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Abstract
Digital image processing techniques and algorithms have become a great tool to support medical experts in identifying,

studying, diagnosing certain diseases. Image segmentation methods are of the most widely used techniques in this area

simplifying image representation and analysis. During the last few decades, many approaches have been proposed for

image segmentation, among which multilevel thresholding methods have shown better results than most other methods.

Traditional statistical approaches such as the Otsu and the Kapur methods are the standard benchmark algorithms for

automatic image thresholding. Such algorithms provide optimal results, yet they suffer from high computational costs when

multilevel thresholding is required, which is considered as an optimization matter. In this work, the Harris hawks opti-

mization technique is combined with Otsu’s method to effectively reduce the required computational cost while main-

taining optimal outcomes. The proposed approach is tested on a publicly available imaging datasets, including chest images

with clinical and genomic correlates, and represents a rural COVID-19-positive (COVID-19-AR) population. According to

various performance measures, the proposed approach can achieve a substantial decrease in the computational cost and the

time to converge while maintaining a level of quality highly competitive with the Otsu method for the same threshold

values.

Keywords Harris hawks optimization � Multilevel thresholding � Image segmentation � Otsu method � Covid-19 �
CT images

1 Introduction

Among the wide variety of sciences that can offer support

during global pandemics, digital image processing is the

one that can assist many aspects of medicine. Medical

imaging systems are used to identify or study the occur-

rence/development of certain diseases. The domain of

medical imaging is developing rapidly due to advances in

image processing techniques (e.g., applied machine learn-

ing) that include image recognition, segmentation,
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enhancement, and analysis. Among various modalities,

computed tomography (CT) can be used effectively to

screen and monitor diagnosed cases and has a direct impact

on health outcomes because it assists healthcare profes-

sionals to administer rapid, accurate, and large-scale

diagnostic screenings [18]. CT scans of the chest may be

helpful in diagnosing COVID-19 in patients with a high

clinical suspicion of infection but who have not been rec-

ommended for routine screening. In this type of medical

imaging, cross-sectional tomographic images (slices) of the

body are produced by using multiple X-ray measurements.

Chest CT scans of patients with COVID-19-associated

pneumonia usually show ground-glass opacification, pos-

sibly with consolidation.

Among various available medical image processing

techniques and algorithms, image segmentation methods

are the best tools to simplify image representation and

analysis. Image segmentation is considered an essential

part of the pattern recognition, computer vision, and

medical image processing techniques [13, 30]. In image

segmentation, the image is divided into regions of interest,

and the segmentation process can be conducted by using

shape, size, color, texture, illumination, etc. [16]. Image

segmentation approaches can be categorized into four main

types: clustering, region-based, texture analysis, and his-

togram thresholding. Among these various segmentation

approaches, histogram thresholding is known for its

robustness, simplicity, and accuracy and therefore is

widely applied in image segmentation. In histogram

thresholding, the histogram data are extracted from a given

image and the best threshold values are used to categorize

pixels in different regions [12]. For automatic image

thresholding, traditional statistical approaches such as the

Otsu and Kapur methods are the typical benchmark

algorithms.

Multilevel thresholding methods deliver better results

when compared to other traditional thresholding methods

[14, 17]. A wide range of multilevel segmentation methods

have been proposed in the literature [40, 50]. Furthermore,

obtaining optimal threshold values is considered a practical

optimization problem. Therefore, many nature-inspired

algorithms have been presented in recent years for solving

difficult practical optimization issues. Because of their

adaptability and efficiency, those algorithms have attracted

the interest of both scientists and researchers.

Despite their simple design, nature-inspired algorithms

are effective at addressing extremely difficult optimization

problems. Those algorithms are an essential component of

modern global optimization algorithms, artificial intelli-

gence, and informatics in general. Many metaheuristic

algorithms have the property of reaching a global optimum

for the problem after a relatively small number of itera-

tions. Therefore, various evolutionary and swarm-based

strategies have been combined with statistical thresholding

methods such as the Kapur method and the Otsu method in

order to find the optimal threshold values for multilevel

segmentation [52]. The Harris hawks optimization (HHO)

algorithm is a well-known swarm-based, gradient-free

optimization technique. HHO has received much interest

from scientists and researchers in terms of its performance,

quality of results, and its acceptable convergence in dealing

with different applications in real-world problems.

In this work, the Harris hawks optimization technique is

combined with Otsu’s method to effectively reduce the

required computational cost while maintaining optimal

results. The proposed method is validated using publically

accessible imaging datasets, which include chest scans with

clinical and genetic correlates and reflect a COVID-19-

positive (COVID-19-AR) population in rural areas. For the

same threshold values, the suggested strategy can achieve a

significant reduction in computing cost and time to con-

verge while retaining a level of quality that is highly

competitive with the Otsu method, according to different

performance criteria.

The content of the paper can be summarized as follows:

Sect. 2 presents a literature review of CT-based methods

for efficient lung segmentation. Section 3 describes the

implementation of Harris hawks optimization algorithm for

multilevel image segmentation. Section 4 outlines the

Harris hawks optimization for multi-threshold image seg-

mentation evaluation with some confirmatory ranking

results and analysis. Section 5 presents the evaluation of

results. Finally, Sect. 6 presents the conclusions of this

paper.

2 Literature review

In the field of CT imaging, the accurate segmentation of

lung can lead to the accurate diagnosis of lung infection

and to the correct detection and classification of lung

nodules. For this reason, various CT-based methods for

efficient lung segmentation have been proposed in the lit-

erature. For example, region-growing techniques have been

applied in works such as Netto et al. [31], while other

works such as Keshani et al. [26] have applied active

contours techniques. On the other hand, authors in Messay

et al. [32], Pu et al. [43], and Tan et al. [49] have utilized

thresholding strategies such as rule-based, fuzzy inference

methods, and intensity in order to detect nodules in CT

images. Template matching methods have also been widely

used in some works such as Akram et al. [3], Jo et al. [24],

and Serhat Ozekes and Ucan [47]. Meanwhile, other works

such as da Silva Sousa et al. [8] and Narayanan et al. [37]

have designed composite discriminative feature techniques

to classify and detect lung nodules through the use of
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different classification methods. In addition, some other

machine learning methods have been investigated for lung

nodule detection, such as those presented in Furqan et al.

[19], Gruetzemacher et al. [21], Jiang et al. [23], Pehrson

et al. [42], and Zhang et al. [53].

Recently, contextual image information (i.e., channel

and spatial) is shown to be effective for semantic seg-

mentation as proposed by Li et al. [28], which interactively

explores the spatial contextual information and the channel

contextual information. In their work, the spatial contextual

module is exploited to uncover the spatial contextual

dependency between pixels by exploring the correlation

between pixels and categories, while the semantic features

are extracted using the channel contextual module by

modeling the long-term semantic dependence between

channels. Results show that the two context modules are

adaptively integrated to achieve better outcomes, by con-

necting them in tandem for interactive training for mutual

communication between the two dimensions.

Image thresholding techniques can be categorized as

either bi-level or multilevel. In bi-level techniques, desig-

nated objects are differentiated by using a single threshold

value. In multilevel techniques, the image is divided into

multiple regions using multiple threshold values [17].

Therefore, the multilevel thresholding techniques give

more accurate segmentation results as compared to the bi-

level ones [27]. Moreover, the optimal threshold values in

multilevel thresholding techniques can be classified into

parametric and nonparametric approaches [38].

Traditional image segmentation approaches such as the

Otsu [39] and the Kapur et al. [25] methods use the max-

imization of the variance between classes and the his-

togram entropy to obtain the best possible threshold values.

Although those methods obtain optimal results, they

impose high computational cost that increases as the

number of thresholds is increased. More recently, the use

of metaheuristic algorithms in combination with traditional

statistical approaches has been proved to work effectively

and to reduce the computational cost when multilevel

thresholding is required.

Well-known automatic thresholding algorithms, such as

the algorithms in the Otsu and the Kapur methods, function

by performing a set of steps. These steps include process-

ing the input image, obtaining the image histogram, com-

puting the threshold value, and finally converting the image

pixels into white in regions where the saturation is greater

than the obtained threshold and into black otherwise.

However, these algorithms utilize different methods to

compute the threshold value. For instance, the algorithm in

Otsu’s method processes the image histogram and seg-

ments the objects by minimizing the variance on each of

the classes. The obtained histogram contains two expressed

peaks that represent different ranges of intensity value.

In Otsu’s method, the image histogram is separated into

two clusters by a threshold that is defined by minimizing

the weighted variance of the classes denoted by r2
w tð Þ,

where r2
w tð Þ ¼ w1 tð Þr2

1 tð Þ þ w2 tð Þr2
2 tð Þ, which is defined as

the Otsu model, where w1 tð Þ;w2 tð Þ are the probabilities of

the two classes divided by a threshold tð Þ, where

0� t� 255ð Þ. Otsu’s method defines two alternatives to

find the threshold. The first alternative is to minimize the

within-class variance r2
w tð Þ, and the second is to maximize

the between-class variance using r2
b tð Þ ¼ w1 tð Þw2 tð Þ l1 tð Þ½

�l2 tð Þ�2, where l1 is a mean of class i. The cluster prob-

ability function is used to calculate the probability P for

each pixel value in the two separated clusters C1;C2 as

w1 tð Þ ¼
Pt

i¼1 P ið Þ and w2 tð Þ ¼
PI

i¼tþ1 P ið Þ; respectively

[48].

Digital images can be represented as an intensity func-

tion f x; yð Þ that includes gray-level values, with a total

number of pixels n and the total number of pixels with a

specified gray-level i. Therefore, the probability of the

occurrence of gray-level i is P ið Þ ¼ ni=n. The pixel inten-

sity values for C1 and C2 are within the range of 1; t½ � and

t þ 1; I½ �, respectively, where I is the maximum intensity

value (i.e., 255). The means for C1;C2, denoted by

l1 tð Þ; l2 tð Þ, are obtained by l1 tð Þ ¼
Pt

i¼1 iP ið Þ=w1 tð Þ and

l2 tð Þ ¼
PI

i¼tþ1 iP ið Þ=w2 tð Þ, respectively. Therefore the

r2
1; r

2
2

� �
values can be obtained by r2

1 tð Þ ¼
Pt

i¼1

i� l1 tð Þ½ �2P ið Þ=w1 tð Þ, and r2
2 tð Þ ¼

PI
i¼tþ1 i� l2 tð Þ½ �2

P ið Þ=w2 tð Þ; respectively [48].

Obtaining optimal threshold values is considered a

practical optimization problem. Therefore, many nature-

inspired algorithms have been presented in recent years for

solving difficult practical optimization problems

[5–7, 33–35, 44–46]. Some of the metaheuristic algorithms

are designed for image processing applications and image

thresholding specifically include [2], which proposed the

use of bird-mating optimization together with the Otsu and

the Kapur methods as a strategy to find the best thresholds

for image segmentation . On the other hand, Mousavirad

and Ebrahimpour-Komleh [36] used the human mental

search algorithm with Otsu’s and Kapur’s methods. Another

nature-inspired approach was put forward in Pare et al. [41],

in which Rényi entropy is used for locating the best

thresholds using the bat algorithm. Other works have pro-

posed using different algorithms for image segmentation,

such as Liang et al. [29], which used Tsallis entropy and the

grasshopper optimization algorithm, Baby Resma and Nair

[4] which used the krill herd optimization algorithm and

[54] which combined the firefly optimization algorithm to

reduce the computation time and enhance the accuracy of

image segmentation . A comprehensive review of available

metaheuristic algorithms can be found in Pare et al. [41].
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As presented in this section, there are several approa-

ches that have been applied in the recent years for medical

image segmentation. The first group of those approaches

employed the concept of region-growing and active con-

tours techniques to segment images and isolate the region-

of-interest areas. Although this group of techniques can

lead to a good level of accuracy, those approaches need to

specific knowledge in the domain, and at the mean time

they usually need to interact with human medical experts.

This adds a pressure on human experts and also delays the

process of treatment.

There are other different approaches such as template

matching methods and composite discriminative feature

that have been also utilized by a few researchers. The main

drawback of those approaches is they cannot be general-

ized to be used in different imaging modalities and they do

not lead to convincing outcomes in some cases.

On the other hand, many researchers utilized thresh-

olding techniques to detect nodules in CT images as a base

for the image segmentation. In these techniques, the max-

imization of the variance between classes is usually

employed to segment images. Otsu method is one of the

most popular techniques which is used in this domain.

Although utilizing Otsu method in multilevel segmentation

leads to competitive results in the medical image seg-

mentation, the high computational cost needed by this

approach is a challenging task that researchers are still

trying to overcome; hence, there is the importance of

employing optimization. The authors of this research

employed the HHO with Otsu criterion as an objective

function to overcome the high computational cost and in

the meantime to achieve optimal outcomes.

The Harris hawks optimization (HHO) algorithm pro-

posed in Heidari et al. [22] is a new metaheuristic algo-

rithm that has the potential to be used for multilevel image

thresholding. This algorithm is swarm based and has been

developed to efficiently handle continuous optimization

tasks and produce high-quality solutions. The HHO algo-

rithm is still relatively new and has not been tested suffi-

ciently on real-world problems. In this research, therefore,

it is applied to the multilevel image segmentation of chest

images of COVID-19 patients. Its segmentation results are

then analyzed and compared against those obtained by the

Otsu method. The authors in this research claim that the

use of metaheuristic algorithms in image segmentation

domain lowers the amount of computations required to

locate the best threshold configuration.

3 Implementation of Harris hawks
optimization algorithm for multilevel
image segmentation

Harris hawk’s optimization is a population-based swarm

intelligence algorithm. It mimics the hunting strategy of

Harris hawks, which is mathematically modeled to address

different optimization problems. A detailed explanation of

the background and fundamentals of the algorithm can be

found in Heidari et al. [22]. Similar to other meta-heuris-

tics, HHO consists of two main phases: diversification

(exploration) and intensification (exploitation) which

mimics the attacking strategy of Harris hawks when they

are hunting their prey, where the attacking strategy is

changed based on the circumstances of the prey. The

attacking strategy that is simulated in HHO is explained in

the following subsections. Figure 1 illustrates the phases of

the HHO algorithm.

3.1 Diversification phase (exploration)

In HHO, the Harris hawks represent the solutions; the best

solution in each iteration represents the prey. Harris hawks

perch randomly in some places, and they are one of the two

strategies to attack their prey. The perch positions of the

Harris hawks are based on the positions of other family

members, as modeled in Eq. (1) for the condition q\ 0.5,

or they perch randomly in tall trees, which is modeled by

Eq. (1) for the condition q C 0.5. The first rule in the

model (see Eq. 1) represents the random generation of

solutions, and the second rule represents the difference

between the position of the best solution (prey) and the

average location of the group (hawks):

X t þ 1ð Þ ¼ Xrand tð Þ � r1jXrand tð Þ � 2r2X tð Þj q� 0:5
Xrabbit tð Þ � Xm tð Þð Þ � r3 LB þ r4 UB � LBð Þð Þ q� 0:5

�

ð1Þ

where X tð Þ is the position vector of a hawk in the tth

iteration, Xrand tð Þ is a randomly selected hawk from the

current population, Xrabbit tð Þ is the position of the rabbit

prey, X tð Þ is the current position vector of the hawks, r1, r2,

r3, r4, and q are random numbers that are updated in each

iteration, UB and LB are the upper bound and lower bound

of the variables, respectively, and Xm is the average posi-

tion of the current population of hawks. The average

position Xm can be defined as shown in Eq. (2):

Xm tð Þ ¼ 1

N

XN

i¼1

Xi tð Þ: ð2Þ
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3.2 Switch between diversification (exploration)
and intensification (exploitation)

The HHO algorithm can switch between exploration and

exploitation according to the escaping energy E of the prey.

The mathematical model for the energy of the prey can be

defined as shown in Eq. (3):

E ¼ 2E0 1 � t=Tð Þ ð3Þ

In HHO, E0 randomly changes inside the interval (- 1,

1) at each iteration. This requires E to be decreased linearly

proportional to the number of iterations.

3.3 Intensification phase (exploitation)

Harris hawks execute a surprise dive to pounce on their

prey. However, the prey has the power or capability to

escape from this risky situation. The prey’s chance of

escaping attack can be represented by r as follows:

Escape capability ¼ successfully escapes if r\0:5
unsuccessfully escapes if r� 0:5

�

3.3.1 Soft (smooth) besiege strategy

If the prey has some energy, it tries to escape from the

hawks by doing random jumps. However, the Harris hawks

surround the prey softly to exhaust it and then execute a

surprise attack. This process can happen when the chance

of the prey escaping, r, equals r C 0.5, (i.e., unsuccessful)

and the escaping energy of the prey, E, equals E C 0.5.

This process can be modeled by Eqs. (4) and (5) as

follows:

X t þ 1ð Þ ¼ DX tð Þ � E 2 1 � r5ð ÞXrabbit tð Þ � X tð Þj j ð4Þ
DX tð Þ ¼ Xrabbit tð Þ � X tð Þ; ð5Þ

where DX tð Þ is the difference between the current location

and the vector of the rabbit in iteration t and r5 is a random

number between 0 and 1, which represents the random

bounce force of the rabbit throughout the escaping criteria.

3.3.2 Hard besiege strategy

If the prey has a little escaping energy (|E|\ 0.5) and it

becomes exhausted (unsuccessfully escaping, r C 0.5), the

Harris hawks surround the prey and perform a surprise

attack. This situation can be modeled by Eq. (6) as follows:

X t þ 1ð Þ ¼ Xrabbit tð Þ � E DX tð Þj j ð6Þ

3.3.3 Soft (smooth) besiege strategy and progressive quick
pounce

If the prey has some energy to escape (which implies that

|E|C 0.5), it can successfully escape (r\ 0.5). In this case,

the Harris hawks use a smooth (soft) besiege to attack the

prey. During the escaping process, a simulation of the

zigzag motion of the prey can be performed using a Lévy

flight (LF) operator. Based on the tricky movements of the

prey, the Harris hawks try to modify their pouncing strat-

egy gradually.

Fig. 1 Phases of Harris hawks optimization [22]
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The Harris hawks can perform the soft besiege by

deciding their next position as shown in Eq. (7):

Y ¼ Xrabbit tð Þ � E 2 1 � r5ð ÞXrabbit tð Þ � X tð Þj j ð7Þ

The Harris hawks try to adjust their movement by

comparing the current pounce result and the previous one.

If the result is not good, they will pounce based on the LF

as shown in Eq. (8):

Z ¼ Y þ S� LF Dð Þ; ð8Þ

where D is the dimension of problem, S is a random vector

of size 1 9 D, and LF is the Lévy flight function. Based on

the previous assumption of the soft besiege, the Harris

hawks update their position by Eq. (9) as follows:

X t þ 1ð Þ ¼ Y ifF Yð Þ\F X tð Þð Þ
Z ifF Zð Þ\F X tð Þð Þ

�

ð9Þ

3.3.4 Hard besiege strategy and progressive quick pounce

The Harris hawks apply the hard besiege strategy when the

prey has a little energy to escape (|E|\ 0.5) and it also has a

chance to successfully escape (r\ 0.5). To perform this

strategy, the Harris hawks try to reduce the distance

between their average position Xm and that of the prey. The

overall process can be modeled by Eq. (10) as follows:

X t þ 1ð Þ ¼ Y ifF Yð Þ\F X tð Þð Þ
Z ifF Zð Þ\F X tð Þð Þ

�

; ð10Þ

where Y and Z are obtained using the new rules in

Eqs. (11) and (12), respectively:

Y ¼ Xrabbit tð Þ � E 2 1 � r5ð ÞXrabbit tð Þ � Xm tð Þj j ð11Þ
Z ¼ Y þ S� LF Dð Þ ð12Þ

3.3.5 Pseudocode of Harris hawks optimization algorithm
for multilevel thresholding

The pseudocode of the procedures of the HHO algorithm

employed for multilevel thresholding in this research is

described in Algorithm 1.
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There are three primary phases in the HHO algorithm.

The following are the processes and their computational

complexity (i.e., time complexity) [20].

1. Initiation process ! O Nð Þ.
2. Updating the locations of all Harris

hawks! O T � N � Dð Þ.
3. Determining the best location ! O T � Nð Þ.
where T is the maximum iteration, N: population size, D:

the dimension of the problem.

Therefore, the total complexity of the HHO algorithm

can be described as OðN � T þ TDþ 1ð Þ.

4 Experiment and results

The World Health Organization declared the outbreak of

the novel coronavirus (2019-nCoV) an ongoing global

pandemic in March 2020. As of today, tens of millions of

cases have been confirmed, and with millions of lives lost

due to COVID-19, it is becoming one of the deadliest

pandemics in history.

This pandemic has shown that public health is not only a

medical problem; it has also become the main common

concern of all scientific fields. Therefore, interdisciplinary

teams of scientists from all over the world have conducted

novel research and studies to find efficient solutions that

can be used to control the consequences of the pandemic

and to prevent its return and the emergence of similar

pandemics.

4.1 Dataset

In order to evaluate the efficiency of the proposed

approach, a publicly available imaging dataset was

obtained from the Cancer Imaging Archive. The obtained

dataset consists of a set of CT images (762 9 762 pixels

with a spacing 1.08 9 1.08 mm and 0.98 9 0.98 mm and

a slice thickness 3.14 mm) [9–11]. The dataset contains

chest imaging with clinical and genomic correlates and

represents a rural COVID-19-positive population (COVID-

19-AR). The dataset contains a total of about 105 patients.

For the purpose of this research, 20 randomly selected

patient records (hereinafter referred to as 10 individual

datasets) were used to test and evaluate the proposed

approach.

4.2 Experimental settings

Prior to the experiment, the initial parameter values were

set and tuned experimentally (see Table 1). In the experi-

ment, the proposed algorithm starts by generating 30 dif-

ferent possible solutions, where each solution represents

the set of possible thresholds. The number of iterations is

set to 150 iterations to allow the analysis of the conver-

gence behavior of the algorithm. In order to evaluate the

stability and the reliability of the generated outcomes, the

experiment is repeated 25 times. The lower bound (LB)

and the upper bound (UB) are set to 0 and 255, respectively

(for grayscale images), and the value of the dimension

parameter in the algorithm is set dynamically in accordance

with the number of thresholds in each specific experiment.

4.3 Results

Table 2 presents a sample from each dataset and presents a

comparison between the outcomes generated by the Otsu

method as a ground truth against the threshold values

generated by the proposed approach. To keep Table 2 short

and readable, the outcomes of only the first 10 datasets are

presented in the table. However, the full details of all the

experimental outcomes can be accessed via the URL linked

to this paper (https://sites.google.com/view/hhocovid19/

home). In Table 2, the third and fourth columns present the

Otsu threshold values and the threshold values generated

by the proposed approach, respectively. The fourth column

presents the most frequent threshold values that appeared

after the 25th execution of the algorithm. The last column

provides the number of times (NOT), which is the number

of times out of 25 that the most frequent threshold values

appeared.

It is obvious from Table 2 that the values generated by

the proposed approach are either the same or very close to

the Otsu threshold values. Moreover, even in the cases

where there is no complete match between the outcomes of

the Otsu method and those generated by the proposed

approach, the difference is negligible.

The two main inputs that are fed into the proposed

approach are the group of CT images and the number of

thresholds. The optimal threshold values are generated as

output. The optimizer is employed to maximize the value

of the between-class variance, as suggested by the Otsu

criterion.

Table 1 Initial parameter values of the HHO algorithm

Parameter name Parameter value

Population size 30

Number of iterations 150

Number of runs 25

LB 0

UB 255

Dimension Number of thresholds
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Table 3 presents the average fitness values (i.e.,

between-class variance) that are achieved when the pro-

posed approach is applied to the 10 datasets. Figure 2

displays the histograms of five different images picked

randomly from different datasets along with the threshold

values which are represented as red vertical lines. These

threshold values represent the outcome of applying the

proposed approach.

5 Evaluation of results

In order to evaluate the efficiency of the proposed

approach, the optimal thresholds obtained from the

experiment are supplied to the evaluation process as an

input. The evaluation starts, as illustrated in Fig. 3, by

generating a segmented image in accordance with the

optimal thresholds. The generated segmented image and

Table 2 Threshold values

generated by the Otsu method

versus threshold values

generated by the proposed

approach

ID Image Otsu methodthreshold value Proposed approach threshold value NOT

16406488 56, 173 56, 173 24

45, 110, 187 43, 109, 186 24

39, 100, 150, 213 39, 100, 150, 213 16

33, 85, 116, 156, 216 32, 83, 115, 156, 215 11

16406490 45, 159 45, 159 25

26, 88, 181 26, 88, 180 14

25, 84, 146, 211 24, 69, 113, 187 10

23, 66, 106, 157, 217 23, 66, 106, 157, 217 5

16406498 32, 110 32, 110 25

29, 96, 165 29, 96, 165 18

28, 77, 124, 175 26, 76, 124, 175 8

25, 75, 121, 163, 209 25, 75, 121, 163, 209 13

16406502 36, 143 36, 142 25

24, 81, 170 24, 81, 170 13

24, 76, 138, 206 23, 76, 138, 205 17

22, 62, 100, 150, 212 21, 62, 100, 150, 211 5

16406503 50, 154 50, 154 25

28, 92, 175 28, 92, 175 22

28, 88, 153, 214 27, 88, 152, 212 17

24, 68, 109, 160, 216 23, 68, 109, 160, 216 6

16406513 61, 172 60, 171 25

31, 98, 185 31, 98, 185 24

29, 90, 145, 208 29, 90, 145, 207 8

24, 69, 108, 151, 211 23, 68, 108, 151, 210 13

16407187 61, 170 61, 170 25

31, 97, 181 31, 97, 180 20

30, 92, 143, 201 28, 81, 124, 187 22

27, 75, 115, 155, 210 26, 75, 115, 155, 210 13

16424071 63, 177 63, 177 25

22, 86, 182 22, 86, 181 24

19, 63, 110, 185 19, 63, 110, 184 12

19, 61, 107, 158, 216 19, 61, 107, 157, 215 7

16424081 58, 169 58, 169 25

20, 78, 176 20, 78, 176 25

17, 61, 108, 178 17, 58, 108, 178 17

15, 42, 78, 119, 189 14, 41, 77, 118, 188 14

16424106 29, 104 29, 104 25

26, 86, 164 26, 85, 163 18

23, 67, 113, 177 23, 67, 113, 177 21

20, 55, 92, 137, 195 20, 55, 92, 137, 195 19
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the Otsu segmented image (i.e., ground truth) are then

compared and tested to determine the degree of similarity.

Three different similarity metrics are used to evaluate

the accuracy of the experiment: the peak signal-to-noise

ratio (PSNR), the structural similarity index (SSIM), and

the Jaccard index. These similarity metrics are explained in

the following subsections.

5.1 Peak signal-to-noise ratio (PSNR)

The complications associated with subjective quality

assessment necessitate the use of automated objective

quality assessment methods to measure the quality differ-

ences between processed images. Among the well-known

objective quality assessment methods is the PSNR, which

Table 3 Average between-class

variance value for each dataset

over 25 runs

# Patient ID # Of thr. Avg. fitness # Patient ID # Of thr. Avg. fitness

1 16406488 2 1,995,968,548.14 11 16424120 2 1,325,763,624.57

3 2,025,402,282.08 3 1,373,514,362.89

4 2,040,028,586.97 4 1,389,606,981.23

5 2,045,857,463.56 5 1,398,038,015.74

2 16406490 2 2,298,088,159.24 12 16434363 2 3,524,501,058.11

3 2,436,038,694.92 3 3,710,226,862.57

4 2,453,919,131.42 4 3,745,843,560.59

5 2,466,483,199.24 5 3,766,274,305.97

3 16406498 2 2,076,199,600.90 13 16434368 2 2,320,389,483.76

3 2,130,226,824.33 3 2,404,024,664.02

4 2,154,189,341.66 4 2,430,796,897.84

5 2,162,355,593.61 5 2,441,260,652.15

4 16406502 2 1,940,207,310.35 14 16434369 2 2,602,673,414.62

3 2,040,921,175.96 3 2,749,944,666.81

4 2,062,553,214.82 4 2,777,323,399.19

5 2,074,264,187.22 5 2,798,949,958.41

5 16406503 2 3,012,563,719.35 15 16434411 2 2,830,098,693.27

3 3,151,883,519.94 3 2,914,157,752.27

4 3,178,821,393.68 4 2,931,386,952.33

5 3,195,958,229.64 5 2,939,713,611.57

6 16406513 2 3,265,136,378.30 16 16434453 2 3,225,924,532.16

3 3,371,021,181.84 3 3,389,121,940.72

4 3,405,659,240.79 4 3,415,523,456.42

5 3,422,308,473.62 5 3,434,394,061.24

7 16407187 2 2,340,736,567.15 17 16445122 2 2,355,216,836.24

3 2,438,359,772.60 3 2,492,331,087.81

4 2,455,628,797.20 4 2,514,181,165.77

5 2,468,027,367.69 5 2,524,959,336.26

8 16424071 2 2,299,778,005.74 18 16445138 2 2,812,376,551.29

3 2,407,441,253.39 3 2,962,616,506.72

4 2,428,542,182.15 4 2,995,377,758.74

5 2,437,592,717.67 5 3,012,410,682.07

9 16424081 2 1,857,758,173.25 19 16445144 2 2,269,545,641.31

3 1,994,137,148.17 3 2,380,108,941.03

4 2,026,029,797.17 4 2,401,661,550.92

5 2,041,342,618.95 5 2,413,854,491.02

10 16424106 2 2,724,258,369.10 20 16445168 2 3,891,245,700.61

3 2,860,700,119.06 3 3,941,055,911.03

4 2,899,143,433.02 4 3,965,460,390.77

5 2,921,678,998.55 5 3,976,172,936.86
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is based on the mean squared error (MSE) and can be

calculated as follows [51]:

MSE ¼
XN

i¼1

ðxi � yiÞ2;

where N is the number of pixels in the given image (both

images must be of the same size) and xi, yi are the pixel

values in both of the images to be tested.

The PSNR can be calculated as follows:

PSNR ¼ 20 log10 K=
ffiffiffiffiffiffiffiffiffiffi
MSE

p

where K is the maximum range of the image pixel values

(K = 255 for grayscale images).

The PSNR and MSE are high-quality measures for

testing the proposed approach. The PSNR is widely used in

digital image processing applications. In this work, the

PSNR gives a value of 100 dB under one condition only,

i.e., when both images (to be compared) are identical,

which leads to a division by 0, that is controlled by a

conditional statement. When the PSNR result exceeds

30 dB, the human visual system would find it more difficult

to differentiate between the two images. However, when

the PSNR result is lower than 30 dB, this indicates that the

human visual system would have the ability to notice the

differences between the two images.

5.2 Structural similarity index (SSIM)

The SSIM is another well-known measure that can be used

to assess the quality of the output generated by the pro-

posed approach. The SSIM is based on the computation of

three factors: luminance, contrast, and structure. The SSIM

can be defined as follows [1]:

SSIM x; yð Þ ¼ l x; yð Þ½ �a� c x; yð Þ½ �b� s x; yð Þ½ �c;

where x; yð Þ ¼ 2lxly þ C1

� �
=ð2l2

x þ C1Þ, c x; yð Þ ¼ 2rxry
�

þC2Þ=ð2r2
x þ C2Þ, and s x; yð Þ ¼ rxy þ C3

� �
=ðrxry þ C3Þ,

where lx; ly; rx; ry; and rxy are the local means, standard

deviations, and cross-covariance of the two compared

images, respectively.

If a ¼ b ¼ c ¼ 1 and C3 ¼ C2=2, the equation can be

simplified as follows:

ID Histogram Hist (# of thr. = 2) Hist (# of thr. = 3) Hist (# of thr. = 4) Hist (# of thr. = 5)
16

42
41

20
16

43
43

63
16

43
43

68
16

43
43

69
16

43
44

11

Fig. 2 Histograms of five images from different datasets with a different number of thresholds

Fig. 3 Basic inputs and outputs in the evaluation process
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SSIM x; yð Þ ¼
2lxly þ C1

� �
ð2rxy þ C2Þ

l2
x þ l2

yþC1

� �
r2
x þ r2

y þ C2

� �

The SSIM results are given in values that range between

[0, 1], where 1 indicates a perfect match between the two

images and 0 indicates no match.

5.3 Jaccard similarity index

The Jaccard similarity index measures the similarity of two

sets of data (two images) on a range from 0 to 100%. This

similarity index compares the pixels in two images to see

which of them are shared and which are distinct. It counts

the number of pixels that are shared by the two images,

counts the total number of pixels in both images, divides

Table 4 Average value of the

PSNR (20 datasets, 25 different

runs for each experiment)

# Patient ID # Of thr. PSNR # Patient ID # Of thr. PSNR

1 16406488 2 99.32582 11 16424120 2 100

3 74.86861 3 81.04659

4 94.14886 4 78.23629

5 72.37319 5 82.44525

2 16406490 2 100 12 16434363 2 100

3 82.19359 3 77.21508

4 59.37486 4 70.61255

5 78.81656 5 73.18433

3 16406498 2 100 13 16434368 2 100

3 94.89771 3 97.4049

4 74.64346 4 76.29251

5 89.6506 5 68.79373

4 16406502 2 82.22882 14 16434369 2 100

3 90.61202 3 100

4 78.26527 4 56.58543

5 76.76858 5 83.73876

5 16406503 2 100 15 16434411 2 100

3 97.62194 3 97.41837

4 73.58808 4 74.54786

5 76.39956 5 57.7601

6 16406513 2 74.13531 16 16434453 2 100

3 80.21965 3 77.90913

4 77.67605 4 68.96586

5 70.98543 5 74.70691

7 16407187 2 100 17 16445122 2 83.64803

3 81.48877 3 97.52143

4 58.98134 4 81.85069

5 81.63743 5 65.45271

8 16424071 2 100 18 16445138 2 100

3 84.32184 3 83.75593

4 76.03031 4 88.94338

5 70.7011 5 78.00936

9 16424081 2 100 19 16445144 2 100

3 100 3 94.8936

4 66.61292 4 77.19462

5 68.36883 5 76.91706

10 16424106 2 100 20 16445168 2 100

3 72.29532 3 82.15853

4 95.68653 4 79.26923

5 92.65646 5 76.03681
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the number of shared pixels by the total number of pixels,

and finally multiplies the number by 100. This percentage

gives the similarity between the two images. This simi-

larity index is simple and vulnerable to small samples

sizes. It can be defined as follows [15]:

J X; Yð Þ ¼ X \ Yj j= X [ Yj j

5.4 Similarity results

Table 4 presents the average value of the PSNR between

each segmented image (i.e., generated by the proposed

approach) and its respective ground-truth image (i.e.,

generated by the Otsu method) that was obtained after

repeating the same experiment 25 times. The table shows

Table 5 Average value of the

SSIM (20 datasets, 25 different

runs for each experiment)

# Patient ID # Of thr. SSIM # Patient ID # Of thr. SSIM

1 16406488 2 0.999923 11 16424120 2 1

3 0.992272 3 0.998286

4 0.999545 4 0.996793

5 0.991701 5 0.997164

2 16406490 2 1 12 16434363 2 1

3 0.997395 3 0.993362

4 0.897879 4 0.98207

5 0.991361 5 0.988317

3 16406498 2 1 13 16434368 2 1

3 0.999283 3 0.999411

4 0.991874 4 0.992309

5 0.997574 5 0.980276

4 16406502 2 0.997756 14 16434369 2 1

3 0.997689 3 1

4 0.99476 4 0.818353

5 0.995071 5 0.99308

5 16406503 2 1 15 16434411 2 1

3 0.999434 3 0.999388

4 0.987911 4 0.990381

5 0.990183 5 0.851039

6 16406513 2 0.986831 16 16434453 2 1

3 0.996997 3 0.993229

4 0.994794 4 0.967014

5 0.984312 5 0.982524

7 16407187 2 1 17 16445122 2 0.998781

3 0.997659 3 0.999349

4 0.878351 4 0.997061

5 0.996419 5 0.94744

8 16424071 2 1 18 16445138 2 1

3 0.997648 3 0.998709

4 0.991567 4 0.996321

5 0.959043 5 0.994599

9 16424081 2 1 19 16445144 2 1

3 1 3 0.999081

4 0.954849 4 0.995619

5 0.971602 5 0.994153

10 16424106 2 1 20 16445168 2 1

3 0.978961 3 0.998022

4 0.997128 4 0.996986

5 0.99353 5 0.990996
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the average PSNR values when 2, 3, 4, and 5 thresholds are

applied to segment the datasets.

The PSNR values presented in Table 4 indicate that the

proposed approach is able to achieve very accurate results,

where the PSNR value of 100 dB clearly indicates a high

level of accuracy.

Tables 5 and 6 present the average values of the SSIM

and Jaccard index, respectively. Three main observations

can be made about these outcomes. First, there is a high

match between the segmented images and the ground-truth

images when the ratio between the matched pixels and the

total number of pixels is calculated. Second, there is a

general tendency by the proposed approach to achieve

better results when the number of thresholds is relatively

small. Third, most of the records in Tables 5 and 6 are

segmented at accuracies greater than 98%, which clearly

Table 6 Average value of the

Jaccard index (20 datasets, 25

different runs for each

experiment)

# Patient ID # Of thr. Jaccard # Patient ID # Of thr. Jaccard

1 16406488 2 0.999955 11 16424120 2 1

3 0.981613 3 0.993089

4 0.999077 4 0.993548

5 0.958543 5 0.988738

2 16406490 2 1 12 16434363 2 1

3 0.997526 3 0.992903

4 0.645924 4 0.978777

5 0.986191 5 0.984631

3 16406498 2 1 13 16434368 2 1

3 0.999675 3 0.999716

4 0.989342 4 0.994441

5 0.995199 5 0.959493

4 16406502 2 0.996841 14 16434369 2 1

3 0.999401 3 1

4 0.993744 4 0.544799

5 0.988634 5 0.992978

5 16406503 2 1 15 16434411 2 1

3 0.999844 3 0.999431

4 0.980146 4 0.982615

5 0.981625 5 0.617592

6 16406513 2 0.989879 16 16434453 2 1

3 0.995785 3 0.994461

4 0.992992 4 0.965739

5 0.973302 5 0.973598

7 16407187 2 1 17 16445122 2 0.996711

3 0.995345 3 0.999807

4 0.678648 4 0.995945

5 0.993707 5 0.867911

8 16424071 2 1 18 16445138 2 1

3 0.997077 3 0.997058

4 0.985951 4 0.997613

5 0.889522 5 0.992204

9 16424081 2 1 19 16445144 2 1

3 1 3 0.999021

4 0.93825 4 0.986873

5 0.969069 5 0.993515

10 16424106 2 1 20 16445168 2 1

3 0.986755 3 0.997408

4 0.998627 4 0.993114

5 0.992681 5 0.978976
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confirms the robustness of the results generated by the

proposed approach.
6 Discussion and analysis

The average total time (in sec) required to process each

image is shown in Table 7, from which it can be noted that

the proposed approach converges in the early stages before

Table 7 Average total time for 150 iterations and the time to converge (in sec) for each run

# Patient ID # Of thr. Total time Time to converge # Patient ID # Of thr. Total time Time to converge

1 16406488 2 99.33306 14.70808 11 16424120 2 103.087 11.59913

3 99.4228 32.68711 3 102.4821 21.29996

4 100.0869 47.43099 4 101.1351 42.59933

5 100.8867 59.37802 5 101.1553 64.76624

2 16406490 2 120.8951 9.951318 12 16434363 2 132.9661 14.82821

3 120.9023 48.20626 3 133.4617 45.54483

4 125.0947 59.53491 4 133.6005 53.71276

5 122.7947 65.88505 5 137.0266 70.90094

3 16406498 2 119.2373 13.70028 13 16434368 2 123.3992 9.125473

3 119.8075 42.18315 3 124.3 42.3352

4 119.7914 62.41246 4 123.3049 59.64479

5 119.052 64.44114 5 121.9602 64.79661

4 16406502 2 122.1041 19.12062 14 16434369 2 140.0901 17.89299

3 120.5432 37.49903 3 135.9724 37.27247

4 121.0931 53.75128 4 135.4112 53.74089

5 121.3464 76.15637 5 135.3814 64.44001

5 16406503 2 129.1814 17.3181 15 16434411 2 116.8461 28.92963

3 128.1719 43.99658 3 116.4991 42.26079

4 129.4383 63.27366 4 116.7608 61.45203

5 129.0465 73.70594 5 116.8804 60.08481

6 16406513 2 120.871 10.91851 16 16434453 2 132.6529 9.854632

3 123.0058 30.695 3 131.05 46.19639

4 125.866 59.49019 4 131.469 45.90509

5 126.3875 73.85112 5 132.551 61.38263

7 16407187 2 118.8549 19.50727 17 16445122 2 118.8132 16.70446

3 118.9825 44.72838 3 116.1046 31.02404

4 118.6215 50.22636 4 115.3362 44.98582

5 118.9379 71.74427 5 116.0373 62.20557

8 16424071 2 127.3556 12.85624 18 16445138 2 147.0102 16.6875

3 127.5319 54.22377 3 147.54 35.463

4 127.1523 53.90645 4 147.6751 53.03595

5 133.0665 89.02275 5 149.806 75.82007

9 16424081 2 146.3925 14.39858 19 16445144 2 113.0392 17.31427

3 159.8886 40.56328 3 111.7535 40.76643

4 147.8028 52.99171 4 112.3271 46.3613

5 150.3438 78.41631 5 112.0688 65.08288

10 16424106 2 158.2036 15.30983 20 16445168 2 114.4999 23.31525

3 165.5247 37.40362 3 114.7055 43.63497

4 162.9541 52.89718 4 115.0052 62.77938

5 162.7715 81.35365 5 115.9229 62.69237
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reaching 150 iterations. As shown in the table, there is a

significant difference between the total time to complete

150 iterations and the time needed to converge. This fur-

ther reinforces the findings on the effectiveness and suit-

ability of the proposed approach for medical image

segmentation because it can find a fast and accurate solu-

tion in a domain where both time and accuracy are crucial

factors in real-time medical applications.

As shown in Table 7, there is a positive correlation

between the time to converge and the number of thresh-

olds. Therefore, the time to converge is proportional to the

number of segmented clusters. It is remarkable that the

time to converge in most images is about 7–15% of the

total time when the number of thresholds = 2. Moreover,

even when the number of thresholds = 5, which is a case

considered to require a longer time for convergence to be

achieved, the time to converge in most images is about

50–55% of the total time.

Figure 4 shows the convergence plots of three sample

images at different threshold values. It is evident that the

convergence behavior is present in all of the images

regardless of the number of thresholds.

Table 8 presents the average number of iterations at

which the convergence starts for each dataset. It can be

seen that the number of iterations required to converge is

proportional to the number of thresholds. However, as also

shown in the table, a small number of iterations can lead to

the required convergence and achieve optimal results.

The main contribution of this research is to achieve the

optimal results provided by Otsu’s algorithm while trying

to reduce the massive number of computations it require. A

set of experiments have been designed in order to compare

and prove (a) the accuracy of outcomes and how they are

matching the outcomes generated by Otsu, (b) the degree

of similarity between the proposed approach and Otsu, and

(c) the required time that the proposed approach need to

reach the solution.

In Table 2, the threshold values generated by the Otsu

method (i.e., the third column) are compared with the

threshold values generated by the proposed approach (i.e.,

the fourth column). The values in the two columns are

either the same or very close which proves the accuracy of

outcomes generated by the proposed approach. Further-

more, Table 3 presents the average between-class variance

which is an indicator to the accuracy of the outcomes. All

results and comparisons are presented in details in the URL

linked to this paper (https://sites.google.com/view/hho

covid19/home).

In Tables 4, 5, and 6, the degree of similarity between

each segmented image (i.e., generated by the proposed

approach) and its respective ground-truth image (i.e.,

generated by the Otsu method) is presented using PSNR,

SSIM, and Jaccard index, respectively. The outcomes in

these tables confirm again the accurate results that are

generated by the proposed approach and how they are

competitive when compared with the original method.

ID # of thr. = 2 # of thr. = 3 # of thr. = 4 # of thr. = 5
16

40
64

98
16

42
40

81
16

43
43

69

Fig. 4 Convergence plots of sample images
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In order to present the required time that the proposed

approach needs, Tables 7 and 8 present the average total

time and the average number of iterations at which con-

vergence starts since the original method (i.e., Otsu’s

original method) follows the brute force approach in which

all combinations are evaluated.

7 Conclusion

Digital image processing algorithms have been supporting

the medical field over the last few decades, and a huge

number of algorithms have been specifically designed to

assist radiologists and specialists to identify or study the

Table 8 Average number of

iterations at which convergence

starts

# Patient ID # Of thr. Avg. # of iter. # Patient ID # Of thr. Avg. # of iter.

1 16406488 2 19.76 11 16424120 2 13.84

3 48.88 3 30.36

4 71.76 4 64.24

5 87.48 5 95.04

2 16406490 2 8.2 12 16434363 2 13.68

3 60.88 3 51.36

4 72.36 4 61.6

5 80.72 5 78.68

3 16406498 2 14.52 13 16434368 2 7.08

3 53.32 3 52

4 79.12 4 73.16

5 81.52 5 80.56

4 16406502 2 22.08 14 16434369 2 16.68

3 47.48 3 41.56

4 66.84 4 60.52

5 93.16 5 72.56

5 16406503 2 17.56 15 16434411 2 34.2

3 51.92 3 54.52

4 73.28 4 79.24

5 86.16 5 77.68

6 16406513 2 9.72 16 16434453 2 7.12

3 36.92 3 53.04

4 71.64 4 53.36

5 87.72 5 71.16

7 16407187 2 22.28 17 16445122 2 18.36

3 56.32 3 40.28

4 64.68 4 59.72

5 90.2 5 80.72

8 16424071 2 11.52 18 16445138 2 14.32

3 62.8 3 35.96

4 64.2 4 54.8

5 99.2 5 76.64

9 16424081 2 11.6 19 16445144 2 20.84

3 38.44 3 54.2

4 55.12 4 63.32

5 79.08 5 87.08

10 16424106 2 11.08 20 16445168 2 29.48

3 33.72 3 56.88

4 49.96 4 82.12

5 75.64 5 81.4

# of thresholds # Of thr. = 2 # Of thr. = 3 # Of thr. = 4 # Of thr. = 5

# of iterations 16.196 48.042 66.052 83.12
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occurrence or the development of diseases. The universal

transmission of COVID-19 has encouraged researchers in

this domain to develop medical imaging solutions to help

medical experts with decision making and diagnosis.

Image segmentation methods that are based on thresh-

olding are considered an essential part of various domains

including medical image processing. However, multilevel

thresholding methods give improved segmentation results

when compared to the standard single thresholding meth-

ods. Among the wide variety of available segmentation

methods, the traditional standard benchmark statistical

methods give optimal results at the cost of intensive

computation when used for multilevel thresholding.

Therefore, various metaheuristic optimization algorithms

have been proposed and combined with statistical thresh-

olding algorithms to reduce the number of required com-

putations. In this research, the recent metaheuristic HHO

algorithm was combined with the standard benchmark Otsu

algorithm to perform image segmentation using multilevel

image thresholding. The HHO algorithm is swarm based

and has been proposed to efficiently handle continuous

optimization tasks and produce high-quality solutions. The

proposed approach was tested on a publicly available

imaging dataset that contains chest images with clinical

and genomic correlates and represents a rural COVID-19-

positive population (COVID-19-AR).

Three well-known similarity metrics (PSNR, SSIM, and

Jaccard index) were used to evaluate the accuracy of the

results generated by the proposed approach against those

produced by the Otsu method. After running the experi-

ments 25 times, the average value of the PSNR was around

97%, 88%, 76%, and 76% when the number of thresholds

was 2, 3, 4, and 5, respectively. The average value of the

SSIM showed an overlap match of 99.9%, 99.7%, 97.9%,

and 97.2% for 2, 3, 4, and 5 thresholds, respectively, and

the Jaccard index showed a similarity of 99.9%, 99.6%,

95.4%, and 93.2% for the same number of thresholds.

These results indicate that the proposed approach can

achieve a massive reduction in the computational cost and

simultaneously match the quality of images produced by

the Otsu method for the same threshold values. It is worth

mentioning here that the number of iterations in the

experiment was limited to 150 due to the limitation of time.

Thus, we envisage that forcing the algorithm to iterate a

larger number of times will lead to better outcomes in

terms of the degree of matching quality.
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