Skip to main content
Log in

Identification and spatio-temporal analysis of earthquake clusters using SOM–DBSCAN model

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Seismic catalogs are vital to understanding and analyzing the progress of active fault systems. The background seismicity rate in a seismic catalog, strongly associated with stressing rate, is the critical parameter in seismic hazard analysis. Estimating background seismicity is a complex task due to the high correlation with aftershock sequences which may dominate the background seismicity rate. In this paper, identification of the significant earthquake aftershocks and independent background events is performed using a two-stage clustering approach. It works in two phases: Self-Organized Map and Density-based Temporal Clustering. The event’s location and depth information in the earthquake catalog is used to identify the major hot spots (SOM prototypes) in the region (Spatial domain). Later, density-based temporal clustering is applied to decipher the neighborhood events of each SOM prototype. The proposed two-level clustering approach performs effective spatio-temporal analysis and identifies the aftershock clusters and background. The experimental study is carried out on the prominent earthquake catalogs of Taiwan, Afghanistan, California, the Himalayas, Indonesia, Chile, and Japan. The statistical parameters: Coefficient of Variation (time-domain) and m-Morisita index (spatial domain) justify and validate the accuracy of the presented approach. The proposed model is compared with benchmark de-clustering algorithms for mainshock and background detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets (seismic catalogs) analysed during the current study are available at the official website of United State Geological Survey [https://earthquake.usgs.gov/earthquakes/search/].

References

  1. Ben-Zion Y (2008) Collective behavior of earthquakes and faults: continuum-discrete transitions, progressive evolutionary changes, and different dynamic regimes. Rev Geophys 46:RG4006. https://doi.org/10.1029/2008RG000260

    Article  Google Scholar 

  2. Kisslinger C (1996) Aftershocks and fault-zone properties. Adv Geophys 38:1–36

    Google Scholar 

  3. Utsu T, Ogata Y et al (1995) The centenary of the Omori formula for a decay law of aftershock activity. J Phys Earth 43(1):1–33

    Google Scholar 

  4. Shcherbakov R, Turcotte DL, Rundle JB (2005) Aftershock statistics. Pure Appl Geophy 162(6):1051–1076

    Google Scholar 

  5. Ellsworth W (2019) From foreshocks to mainshocks: mechanisms and implications for earthquake nucleation and rupture propagation. Mech Earthq Faulting 202:95

    Google Scholar 

  6. Ellsworth WL, Giardini D, Townend J, Ge S, Shimamoto T (2019) Triggering of the Pohang, Korea, earthquake (mw 5.5) by enhanced geothermal system stimulation. Seismol Res Lett 90(5):1844–1858

    Google Scholar 

  7. Seif S, Zechar JD, Mignan A, Nandan S, Wiemer S (2019) Foreshocks and their potential deviation from general seismicityforeshocks and their potential deviation from general seismicity. Bull Seismol Soc Am 109(1):1–18

    Google Scholar 

  8. Gardner J, Knopoff L (1974) Is the sequence of earthquakes in southern California, with aftershocks removed, poissonian? Bull Seismol Soc Am 64(5):1363–1367

    Google Scholar 

  9. Ellsworth WL, Llenos AL, McGarr AF, Michael AJ, Rubinstein JL, Mueller CS, Petersen MD, Calais E (2015) Increasing seismicity in the us midcontinent: implications for earthquake hazard. Lead Edge 34(6):618–626

    Google Scholar 

  10. Hammond W, Kreemer C, Zaliapin I, Blewitt G (2019) Drought-triggered magmatic inflation, crustal strain, and seismicity near the long valley caldera, central walker lane. J Geophys Res Solid Earth 124(6):6072–6091

    Google Scholar 

  11. Johnson CW, Fu Y, Burgmann R (2017) Stress models of the annual hydrospheric, atmospheric, thermal, and tidal loading cycles on California faults: Perturbation of background stress and changes in seismicity. J Geophys Res Solid Earth 122(12):10–605

    Google Scholar 

  12. Abolfathian N, Martinez-Garzn P, Ben-Zion Y (2019) Spatiotemporal variations of stress and strain parameters in the San Jacinto fault zone. Pure Appl Geophys 176(3):1145–1168

    Google Scholar 

  13. Dawood HM, Rodriguez-Marek A, Bayless J, Goulet C, Thompson E (2016) A flatfile for the KiK-net database processed using an automated protocol. Earthq Spectra 32(2):1281–1302

    Google Scholar 

  14. Schaefer A, Daniell J, Wenzel F (2016) EGU general assembly conference abstracts, pp EPSC2016–7830

  15. Reasenberg P (1985) Second-order moment of central california seismicity, 1969–1982. J Geophys Res Solid Earth 90(B7):5479–5495

    Google Scholar 

  16. Reasenberg PA, Jones LM (1989) Earthquake hazard after a mainshock in California. Science 243(4895):1173–1176

    Google Scholar 

  17. Reasenberg P, Jones L (1994) Earthquake aftershocks: update. Science 265(5176):1251–1253

    Google Scholar 

  18. Tibi R, Blanco J, Fatehi A (2011) An alternative and efficient cluster-link approach for declustering of earthquake catalogs. Seismol Res Lett 82(4):509–518

    Google Scholar 

  19. Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point processes. J Am Stat Assoc 83(401):9–27

    Google Scholar 

  20. Helmstetter A, Sornette D (2003) Predictability in the Epidemic-Type Aftershock Sequence model of interacting triggered seismicity. J Geophys Res 108:2482. https://doi.org/10.1029/2003JB002485

    Article  Google Scholar 

  21. Sornette D, Werner MJ (2005) Constraints on the size of the smallest triggering earthquake from the epidemic-type aftershock sequence model, båth’s law, and observed aftershock sequences. J Geophys Res Solid Earth. https://doi.org/10.1029/2004JB003535

    Article  Google Scholar 

  22. Turcotte DL, Holliday JR, Rundle JB (2007) BASS, an alternative to ETAS. Geophys Res Lett 34:L12303. https://doi.org/10.1029/2007GL029696

    Article  Google Scholar 

  23. Holliday JR, Turcotte DL, Rundle JB (2008) Self-similar branching of aftershock sequences. Phys A Stat Mech Appl 387(4):933–943

    Google Scholar 

  24. Nanda SJ, Tiampo KF, Panda G, Mansinha L, Cho N, Mignan A (2013) A tri-stage cluster identification model for accurate analysis of seismic catalogs. Nonlinear Process Geophys 20(1):143–162

    Google Scholar 

  25. Vijay RK, Nanda SJ (2017) Tetra-stage cluster identification model to analyse the seismic activities of Japan, Himalaya and Taiwan. IET Sig Process 12(1):95–103

    Google Scholar 

  26. Zhuang J, Ogata Y, Vere-Jones D (2002) Stochastic declustering of space-time earthquake occurrences. J Am Stat Assoc 97(458):369–380

    MathSciNet  MATH  Google Scholar 

  27. Zaliapin I, Gabrielov A, Keilis-Borok V, Wong H (2008) Clustering analysis of seismicity and aftershock identification. Phys Rev Lett 101(1):018501

    Google Scholar 

  28. Bottiglieri M, Lippiello E, Godano C, de Arcangelis L (2009) Identification and spatiotemporal organization of aftershocks. J Geophys Res 114:B03303. https://doi.org/10.1029/2008JB005941

    Article  Google Scholar 

  29. Batac R, Kantz H (2014) Observing spatio-temporal clustering and separation using interevent distributions of regional earthquakes. Nonlinear Process Geophys 21(4):735–744

    Google Scholar 

  30. Cho N, Tiampo KF, Bhattacharya PK, Shcherbakov R, Chen C, Li H, Klein W (2010) Declustering seismicity using the Thirumalai-Mountain metric. 4400 NONLINEAR GEOPHYSICS 2010:NG51A-1195

  31. Davidsen J, Gu C, Baiesi M (2015) Generalized Omori–Utsu law for aftershock sequences in southern California. Geophys J Int 201(2):965–978

    Google Scholar 

  32. Weatherill G, Burton PW (2009) Delineation of shallow seismic source zones using k-means cluster analysis, with application to the Aegean region. Geophys J Int 176(2):565–588

    Google Scholar 

  33. Zheng YJ, Ling HF, Chen SY, Xue JY (2014) A hybrid neuro-fuzzy network based on differential biogeography-based optimization for online population classification in earthquakes. IEEE Trans Fuzzy Syst 23(4):1070–1083

    Google Scholar 

  34. Zaliapin I, Ben-Zion Y (2016) A global classification and characterization of earthquake clusters. Geophys J Int 207(1):608–634

    Google Scholar 

  35. Nanda SJ, Pradhan PM, Panda G, Mansinha L, Tiampo KF (2013) A correlation based stochastic partitional algorithm for accurate cluster analysis. Int J Sig Imaging Syst Eng 6(1):52–58

    Google Scholar 

  36. Morales-Esteban A, Martinez-Alvarez F, Scitovski S, Scitovski R (2014) A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning. Comput Geosci 73:132–141

    Google Scholar 

  37. Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evolut Comput 16:1–18

    Google Scholar 

  38. Cho N, Tiampo KF, Mckinnon S, Vallejos J, Klein W, Dominguez R (2010) A simple metric to quantify seismicity clustering. Nonlinear Process Geophys 17(4):293

    Google Scholar 

  39. Vijay RK, Nanda SJ (2019) A quantum grey wolf optimizer based declustering model for analysis of earthquake catalogs in an ergodic framework. J Comput Sci 36:101019

    Google Scholar 

  40. Ester M, Kriegel H.P, Sander J, Xu X (1996) In: Proceedings of the second international conference on knowledge discovery and data mining. AAAI Press, KDD’96, pp 226–231

  41. Birant D, Kut A (2007) ST-DBSCAN: an algorithm for clustering spatial-temporal data. Data Knowl Eng 60(1):208–221

    Google Scholar 

  42. Georgoulas G, Konstantaras A, Katsifarakis E, Stylios CD, Maravelakis E, Vachtseos GJ (2013) Seismic-mass density-based algorithm for spatio-temporal clustering. Expert Syst Appl 40(10):4183–4189

    Google Scholar 

  43. Nanda SJ, Panda G (2015) Design of computationally efficient density-based clustering algorithms. Data Knowl Eng 95:23–38

    Google Scholar 

  44. Scitovski S (2018) A density based clustering algorithm for earthquake zoning. Comput Geosci 110:90–95

    Google Scholar 

  45. Schaefer AM, Daniell JE, Wenzel F (2017) The smart cluster method. J Seismol 21(4):965–985

    Google Scholar 

  46. Cesca S (2020) Seiscloud, a tool for density-based seismicity clustering and visualization. J Seismol 24(3):443–457

    Google Scholar 

  47. Tanzim SM, Yeasmin S, Hussain MA, Tamal TR, Hasan R, Rahman T, Rahman RM (2018) In: Computer science on-line conference. Springer, pp 364–373

  48. Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480

    Google Scholar 

  49. Oettli P, Tozuka T, Izumo T, Engelbrecht FA, Yamagata T (2014) The self-organizing map, a new approach to apprehend the Madden–Julian oscillation influence on the intraseasonal variability of rainfall in the southern African region. Clim Dyn 43(5–6):1557–1573

    Google Scholar 

  50. Huang F, Yin K, Huang J, Gui L, Wang P (2017) Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng Geol 223:11–22

    Google Scholar 

  51. Lopes-Mazzetto JM, Schellekens J, Vidal-Torrado P, Buurman P (2018) Impact of drainage and soil hydrology on sources and degradation of organic matter in tropical coastal podzols. Geoderma 330:79–90

    Google Scholar 

  52. Roige M, McGeoch MA, Hui C, Worner SP, Kurle C et al (2017) Cluster validity and uncertainty assessment for self-organizing map pest profile analysis. Methods Ecol Evolut 8(3):349–357

    Google Scholar 

  53. Du H-k, Cao J-x, Xue Y-j, Wang X-j, (2015) Seismic facies analysis based on self-organizing map and empirical mode decomposition. J Appl Geophys 112:52–61

  54. Allamehzadeh M, Durudi S, Mahshadnia L (2017) Pattern recognition of seismogenic nodes using Kohonen self-organizing map: example in west and south west of Alborz region in Iran. Earthq Sci 30(3):145–155

    Google Scholar 

  55. Yaghmaei-Sabegh S (2017) A novel approach for classification of earthquake ground-motion records. J Seismol 21(4):885–907

    Google Scholar 

  56. Rehman K, Burton PW, Weatherill GA (2014) K-means cluster analysis and seismicity partitioning for Pakistan. J Seismol 18(3):401–419

    Google Scholar 

  57. Konstantaras A, Katsifarakis E, Maravelakis E, Skounakis E, Kokkinos E, Karapidakis E (2012) Intelligent spatial-clustering of seismicity in the vicinity of the hellenic seismic arc. Earth Sci Res 1(2):1

    Google Scholar 

  58. Uhrhammer R (1986) Characteristics of northern and central California seismicity. Earthquake Notes 57(1):21

    Google Scholar 

  59. Van Stiphout T, Zhuang J, Marsan D (2012) Seismicity declustering, community online resource for statistical seismicity analysis. https://doi.org/10.5078/corssa-52382934

  60. Rydelek PA, Sacks IS (1989) Testing the completeness of earthquake catalogues and the hypothesis of self-similarity. Nature 337(6204):251–253

    Google Scholar 

  61. Zuniga FR, Wyss M (1995) Inadvertent changes in magnitude reported in earthquake catalogs: their evaluation through b-value estimates. Bull Seismol Soc Am 85(6):1858–1866

    Google Scholar 

  62. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):185–188. https://doi.org/10.1785/BSSA0340040185

    Article  Google Scholar 

  63. Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull Seismol Soc Am 90(4):859–869

    Google Scholar 

  64. Mignan A, Woessner J (2012) Estimating the magnitude of completeness for earthquake catalogs. Community online resource for statistical seismicity analysis, pp. 1–45

  65. Zamani A, Nedaei M, Boostani R (2009) Tectonic zoning of Iran based on selforganizing map. J Appl Sci 9(23):4099–4114

    Google Scholar 

  66. Kohonen T, Oja E, Simula O, Visa A, Kangas J (1996) Engineering applications of the self-organizing map. Proc IEEE 84(10):1358–1384

    Google Scholar 

  67. Kagan Y, Knopoff L (1980) Spatial distribution of earthquakes: the two-point correlation function. Geophys J Int 62(2):303–320

    Google Scholar 

  68. Polani D (2002) Self-organizing neural networks. Springer, pp 13–44

  69. U.S. Geological Survey. Earthquake lists, maps, and statistic. https://earthquake.usgs.gov/earthquakes/search/

  70. Vijay RK, Nanda SJ (2019) Shared nearest neighborhood intensity based declustering model for analysis of spatio-temporal seismicity. IEEE J Sel Top Appl Earth Obs Remote Sens 12(5):1619–1627

    Google Scholar 

  71. Golay J, Kanevski M, Orozco CDV, Leuenberger M (2014) The multipoint Morisita index for the analysis of spatial patterns. Phys A Stat Mech Appl 406:191–202

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research work is funded by Ministry of Electronics and Information and IT under Visvesvaraya PhD Scheme with Grant Number-1000110674 and unique awardee number MEITY-PHD-2952.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Vijay, R.K. & Nanda, S.J. Identification and spatio-temporal analysis of earthquake clusters using SOM–DBSCAN model. Neural Comput & Applic 35, 8081–8108 (2023). https://doi.org/10.1007/s00521-022-08085-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-08085-5

Keywords

Navigation