo­

rithm. The resulting point is considered the new middle point and is used to up­

date position of the bounding box.

Correlation method is an out­of­the­box implementation of dlib library that is

based on Danelljan et al., 2014 [10]. Its use is inspired from examples in pyim­

agesearch website 7.

Tracker initialization is done more or less in the same way as in the previ­

ous method. Input bounding box along with the current frame are used fed to

the tracker’s initialization method. Afterwards, each frame is used as input to

track each bounding box, a new pair (x1, y1) and (x2, y2) coordinates that relate

to upper­left and bottom­right corners respectively, is returned. Finally, bound­

ing box is updated.

Method comparison Lucas­Kanade (LK)method seemsmore accurate and faster

than correlation method. A group of LK trackers processes a frame with about 15

players to track, in nomore than 0.02” while a group of correlation trackers needs

0.06” to 0.08”. Real time processing threshold is 0.041” for comparison. Since

LK method was the initial way to go, correlation method and others were exam­

ined out of curiosity but not in depth. Correlation method is decent and further

experimentation needs to be done in object tracking performance, with a proper

evaluation procedure.

3.6 Analytics Extraction & Visualization

NumPy and scikit­learn libraries are used for football analytics task which is han­

dled byGameAnalyticsmodule. Its first purpose is to combine outputs fromother

modules in order to determine location of players and the ball on the static top

7https://www.pyimagesearch.com/2018/10/22/object-tracking-with-dlib/, June 2021

36

https://www.pyimagesearch.com/2018/10/22/object-tracking-with-dlib/

view of the football court. Top Viewer sub­module undertakes this task by execut­

ing perspective transformations for said locations while also holds a model of the

static top view. The view is initialized with information regarding time sides and

is updated after each frame to display the new player­ball locations.

Furthermore, using simple methods, the module extracts useful insights re­

garding the players and the game. It relies heavily on camera estimation and ob­

ject detection tasks in its workings and their performance is directly correlated to

the quality of inferred analytics results. A second purpose of this module is to vi­

sualize the aforementioned results which are updated on each frame. Architecture

for the task is shown in Figure 18.

Figure 18: Game analytics architecture

Team sides inference is the first task executed, after initializing Game Analytics

module. Camera estimation and team detection outputs from the first N frames,

are used to determine which side corresponds to which team. Colors used to de­

note sides, come from Team Classifier and the color of referee team/group is ig­

nored. Basic concept is that players of the same team on average, closer to their

side than the opposite side. If most players of team A are closer to the left side,

then they must be defending left side and attacking right side. This general rule

surely applies at game start when players are divided to each side but, it seems

that, apart from corner kicks, during normal game runtime, players follow that

rule in general. Current implementation needs only 1 frame to determine team

side, given the aforementioned constraint.

37

Figure 19: Team sides inference process

Detailed depiction of the process is shown in Figure 19. Having converted

player bounding box locations to top view locations, next step is to suppress the

team group that corresponds to the referee in order to acquire only the opponent

football team groups of points. These points are used as training examples: loca­

tion coordinates per point are used as features X and color label is used as label Y.

Afterwards, a logistic regression model is trained and finally, it is used to deter­

mine the color label for the leftmost and the rightmost points in the court (Figure

21). Logistic regression method is selected because of its short training time.

Figure 20: Information about team sides is represented with a colored line in each
goal post. Line color is the same as the team it relates to.

38

Figure 21: Logistic regression is used to determine team sides from player top
view points

Semantics extraction is done after processing each frame, as mentioned pre­

viously. Outputs from camera estimation and object detection are used for the

update process, during which Top Viewer sub­module translates current location

points. Ball location history is also updated during the process. From this point

on, rest of the processing is handled by Game Analytics module alone.

39

Ball possession is estimated using top view location points. Ball is considered

in possession of a player if he exists within a radius around its location. If more

than one players exist within radius, ball may considered as ”contested” however,

this is a matter of interpretation to be decided by experts. Currently, the closest

player to the ball, is considered to have it in his possession so long as the ball is

visible. If that’s not the case, ball is considered ”free”. Euclidean distance is used

to estimate proximity to the ball.

Rest of semantics relate to information about the team that currently has the

ball. Team A is in defensive movement/action if the player who has the ball, is

located in team’s A side. Alternatively, if the same player is in opponent team’s B

side, then team A is on the attack. These conclusions result using if­else program­

ming logic.

Visualization of analytics results in current implementation is achieved as shown

in Figure 22. On the right side, original TV broadcast frames from video sequence

are shown. Each player is identified as a member of a team, by the colored mark

on his feet. Ball has its ownwhitemarking. Court lines are shown in white colored

lines, on top of the frame.

Figure 22: Current way of depicting analytics results. On the left, TV broadcast
frame is shown, with player color markings that represent their identified team
and court line markings in white color. On the right, static top view with players
and ball represented as colored dots. Note that red teamdefends left side, denoted
by a red line in left goal post. Accordingly, blue team defends right side. Semantic
information are shown below top view.

On the left side, a static top view of the football court is shown. Colored mark­

ings for players­ball are depicted along with a fading ball trail that from last N

locations of the ball. Team sides are represented using colored goal posts. Below

static top view, there is a semantics board where all semantic information are dis­

played. Ball possession is shown in grey color if no team possesses the ball or else

the sentence changes color to the possessing team’s color. Attacking/defending

40

stance for the team that possesses the ball is also shown. Top view and its board

are updated synchronously to the video sequence.

It must be noted that player marking colors do not relate to team outfits. They

are different per team­group and are the same for both sides in Figure 22. They

are related though, with the color of ”Team in ball possession” phrase at semantics

info board.

4 Experiments & Results

This sections contains experiments during thesis development, results and in­

sights from experiments and data set descriptions.

Figure 23: Exemplary images from World Cup data set. Right: pairs of images
used for image segmentation task. Left: pairs of images used for feature extraction
task.

4.1 Court Detection - Dataset

World Cup data set was created by Homayounfar et al. [24] using 20 recorded

games from the World Cup 2014 held in Brazil. It contains images 395 annotated

images with the ground truth fields and also the grass segmentations. The games

were randomly split into two sets with 10 games of 209 images for training and

validation, and 186 images from10other games for the test set. The images consist

of different views of the field with different grass textures and lighting patterns.

These games were held in 9 unique stadiums during day and night. There are

some games with rain and heavy shadows. The data set is publicly accessible at

41

author’s website8

4.2 Camera Estimation

Initial approach is discussed along with the synthetic data set and its specifica­

tions. The data set that was used to train Camera Estimator’s siamese model, is

also explained. Finally, use cases where camera estimation along with refinement

fails to converge to a result close to ground truth.

4.2.1 Initial approach

Initial approach to tackle camera estimation task was based on previous work

done and described in 1.3. Using color masking to suppress everything except for

the football court area, probabilistic Hough lines method [36] from OpenCV was

used to detect lines. Having refined identified court lines, next step was to find

their intersection points. These points would then be used in perspective trans­

formation to estimate camera pose.

Figure 24: Initial implementation example output. For cases such as this, inter­
section points do not suffice for robust perspective transformation.

This approach faced two important issues. First of all, it requires at least 4

intersection points that must each be as closest to the 4 corners of the court as

possible. Figure 24 depicts such an ideal scenario where the best possible points

(shown as light bluemarkings) are used for perspective transformation. Using the

8https://nhoma.github.io/

42

https://nhoma.github.io/

resulting homographymatrix, court lines estimation is depicted inwhite. The best

points in this case were setmanually but, the automatic process for this job, would

probably be an iterative algorithm that would require all possible quartets among

N intersection points to be used in perspective transformation along with a ter­

mination criterion to determine the best quartet. At worst scenario, it would cost

O(N !
(N−4)!

) time. Secondly, as mentioned in [24] regarding football, intersection

points are scarce near middle­field, especially when camera zooms in the court.

A solution for both issues would be a more panoramic view of the court that

would cover at least half the court or else, the area should be covered with more

than one cameras that would have their output imagesmerged before further pro­

cessing.

However, it is imperative need in this application to develop a solution that

would require only one point of view, like in TV broadcasts. Therefore, this ap­

proach was abandoned in the early stages of the application development.

4.2.2 Synthetic Camera Pose Dataset

Chen et al. [7] used World Cup data set, described above, to create their synthetic

data set. The images consist of different views of the field so they pre­processed

the training set to obtain following camera configurations: camera location distri­

bution N (µ, σ2)(µ ≈ [52,−45, 17]T) and σ ≈ ±[2, 9, 3]T meters; pan, tilt and focal

length ranges ([−35◦, 35◦], [−15◦, 15◦] and [1000, 6000] pixels, respectively). These

camera parameters were found to be typical settings for many cameras in soccer

games.

With these configurations, 90000 camera poses were sampled. The camera

centers (u, v) were sampled from the Gaussian distributionN (µ, σ2). Pan, tilt and

focal length values are sampledusinguniformdistributions of [−35◦, 35◦], [−15◦, 15◦]

and [1000, 6000] pixels, respectively. The tilt of camera base is fixed to −90◦ and

the roll angle is a random value from [−0.1◦, 0.1◦]. Pan and tilt regarding camera

itself, alongside tilt and roll regarding its base, are used to calculate the rotation

vector of camera pose. Therefore, each pose contains 9 values regarding the afore­

mentioned objects:

• coordinates (u, v) of image center upon image plane (2 parameters, same

values for all poses),

• focal length (1 parameter),

• rotation vector (3 parameters),

• 3­D coordinates of camera center within world space (3 parameters),

43

with world space origin located at the bottom left corner of the football court, with

Y­axis positive direction along the touchline towards the goal post and X­axis pos­

itive direction along the touchline, towards the center of the court. Z­axis positive

direction is upwards (Figure 25).

Figure 25: The origin of the world coordinate is at the left bottom of the football
court template.

Figure 26: Pinhole camera model

Pinhole camera model is used to explain camera poses(Figure 26):

P = KR[I| − C] (11)

where P is the projection matrix that translates a point from 3­D space to 2­D

image plane, K is the camera calibration matrix, R is the camera rotation matrix,

C is a vector describing a point in 3­D space. Using the model, K, R and C are

calculated, therefore P is produced and is used to produce a homography matrix

and by extension an edge map. Camera poses produced with the above specifi­

44

cations, using the binary static top view model, produce edge maps of resolution

1280× 720.

Siamese training data set contains 10,000 pairs of edge maps with its pair con­

sisting of two maps that resemble each other. Each pair is produced using a ran­

dom camera pose from the synthetic data set. Given this pose pan, tilt and focal

lenght values, a second pose is sampled from uniform distribution with standard

deviation values 1.5, 0.75 and 30 for pan, tilt and focal length respectively. Edge

maps are generated from this pose and the original one, using pinhole model.

Those maps constitute one pair in the training data set and are saved in data set

with 320× 180 resolution.

Figure 27: Use cases that depict failed camera estimations. Note that top­left im­
age estimation is not fixed even after refinement process

45

4.2.3 Current approach

Camera Estimator module is based on the synthetic camera pose data set de­

scribed previously, for its initial estimation. However, smaller, regional football

courts differ in the camera poses they use to be covered. Figure 27 depicts cases

where camera estimation task results were far enough from ground truth. For cer­

tain cases, homography refinement process fails converge to ground truth (Figure

27 ­ top­left image). In other cases, refinement takes considerable amount of time

to converge that spans over multiple video frames, a process that is noticeable.

4.3 Object Detection

Data sets used during object detection model training are presented and a tool

that helped with the fine tuning for image data augmentation process.

4.3.1 Data sets

The publicly available ISSIA­CNR soccer player detection data set9 by D’Orazio et

al. [12] and Soccer Player Detection data set1011 by Lu et al. [33] were used.

ISSIA­CNR Soccer data set contains six synchronized, long shot views of the

football pitch acquired by six Full­HD DALSA 25­2M30 cameras. Three cam­

eras are designated for each side of the playing­field, recording at 25 FPS. Videos

are acquired during matches of the Italian ”Serie A”. There’re 20,000 annotated

frames in the data set annotated with ball position and player bounding boxes.

Soccer PlayerDetectiondata set is created from twoprofessional footballmatches.

Each match was recorded by three broadcast cameras at 30 FPS with 1280 × 720

resolution. It contains 2019 images with 22,586 annotated player locations. How­

ever, ball position is not annotated.

9https://drive.google.com/file/d/1Pj6syLRShNQWQaunJmAZttUw2jDh8L_f/view?usp=
sharing, June 2021

10http://www.cs.ubc.ca/labs/lci/datasets/SoccerPlayerDetection_bmvc17_v1.zip,
June 2021

11https://drive.google.com/file/d/1ctJojwDaWtHEAeDmB-AwEcO3apqT-O-9/view?usp=
sharing, June 2021

46

https://drive.google.com/file/d/1Pj6syLRShNQWQaunJmAZttUw2jDh8L_f/view?usp=sharing
https://drive.google.com/file/d/1Pj6syLRShNQWQaunJmAZttUw2jDh8L_f/view?usp=sharing
http://www.cs.ubc.ca/labs/lci/datasets/SoccerPlayerDetection_bmvc17_v1.zip
https://drive.google.com/file/d/1ctJojwDaWtHEAeDmB-AwEcO3apqT-O-9/view?usp=sharing
https://drive.google.com/file/d/1ctJojwDaWtHEAeDmB-AwEcO3apqT-O-9/view?usp=sharing

Figure 28: Exemplary images from ISSIA­CNR (top­right image) and Soccer
Player Detection data sets (rest images)

4.3.2 Data augmentation

Image augmentation is accomplished using Transforms package fromTorchvision

library and the values currently used, resulted after much experimentation. Pre­

sented training images differ substantially from real world data and the number

of available annotated, soccer detection data is finite. Existing data have to be

exploited in order to acquire the best results possible.

Chiefly, due to the fact that ball detection rates were low on real world data, a

special tool that simulates image transformations, was developed. Its use allowed

a relatively quick and more reliable parameter tuning for image augmentation.

Tool interface is simple: it comprises an image preview and, depending on the

case, a number of slide bars to experiment with different input values torchvi­

sion.transforms methods. Changed values from slide bars update instantly the

image preview, making fine tuning process much easier. Figure 29 shows the

procedure of changing distortion, degree rotation, scaling and shear. Tool was

adapted accordingly, to simulate image jittering effects in the same manner. Pa­

rameter tuning was done by observing real world videos (described later on)

47

Figure 29: Developed tool to simulate PyTorch transformations results on image
during augmentation

4.4 Team Classification

Color models used to represent colors in spaces are shown in Figure 30. Exper­

iments aimed to identify convenient color representations that would help with

grass suppression from bounding box images. Also, a right color model would

help with color segmantation task.

Figure 30: Color models used during experimentations. From left to right: RGB
model­ HSV model­ Spherical model

48

Test image sets for method comparison, consists of 72 test images from 5 dif­

ferent games (Figure 31). Test images resulted from object detection bounding

boxes and players depicted in those games have both single­color and dual­color

outfits in order to test classification methods in both cases. Each set comes from

a single frame so, exactly one referee image is contained within each set. Games

come from the following matches:

• AEK Athens F.C. ­ Aris Thessaloniki F.C. (Greek Super League). Team out­

fits: Blue­yellow&yellow­black respectively. Referee outfit: Magenta­black.

• Belgium ­ Japan (2018 FIFA World Cup). Team outfits: Red & blue respec­

tively. Referee outfit: Yellow­black.

• ISSIA­CNR image data set (Italian Serie A). Team outfits: White & blue.

Referee outfit: Red.

• Manchester United F.C. ­ Chelsea F.C. (English Premier League). Team out­

fits: Red­white­black & blue­white respectively. Referee outfit: Black.

• Egaleo F.C. ­ Aiolikos F.C. (Greek C National Amateur Division). Team out­

fits: Green­white & black­white respectively. Referee outfit: Pink­black.

Evaluation was done using completeness score, as described in Rosenberg et al.

2007 [41], and processing time, to determine the best method. All methods are

set to identify 3 different color groups per image set. Dominant color method is

set to identify 2 dominant colors

Method AEK Belgium ISSIA Manchester Egaleo Proc. Time
Dominant Color 0.40 0.68 0.34 0.09 ­ 85.67”
Color Histogram 0.72 1.00 0.59 1.00 0.40 17.57”
Segmentation 0.72 1.00 0.59 0.45 0.27 25.08”

Table 1: Team classification methods comparison

Considering Table 1, it must be noted that in player images from Egaleo set,

Dominant Color method does not yield results. This is owed to the fact that in

certain images, green pixel suppression eliminates nearly all but one image pixels

thus, it is not possible to extract a second dominant color. Though Color His­

togram uses the same green pixel suppression, the remaining one pixel suffices to

produce a color histogram however this approach needs refinement in case sup­

pression eliminates every single pixel. Segmentation method performs nearly as

well as Color Histogram apart from the last two image sets but is also slower than

it, because it uses K­means which is an iterative algorithm.

49

Figure 31: Test images used for validation. From top to bottom: AEK ­ Belgium
­ ISSIA­CNR ­ Manchester ­ Egaleo. There is annotation above each image: G_T
represents ground truth, Pred represents predicted value. Ground truth and Pred
take values 0, 1, 2 according to the cluster they belong. Predicted values in this
figure are the results from Color Histogram method.

BothColorHistogramandSegmentationmethods face a problem inEgaleo set.

The interpretation of the poor results is probably the long shot from the source

frame (Figure 32) which is equivalent to a closer camera shot with lower image

resolution. Indeed, object detection plays crucial role from team classification

task

Color Histogrammethod is selected over the others, due to its scores and pro­

cessing speed, thus being superior.

50

Figure 32: Source image for Egaleo test images.

4.5 Real World Videos

Videos from various football matches were acquired, mainly from YouTube, and

usedduring development of this application, for experiments and screenshots pre­

sented in this thesis. To summarize, the matches are:

• Undefined teams from ISSIA­CNR soccer player detection data set (Italian

Serie A)

• Belgium ­ Japan (2018 FIFA World Cup)

• France ­ Belgium (2018 FIFA World Cup)

• Brazil ­ Germany (2014 FIFA World Cup)

• Manchester United F.C. ­ Chelsea F.C. (English Premier League)

• AEK Athens F.C. ­ Aris Thessaloniki F.C. (Greek Super League)

• AEK Athens F.C. ­ Olympiakos F.C. (Greek Super League)

• Egaleo F.C. ­ Aiolikos F.C. (Greek C National Amateur Division)

World cup videos where selected because they represent ideal court situations

(good court & lighing conditions, panoramic view). Manchester United ­ Chelsea

matchwas selected in order to examine results on lowquality images. Greek Super

League matches are representative cases of greek stadiums and their conditions

51

where maintenance standards are a bit lower than their counterparts in countries

with considerable football tradition. Finally, Egaleo ­ Aiolikos match was used to

study team classification results in a difficult scenario (green­black­white outfits)

but also, because it is of amateur category. Technical leadership for those football

clubs would indeed benefit from this application and using this video footage is a

case study.

There are countless amateur football matches available on YouTube, however

non were used due to the fact that greek amateur games are conducted in pitches

with extremely poor conditions. Indeed, in those matches, court line detection is

difficult even for human spectators.

Some videos where edited in order to remove close­ups to the players, phase

replays and advertisements attached on videos themselveswhile, otherswere used

without montage. Kdenlive application was used for video editing.

5 Conclusions & Future Work

A prototype method that observes football games, detects players ball and their

location in the court and finally, exports basic conclusions, was presented in the

context of this thesis.

Problems that were examined, include image segmentation, image feature ex­

traction, object detection and tracking using optical flow, camera registration,

camera pose tracking using image alignment, color classification, image color seg­

mentation and simple classification of points. Insights were gained regarding

deep learning model training with the use of GPU as well as continuing training

procedure from existing checkpoints without loss of performance.

Existing work from multiple papers was combined and adjusted in order to

solve sport analytics problem for football games. Conditional GAN Pix2Pix [25]

was used to handle court detection tasks. FootAndBall deep CNN [28] was used to

handle object detection and Lucas­Kanademethod [34], [5] for tracking objects.

Siamese feature extraction along with a database that contains synthetic camera

poses [7], were used for camera registration. Enhanced Correlation Coefficient

Maximization [13] was used to track camera pose updates. Traditional machine

learning was used for team classification by means of clustering and logistic re­

gression to infer team sides per team.

Initial objective for this thesis was the extraction of more complicated insights

than what the application currently outputs, like recognizing tactic formations for

each team. However, currentwork forms a solid basis for further implementations

towards the direction of the initial objective.

Apart from shortcomings regarding the initial objective, there are issues that

52

are not handled currently andwould need further research or optimization. These

are:

• Stabilizing players position on top view. Currently, player­ball positions on

static top view is jittery and needs further stabilization. This depends on the

stability / performance of camera estimation & the detection of players’ feet

(currently inferred from bounding box bot­mid point which is adjusted per

frame). Players’ feet are considerably more stable during frame sequences

so they constitute a good feature to be used as solution.

• Improve camera estimation. Camera estimation task relies heavily on court

detection output. Line detection has to be improved to that aim. There also

might be a set of restrictions to be introduced in order to handle the issue

where Camera Estimator thinks the court changes dimensions or is zoomed

in/out, without actual zooming in/out from the camera. Also, changing dis­

tribution characteristics for the synthetic camera pose data set, can work to

that end.

• Improve ball detection. Current improvements comparing to original FootAnd­

Ball implementation, are based on image augmentation. Further improve­

ments maybe additional ball annotation in existing datasets & perhaps, an

alteration in current FootAndBall architecture. Architecture changesmaybe

in the same fashion as YoLo v3 with multiple network outputs for close­up

and far­away camera takes.

• Overall speed­up improvements. Based on my limited experience, migrat­

ing code to C++ may improve execution times. Python as an interpreter

language, executes slower than compiler­based C++. Python executes more

code on runtime which helps it be more user­friendly. OpenCV is imple­

mented in C++ and the OpenCV Python API has an overhead on execution

time. Camera Estimator databasemay also be reduced in size and relymuch

more on ECC for approximating original camera pose.

Generally, the result in this thesis suggest that the combination of existing

works done so far, solves the problem of football analytics in a promising, de­

cent and versatile way. However, low­end hardware is a restraining factor for its

performancewhich necessitates further software improvements that exploit hard­

ware to its maximum capabilities.

Future work will be oriented on performance improvements that reduce pro­

cessing time andmakemuchmore accurate estimations asmentioned above, while

also work on getting more complicated insights about the game.

53

References

[1] I. Sutskever A. Krizhevsky and G. E. Hinton. Imagenet classification with

deep con­ volutional neural networks. In NIPS, 2012.

[2] Jiten B Amin, Darshak G Thakore, and Narendra M Patel. Soccer player

tracking system.

[3] Alina Bialkowski, Patrick Lucey, Peter Carr, Iain Matthews, Sridha Sridha­

ran, and Clinton Fookes. Discovering team structures in soccer from spa­

tiotemporal data. IEEE Transactions on Knowledge and Data Engineering,

28(10):2596–2605, 2016.

[4] Alina Bialkowski, Patrick Lucey, Peter Carr, Yisong Yue, Sridha Sridharan,

and Iain Matthews. Large­scale analysis of soccer matches using spatiotem­

poral tracking data. In 2014 IEEE International Conference on Data Min­

ing, pages 725–730. IEEE, 2014.

[5] Jean­Yves Bouguet et al. Pyramidal implementation of the affine lucas

kanade feature tracker description of the algorithm. Intel corporation, 5(1­

10):4, 2001.

[6] Shih­Fu Chang. Real­time view recognition and event detection for sports

video.

[7] Jianhui Chen and James J Little. Sports camera calibration via synthetic

data. In Proceedings of the IEEE Conference on Computer Vision and Pat­

tern Recognition Workshops, pages 0–0, 2019.

[8] Yu­Ting Chen and Chu­Song Chen. A cascade of feed­forward classifiers for

fast pedestrian detection. In Asian Conference on Computer Vision, pages

905–914. Springer, 2007.

[9] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. In 2005 IEEE computer society conference on computer vision

and pattern recognition (CVPR’05), volume 1, pages 886–893. IEEE, 2005.

[10] Martin Danelljan, Gustav Häger, Fahad Khan, and Michael Felsberg. Accu­

rate scale estimation for robust visual tracking. In British Machine Vision

Conference, Nottingham, September 1­5, 2014. BMVA Press, 2014.

[11] Tiziana D’Orazio, Nicola Ancona, Grazia Cicirelli, and Massimiliano Nitti. A

ball detection algorithm for real soccer image sequences. In Object recogni­

tion supported by user interaction for service robots, volume 1, pages 210–

213. IEEE, 2002.

54

[12] Tiziana D’Orazio, Marco Leo, Nicola Mosca, Paolo Spagnolo, and Pier Luigi

Mazzeo. A semi­automatic system for ground truth generation of soccer

video sequences. In2009Sixth IEEE International Conference onAdvanced

Video and Signal Based Surveillance, pages 559–564. IEEE, 2009.

[13] Georgios D Evangelidis and Emmanouil Z Psarakis. Parametric image align­

ment using enhanced correlation coefficient maximization. IEEE Trans­

actions on Pattern Analysis and Machine Intelligence, 30(10):1858–1865,

2008.

[14] Dirk Farin, Jungong Han, and Peter HN de With. Fast camera calibration

for the analysis of sport sequences. In 2005 IEEE International Conference

on Multimedia and Expo, pages 4–pp. IEEE, 2005.

[15] Dirk Farin, Susanne Krabbe, Wolfgang Effelsberg, et al. Robust camera cali­

bration for sport videos using court models. In Storage and Retrieval Meth­

ods and Applications for Multimedia 2004, volume 5307, pages 80–91. In­

ternational Society for Optics and Photonics, 2003.

[16] Miguel Farrajota, JoãoMFRodrigues, and JMHdu Buf. Bio­inspired pedes­

trian detection and tracking. In 3rd International Conference on Advanced

Bio­Informatics, Bio­Technology Environments, pages 28–33, 2015.

[17] Ross Girshick. Fast r­cnn. In Proceedings of the IEEE international confer­

ence on computer vision, pages 1440–1448, 2015.

[18] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich fea­

ture hierarchies for accurate object detection and semantic segmentation. In

Proceedings of the IEEE conference on computer vision and pattern recog­

nition, pages 580–587, 2014.

[19] Ayse Bilge Gunduz, Berk Taskin, Ali Gokhan Yavuz, and Mine Elif Karsligil.

A better way of extracting dominant colors using salient objects with se­

mantic segmentation. Engineering Applications of Artificial Intelligence,

100:104204, 2021.

[20] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning

an invariantmapping. In 2006 IEEEComputer Society Conference on Com­

puter Vision and Pattern Recognition (CVPR’06), volume 2, pages 1735–

1742, 2006.

[21] Josef Halbinger and Juergen Metzler. Video­based soccer ball detection in

difficult situations. In International Congress on Sports Science Research

and Technology Support, pages 17–24. Springer, 2013.

55

[22] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Hy­

percolumns for object segmentation and fine­grained localization. In Pro­

ceedings of the IEEE conference on computer vision and pattern recogni­

tion, pages 447–456, 2015.

[23] M Hoernig, M Herrmann, and B Radig. Real time soccer field analysis

from monocular tv video data. In 11th International Conference on Pattern

Recognition and Image Analysis (PRIA­11­2013), volume 2, pages 567–570.

The Russian Academy of Sciences, 2013.

[24] NamdarHomayounfar, Sanja Fidler, and Raquel Urtasun. Sports field local­

ization via deep structured models. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5212–5220, 2017.

[25] Phillip Isola, Jun­Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image­to­

image translation with conditional adversarial networks. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages

1125–1134, 2017.

[26] Jacek Komorowski, Grzegorz Kurzejamski, and Grzegorz Sarwas. Balltrack:

Football ball tracking for real­time cctv systems. In 2019 16th International

Conference on Machine Vision Applications (MVA), pages 1–5. IEEE, 2019.

[27] Jacek Komorowski, Grzegorz Kurzejamski, and Grzegorz Sarwas. Deepball:

Deep neural­network ball detector. arXiv preprint arXiv:1902.07304, 2019.

[28] Jacek Komorowski, Grzegorz Kurzejamski, and Grzegorz Sarwas. Footand­

ball: Integrated player and ball detector. arXiv preprint arXiv:1912.05445,

2019.

[29] Kobi Levi and Yair Weiss. Learning object detection from a small number of

examples: the importance of good features. InProceedings of the 2004 IEEE

Computer SocietyConference onComputerVisionandPatternRecognition,

2004. CVPR 2004., volume 2, pages II–II. IEEE, 2004.

[30] Jianbo Li, Yiping Yao, andWenjie Tang. Km_grabcut: a fast interactive im­

age segmentation algorithm. In Sixth International Conference on Graphic

and Image Processing (ICGIP 2014), volume 9443, page 944313. Interna­

tional Society for Optics and Photonics, 2015.

[31] Tsung­Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan,

and Serge Belongie. Feature pyramid networks for object detection. In Pro­

ceedings of the IEEE conference on computer vision and pattern recogni­

tion, pages 2117–2125, 2017.

56

[32] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott

Reed, Cheng­Yang Fu, and Alexander C Berg. Ssd: Single shot multibox de­

tector. In European conference on computer vision, pages 21–37. Springer,

2016.

[33] Keyu Lu, Jianhui Chen, James J Little, and Hangen He. Light cascaded

convolutional neural networks for accurate player detection. arXiv preprint

arXiv:1709.10230, 2017.

[34] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration tech­

nique with an application to stereo vision. Vancouver, British Columbia,

1981.

[35] ViniciusMachado, Roger Leite, FelipeMoura, Sergio Cunha, Filip Sadlo, and

João LD Comba. Visual soccer match analysis using spatiotemporal posi­

tions of players. Computers & Graphics, 68:84–95, 2017.

[36] Jiri Matas, Charles Galambos, and Josef Kittler. Robust detection of lines

using the progressive probabilistic hough transform. Computer vision and

image understanding, 78(1):119–137, 2000.

[37] Eric Müller­Budack, Jonas Theiner, Robert Rein, and Ralph Ewerth. ” does

4­4­2 exist?”– an analytics approach to understand and classify football team

formations in singlematch situations. InProceedingsProceedings of the 2nd

International Workshop on Multimedia Content Analysis in Sports, pages

25–33, 2019.

[38] Chris Poppe, Sarah De Bruyne, Steven Verstockt, and Rik Van de Walle.

Multi­camera analysis of soccer sequences. In 2010 7th IEEE International

Conference on Advanced Video and Signal Based Surveillance, pages 26–

31. IEEE, 2010.

[39] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only

look once: Unified, real­time object detection. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 779–788,

2016.

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r­cnn: To­

wards real­time object detectionwith regionproposal networks. InAdvances

in neural information processing systems, pages 91–99, 2015.

[41] Andrew Rosenberg and Julia Hirschberg. V­measure: A conditional

entropy­based external cluster evaluation measure. In Proceedings of the

57

2007 joint conference on empirical methods in natural language process­

ing and computational natural language learning (EMNLP­CoNLL), pages

410–420, 2007.

[42] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. ” grabcut” inter­

active foreground extraction using iterated graph cuts. ACM transactions on

graphics (TOG), 23(3):309–314, 2004.

[43] Rahul Anand Sharma, Bharath Bhat, Vineet Gandhi, and CV Jawahar. Auto­

mated top view registration of broadcast football videos. In 2018 IEEEWin­

ter Conference on Applications of Computer Vision (WACV), pages 305–

313. IEEE, 2018.

[44] Laurie Shaw andMark Glickman. Dynamic analysis of team strategy in pro­

fessional football. Barça Sports Analytics Summit, 2019.

[45] Jianbo Shi et al. Good features to track. In 1994 Proceedings of IEEE con­

ference on computer vision and pattern recognition, pages 593–600. IEEE,

1994.

[46] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM

Smeulders. Selective search for object recognition. International journal of

computer vision, 104(2):154–171, 2013.

58

	Introduction
	Problem Definition
	Challenges
	Initial Implementation

	Related Work
	Existing works
	Contribution

	Methodology
	Architecture
	Computer Vision Packages & Tools
	Court Detection
	Pix2Pix model
	Grass mask refinement

	Camera Estimation
	Initial camera pose estimation
	Tracking - ECC method
	Tracking - Lucas-Kanade method
	Feature-camera pose database

	Team Detection
	Object detection
	Team classification
	Object tracking

	Analytics Extraction & Visualization

	Experiments & Results
	Court Detection - Dataset
	Camera Estimation
	Initial approach
	Synthetic Camera Pose Dataset
	Current approach

	Object Detection
	Data sets
	Data augmentation

	Team Classification
	Real World Videos

	Conclusions & Future Work

