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Abstract
Nowadays, statistical arbitrage is one of the most attractive fields of study for researchers, and its applications are widely

used also in the financial industry. In this work, we propose a new approach for statistical arbitrage based on clustering

stocks according to their exposition on common risk factors. A linear multifactor model is exploited as theoretical

background. The risk factors of such a model are extracted via Principal Component Analysis by looking at different time

granularity. Furthermore, they are standardized to be handled by a feature selection technique, namely the Adaptive Lasso,

whose aim is to find the factors that strongly drive each stock’s return. The assets are then clustered by using the

information provided by the feature selection, and their exposition on each factor is deleted to obtain the statistical

arbitrage. Finally, the Sequential Least SQuares Programming is used to determine the optimal weights to construct the

portfolio. The proposed methodology is tested on the Italian, German, American, Japanese, Brazilian, and Indian Stock

Markets. Its performances, evaluated through a Cross-Validation approach, are compared with three benchmarks to assess

the robustness of our strategy.

Keywords Machine learning � Time series � Cluster analysis � Market neutral portfolio

1 Introduction

Nowadays, Artificial Intelligence approaches in Finance

are becoming dominant. This is due to the broad discussion

about the analysis of financial data developed over the

years. In fact, since the earliest works related to time series,

the subject has pulled in many academics and practitioners.

Among the others, one of the most exciting application

fields is the development of investment strategies and risk

management. In particular, statistical arbitrage is con-

cerned with creating trading strategies that exploit hidden

patterns in the behavior of related assets. Currently, most of

the works in this field are based on future price predictions.

However, the reliability of such forecasting approaches is

hugely discussed. Furthermore, one can also argue that risk

hedging is sometimes inefficient because it does not con-

sider that some risk factors are specific to only an asset

subset.

In this work, we propose a methodology to overcome

these limitations. The main task we are involved in is

building a portfolio that is able to reduce investment risk.

In more detail, we consider a set of time T ¼ f1; :::; Tg
and a universe of stocks J ¼ f1; :::; Jg. As a common

practice in the financial literature, we work with the stocks

returns, i.e., R ¼ frjgj2J . Each return is a time series

indexed in T , that is rj ¼ frjtgt2T . A portfolio is a linear

combination of stock returns obtained with a weight vector

/ ¼ ð/1; :::;/JÞ 2 ½�1; 1�J such that the norm l1 of / is

equal to 1. In other words, taking into account that each /j

can be considered as the portfolio exposition on stock jth,

we require that the full exposition, on both long and short

positions, is unitary. It should be noted that by exploiting

the above formulation, two assumptions are made: i) the

assets are infinitely divisible, and ii) short positions are

allowed. Furthermore, for convenience, we also assume iii)
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there are not transaction costs and iv) our trades have no

impact on prices.

Among all the possible portfolios, we are interested in

finding the one which cuts back on the risk related to the

investment. Actually, this is not a straightforward task,

starting from the definition and the type of risk we aim to

minimize. In the following, we evaluate portfolio strategies

with several performance measures through Cross-Valida-

tion (CV), measuring the mean and standard deviation (std)

of each investment. Then, we consider a portfolio as robust

if its mean is optimal and its deviation is low. This is the

main task of this work: we want to find an investment

strategy that exhibits good performance and is reliable, i.e.,

whose results do not change a lot according to the time in

which it works.

To achieve our goal, we exploit a multi-step procedure.

Firstly, we represent each stock return with a convenient

linear factor model by using the Principal Component

Analysis (PCA). We aim to extract risk factors at different

time granularities to have a complete overview of both

short-term and long-term risk factors. In this stage, a

multicollinearity filter is applied to avoid the presence of

multicollinearity, which is a linear dependence between

two or more regressors that introduces a bias in the

parameters estimate. Then, we exploit this representation

and the Adaptive-Lasso to perform feature selection and to

partition stocks universe J by grouping those stocks whose

behavior is affected by similar factors. Finally, we work

inside each cluster to obtain a local portfolio that deletes

the exposition on such factors, and we aggregate the

portfolios resulting from each cluster to get the final one.

Consequently, the main contributions of this paper can

be summarized as follows:

• we propose a novel multi-horizons methodology for

stocks clustering;

• we propose a statistical arbitrage strategy based on the

previous clustering procedure;

• we prove the stability of our strategy by carefully

comparing it with three well-known benchmarks, i.e.,

the minimum variance portfolio, the mean-var portfo-

lio, and the Exponential Gradient, on both the Italian,

German, American, Japanese, Brazilian, and Indian

stock markets.

The following of this paper can be summarized as follows.

In Sect. 2 a brief literature review of the building blocks of

our proposal is offered. Section 3 introduces our method-

ology. Section 4 describes the experimental stage by pro-

viding detailed information about the exploited datasets,

the experimental setup, and the obtained results. Finally,

Sect. 5 concludes this work by summarizing limitations

and findings and providing further analysis directions.

2 Contextualization and related work

This section provides a short overview of related work and

state-of-the-art approaches linked to our proposal. In this

way, it is provided a contextualization of the problem and,

in particular, of our framework.

2.1 Model determination

Linear factor models play a crucial role in finance ranging

from asset pricing theory to portfolio optimization. In the

literature, there are different types of linear factor models

(e.g., dominant residuals, systematic-idiosyncratic, and

pure exogenous). In this manuscript, we focus on the sys-

tematic-idiosyncratic class of the linear factor model. It

relates the rate of return on an asset j� th to the values of a

limited number of factors by a linear equation, as in Eq. 1:

rjt ¼ aj þ bj1F1;t þ :::þ bjnFN;t þ ejt 8j 2 J ; 8t 2 T

ð1Þ

we can also rewrite Eq. 1 in matrix form, as:

R ¼ IaT þ Fbþ e

where R ¼ ðr1; . . .; rJÞ 2 RT�J is the matrix whose col-

umns are the stock returns time series, I ¼ ð1; . . .; 1Þ 2 RT

is the unitary vector, a ¼ ða1; . . .; aJÞ 2 RJ are J constants

and aT is the transpose of a, F ¼ ðF1; . . .;FNÞ 2 RT�N is

the matrix whose columns are the N risk factors

Fi ¼ fFi;tgt2T , b ¼ fbjng 2 RN�J is a matrix of factor

loadings and e ¼ ðe1; . . .; eJÞ 2 RT�J is the matrix whose

columns are the residuals time series ej ¼ fejtgt2T . In this

model, the factors and the residuals satisfy two types of

constraints. More specifically, the residual is assumed to be

uncorrelated with each factor, Eðej;FnÞ ¼ 0; j ¼ 1; . . .;

J; n ¼ 1; . . .N. In addition, the residual for one asset’s

return is assumed to be uncorrelated with that of any other,

Eðej; eqÞ ¼ 0; j 6¼ q ¼ 1; . . .; J. Since the risk factors are

systematic, the only sources of correlations among asset

returns are given by their exposures to the factors and the

covariances among the factors. So, in this model, we

assume asset return residual components are unrelated.

Hence, residual components are particular to each asset.

Thus, the risk associated with the residual return is

idiosyncratic for that asset.

Several works employ and discuss such a type of model.

For example, [1] studies the asymptotic properties of the

covariance structure, as both the size of the time-series

universe and the number of available observations tend to

infinity. Instead, [2] is related to determining the risk fac-

tors in a context that allows risk factors to be correlated

with each other.
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By contrast, in constructing our framework, we need

independence between the regressors in the factor model.

In particular, as common in the standard financial litera-

ture, we assume the risk factors are the observations of

independent, identically distributed random variables with

0 mean and unitary variance. In particular, we are assuming

the absence of multicollinearity among them. This

hypothesis is central to our work, as both the clustering and

the statistical arbitrage strongly depend on the model

parameters. So, we verify it by applying condition number

measures that is usually applied to detect the presence of

collinearity (see, for example, [3]). It is a widely used

approach in the recent literature, see for example [4, 5].

Another critical point related to applying a linear factor

model as that in Eq. 1 is the determination of the risk

factors. As pointed out by [6], three different approaches

exist to solve this task. The fundamental approach uses the

fundamentals of the stocks considered as risk factors, e.g.,

P/E Ratio. It is exploited by several researchers, including

the Nobel Prize Fama. In particular, there are a series of

articles, such as [7, 8], which develop a five-factor model

for stock pricing. Similarly, the macroeconomic approach

exploits as risk factors some macroeconomic variables like

the return of market indexes or the inflation rate. An

example of this approach is [9], where the yield curve is

approximated with a dynamic factor model obtained with

dimensionality reduction techniques applied to many

macroeconomic features. Instead, in [10] South Africa

stocks returns are analyzed with the help of both national

and international variables. The main aim is to understand

how different features impact the national industrial

process.

In the two approaches above, the risk factors are sear-

ched outside the data. In contrast, the statistical approach

employs feature extraction techniques to extract risk fac-

tors from the stocks universe itself. Usually, these tech-

niques belong to both the fields of statistical and machine

learning. The aim is to rely on data analysis instruments to

obtain factors highly representative of the data we are

working with, particularly their variance. [11] work with

time series from the Japanese Stock Market by applying the

Independent Component Analysis to extract risk factors fed

into a linear factor model, on the background of Arbitrage

Pricing Theory. Instead, several other works focused on

applying PCA, thanks to its simplicity, speed, and relia-

bility. In [12], the asymptotic properties of the factors

obtained via PCA are analyzed, under the stationary con-

dition, as the dimension of the sample and of the time

series go to infinity. Furthermore, the results are tested on

stocks belonging to the S&P index. Instead, in [13], risk

factors are obtained by applying the PCA on the projection

of the input matrix on an appropriate space. The proposal is

then evaluated on the S&P constituent stocks. Finally, [14]

exploits the PCA to extract risk factors for a linear model,

which is then used as a starting point for constructing a

minimum variance portfolio. Also, the experimental stage

of this study is carried out on the stocks in the S&P index.

2.2 Clustering

The linear factor models built with the PCA performed on

multiple granularities are then exploited to cluster the

stocks. Time-series clustering is an open debate widely

discussed in the literature, which is far more complex than

static data. Due to the enormous complexity of the task,

several works for specific-purpose goals have been pro-

posed, such as [15–18]. Furthermore, several papers have

also been concerned with reviewing and classifying the

existing methodologies. For example, [19] divides clus-

tering methodologies according to the way they operate. In

particular, raw-data-based approaches directly work with

time series. This goal is often achieved by exploiting some

particular distance metrics that considers the input’s tem-

poral evolution. Instead, model-based approaches work

with a specific time-series model for each series by clus-

tering the fitted coefficients. Finally, features-based

approaches extract from each time series a feature vector,

and the clustering is performed on those vectors.

Actually, our proposal can be placed in the framework

of features-based clustering. In fact, from each stock j, it is

extracted the binary vector of features hj that represents if
the stock is significantly affected by the corresponding risk

factor. So, indicating with bj ¼ ðbj1; :::; b
j
NÞ the estimated

coefficients of the linear factor model representing the

stock j, the feature vector hj 2 RN can be written as:

hj ¼ ðhj1; :::; h
j
NÞ 2 RN ; s:t: hji ¼

�
1 if bji 6¼ 0

0 if bji ¼ 0
ð2Þ

In the recent literature, several works try to exploit clus-

tering methodologies for portfolio optimization or trading/

investment strategies. For example, [20] uses different

clustering techniques such as K-means to partition the

assets universe. Then, standard portfolio optimization

techniques are applied to each cluster. The strategy is

tested on the high-frequency data of the Russell 1000

stocks. Instead, [21] exploits the correlation between stocks

as a critical feature to cluster assets and create optimal

portfolios. Furthermore, the authors develop a framework

that unifies the typical two stages of this strategy, i.e.,

clustering and portfolio construction. However, several

other methods for portfolio construction based on a clus-

tering and unsupervised learning approach have been pro-

posed in the financial literature. See, for example, [22]

which shows in detail different state-of-the-art
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methodologies and how they can impact academic financial

research.

2.3 Statistical arbitrage and portfolio
construction

Once the clustering is obtained, our methodology con-

structs a market-neutral portfolio within each cluster,

which is a portfolio such that the exposition on each risk

factor is 0. In other words, the return of such a portfolio

type is not related to the overall market conditions, and it is

affected only by the weighted sum of aj and ej. According
to the classical financial literature, in a well-diversified

portfolio, the idiosyncratic risks should delete themselves

for the diversification effect. However, it has been shown

in recent works that they could contain valuable informa-

tion and undiscovered patterns. Such information should be

taken into account to improve investment strategies sig-

nificantly. For example, [23] constructs a portfolio by

exploiting the residual of a linear factor model with a

fundamental approach. Their proposal is compared with the

portfolio obtained without considering the idiosyncratic

risks. The experiments on the American market show the

effectiveness of their proposal, with a Sharpe Ratio sig-

nificantly higher than the benchmark one, thanks to the

reduced portfolio variance. In [24], the authors develop a

strategy to exploit hidden patterns in the residuals to con-

struct a zero investment portfolio in a deep learning

framework. Their proposal has been accurately tested on

stocks markets over the years, showing good robustness

also during the financial crisis.

As for statistical arbitrage, several experiments have

been carried out through the years. Among them, [25]

compares the statistical and macroeconomic approaches to

constructing a market-neutral portfolio. In more detail, the

authors test the strategy obtained with PCA and that

obtained by using the Exchange Traded Funds as a proxy

of risk factors. The experiments are carried out on the

American stock market data between 1997 and 2007. In

particular, the reliability of the strategies is tested during

both bull and bear periods (the so-called Dot-com Bubble).

The final results show the profitability of both approaches

in the considered period. [26] contains a comparison

among the applications of different machine learning

techniques for constructing statistical arbitrage and port-

folio optimization strategies. In particular, to provide a

reliable analysis of these state-of-the-art methods, the

author exploits a dataset made up of hundreds of American

stocks over about two decades. Also, [27] discusses the

properties behind the statistical arbitrage to provide a

theoretical background and a strong characterization of this

strategy. Finally, Table 1 contains a comparison among

different statistical arbitrage approaches presented in the

last years. In particular, we highlight the peculiarities of

each work and its weaknesses when compared to our

proposal.

3 The methodology

In this section, we briefly show the primary data analysis

tools we exploit. Then, we describe the proposed

methodology by providing both pseudo-codes and illus-

trative images. Finally, we discuss some issues related to

our proposal.

3.1 Feature selection: adaptive lasso

In our framework, a key role is played by the feature

selection, which should identify the risk factors which

actually drive stock returns. Several approaches for feature

selection are discussed in the literature. For example, see

[34, 35] for a comprehensive review of the several

methodologies, their application field, and their statistical

properties. Among them, we exploit the Adaptive Lasso

(A-Lasso) [30]. It is a linear regression technique with

weighted l1 regularization terms, so the loss function can

be written as:

L ¼ 1

T

XT
t¼1

r jt �
XN
i¼1

Fi;tb
j
i

" #2

þk
XN
i¼1

jwj
i b

j
i j wj

i ¼
1

b̂ j
i

 !s ð3Þ

where the weights wi are obtained from the inverse of the

Ordinary Least Square coefficients b̂ji and k; s are two

nonnegative hyperparameters.

It can be shown that thanks to the l1 regularization

terms, the parameters related to the negligible regressors

are set to zero. In this way, we can effectively know which

risk factors play a role in the return of each stock. Fur-

thermore, the reason behind our choice of using A-Lasso is

twofold. From one side, it is designed to handle a linear

relationship between the target and the predictors, such as

that in Eq. 1, with little computational requirements. On

the other side, it has been shown that A-Lasso satisfies the

oracle properties specified in [36]. These properties ensure

the asymptotic consistency of the estimator in terms of both

relevant features detected and parameters estimate.

So, thanks to its reliability and accuracy in determining

relevant features, A-Lasso has been widely used in the

modern financial literature; see, for example, the works

[37, 38]. The former is related to bankruptcy prediction.

Several markets from Europe and Japan are analyzed, and
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the A-Lasso is applied to determine which features are

relevant for this task. The experimental stage proves that,

in almost all the considered study cases, the feature

selection can improve the performance of the prediction.

The latter is concerned with explaining excess returns in

the stock market. To face this task, the authors propose the

Specification-Lasso, a modified version of Lasso and

A-Lasso. The strategy’s validity is shown by both simu-

lated and real experiments, where the regressors are several

fundamentals related to the stocks under observation.

3.2 Risk factors extraction

In this work, the dataset of each experiment we carry out is

made up of daily observations of stocks in six different

markets: Italian, German, American, Japanese, Brazilian,

Indian (see Sect. 4 for further information on the datasets).

So, for each experiment, we use a set of risk factors

obtained starting from the daily returns dataset. Further-

more, as our investment strategies have monthly horizons,

we also exploit risk factors obtained from the monthly

returns dataset, which is the dataset obtained by aggre-

gating daily returns each month.

We extract the risk factors in Eq. 1 via PCA. Actually,

there exist several feature extraction techniques. PCA is a

linear approach, while more sophisticated nonlinear

approaches are the Neural Network PCA (NNPCA) or the

Variational AutoEncoder (VAE). However, previous study

[39] shows that in the stock markets, PCA performs as well

as the nonlinear methods, with the strong advantage of

being computationally cheaper. The great advantage in

computational time, while the output results are almost

similar, is the reason for our choice.

Once extracted, the risk factors are standardized to

obtain values distributed as a zero-mean random variable

with unitary variance. As already pointed out, we focus on

extracting two different sets of factors: daily and monthly.

The formers are obtained by applying the PCA to the daily

returns dataset. For the latter, we first apply the PCA on the

monthly returns dataset to obtain the weights of the Prin-

cipal Components (PCs). Then, the weights matrix is

applied to the daily returns dataset in order to extract the

monthly risk factors on a daily basis. Figure 1 describes the

process of feature extraction.

Table 1 Comparison among statistical arbitrage approaches. For each work, a short description and the main differences with our proposal are

provided

References Dataset Description Main differences

Zhao et al.

[28]

S &P Pair trading strategy in the framework of a mean-

reverting process. Also, a convex approximation

method is exploited to optimize the portfolio’s

weights

It does not hedge the risk by clusters but only the

market risk. This approach could be ineffective as

only a few traded assets may be exposed to the

same risk factor. Then, just one real dataset is used

for the experiment

Sant’Anna

et al. [29]

S &P 100, Russell

1000, and

Ibovespa Index

The Lasso regression is used to replicate an index

with few assets. Two replicating portfolios are

built for equally artificial, strongly related indexes.

Then, statistical arbitrage is achieved by buying

one and selling the other

Lasso is inefficient, as it does not satisfy oracle

properties [30]. Moreover, the construction of

artificial indexes causes other problems

Balladares

et al. [31]

Stocks of Emerging

and Developed

countries

Pair trading strategy based on Hurst exponent. They

compare differences in performance between

emerging and developed countries, showing better

results in the first case

Only two assets at the same time are considered

when hedging market risk. No comparison with

baseline long/short strategies

Carta et al.

[32]

S &P Ensemble of Machine Learning algorithms for return

predictions. The forecast output is processed by a

dynamic asset selection strategy to provide the

buy/sell signals

The strategy strongly relies on the regression of

future asset values. The reliability of such

estimates is an open question, and only sometimes

adding even more predictors lead to performance

improvement [26]. Moreover, the number of assets

to trade in each period is fixed, which can lead to

non-optimal trading strategies

Demir

et al. [33]

Single Intraday

Coupled Market

in Dutch market

area

Deep Reinforcement algorithm, namely

Asynchronous Advantage Actor-Critic, to provide

buy/sell signals by maximizing the reward-risk

ratio

There is no explicit hedging against risk factors or

attention to different time granularities
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In other words, consider the overall set of risk factors in

Eq. 1, i.e., F ¼ fFigi2f1;:::;Ng. We aim to split it into two

subsets. The first one is Fd ¼ fFigi2f1;:::;Ndg and it is

referred to the risk factors extracted on daily basis. The

second one is Fm ¼ fFigi2fNdþ1;:::;Ng and it contains the PCs

obtained on monthly basis.

One of the significant issues for this type of approach is

determining how many PCs have to be considered. The

choice of the number of PCs to consider is empirically

made by considering the results of previous experiments

carried out in similar contexts. Another issue is related to

the multicollinearity that could affect parameters estimate.

If we extracted risk factors on a singular basis, this would

not be a problem as the PCs, for construction, are inde-

pendent of each other. Instead, in our framework, multi-

collinearity could seriously harm strategy performances.

For example, let us consider the first PC in the daily and

monthly settings. As shown in the example in Fig. 2, they

are almost the same.

We handle this problem by applying a multicollinearity

filter, i.e., we add the risk factors to the set F in three stages

with a threshold rule. In the first stage, the daily PCs, which

are referred to as PCsd ¼ fD1; :::;DNd
g ¼ Fd, are added

without any restriction. In the second stage, the monthly

PCs are computed PCsm ¼ fM1; :::;MNm
g. For each one, a

score is obtained as the maximum absolute correlation of

the monthly component with the daily ones, that is

scoreM ¼ maxD2PCsd j corrðM;DÞ j; 8M 2 PCsm. In the

third stage, the monthly PCs whose score is lower than a

fixed threshold th are added to F, so

Fm ¼ fM 2 PCsm s:t: scoreM\thg. Finally, F is defined

as the union Fd [ Fm. In this way, we can avoid multi-

collinearity. The generation and selection of the risk factors

are definitely described by Algorithm 1. Finally, observe

that the number of PCs which survive the multicollinearity

filter could vary according to time. This should ensure our

strategy has the necessary flexibility to catch temporal

evolution in the covariance of the assets. Anyway, we do

not notice a significant variation in the risk factors set

through our experiments.

Fig. 1 The extraction of the risk factors. Two different granularities

are considered: daily and monthly. The raw data are fed into the PCA,

which extracts the weights of the Principal Components (PCs). In

particular, two sets of weights are obtained: one from the PCA applied

to daily data and the other from the PCA applied to monthly data.

Then, the daily and monthly PCs are obtained by multiplying these

weights with the daily dataset. Finally, the Risk Factors set is

constructed by considering all the daily PCs and the monthly PCs that

pass the Multicollinearity Filter

Fig. 2 The comparison between the first Principal Component

obtained from daily returns and that extracted from monthly ones.

The two components are almost one the translation of the other, with

a very high correlation coefficient, about 0.99. This justifies the

needing for a strategy to handle the multicollinearity which can arise

when working with different granularities

11718 Neural Computing and Applications (2023) 35:11713–11731

123



3.3 Clustering approach

Once extracted the risk factors in F as described in the

previous Subsection, A-Lasso is applied in order to obtain,

for each stock j 2 J , a subset Aj � F made up of the more

relevant risk factors, i.e., those which have the most sig-

nificant impact on j. As already pointed out, by applying

the A-Lasso, we obtain an estimate for each coefficient in

Eq. 1. Furthermore, thanks to the l1 regularization, there

are some coefficients set to zero. In this way, we can work

with only the most important risk factors, which are con-

tained in the subset Aj defined as Aj ¼ fi 2
f1; :::;Ngs:t:bji 6¼ 0g where bji is the coefficient estimate

provided by A-Lasso.
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To achieve our goal, the two hyperparameters of

A-Lasso, k; s, have to be set. This task is done by

exploiting Grid Search and 5 folds CV. In particular, we set

five folds whose length is equal to that of the investment,

and we search the hyperparameters couple that minimizes

the average mean square error (mse) among the folds.

Furthermore, we consider only hyperparameter combina-

tions that save between 2 and 4 PCs. In this way, we avoid

too strong regularization (number of PCs � 2) and too

complex models (so we set the number of PCs � 4). This

stage is the most computationally expensive of the whole

procedure. In fact, as a Grid Search is executed for each

asset, more than 10000 CVs are performed. This highlight

the needing for a fast feature selection technique. However,

some tricks can be used to reduce the time, as discussed in

the Conclusion.

Finally, the clusters are constructed by grouping stocks

with similar expositions to the same risk factors. More

formally, once the sets Aj have been determined, we define

the equivalence relationship 	 in the stocks universe J in

this way:

j	 i () Aj ¼ Ai 8i; j 2 J ð4Þ

Then, the clusters are defined as the equivalence classes

associated with 	 , that is, the clusters set C is the quotient

set J =	 . Algorithm 2 describes the clustering method-

ology. The computational time of this algorithm is negli-

gible compared to that of the total procedure.

3.4 Statistical arbitrage strategy

Once the clusters are obtained, a statistical arbitrage

strategy, specifically a market-neutral portfolio, is con-

structed within each cluster. The starting point is the

equation representing the stocks in a fixed cluster. Let us

consider C 2 C, let c be the cardinality of C, and letAC and
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a, respectively, be the set of risk factors relevant for the

stocks in C and its cardinality. We can represent each stock

in C by using Eq. 5:

rjt ¼ aj þ
X
i2AC

bjiFi;t þ ejt 8j 2 C; 8t 2 T ð5Þ

The first issue related to Eq. 5 is the estimate of the

coefficients. We accomplish this task by applying the

Pooled Ordinary Least Squares (OLS) Regression. That is,

we separately estimate aj and the vector bj in each time

window, and then we average the single estimates. In more

detail, we split the data into Time Windows (TW) whose

length is coherent with the investment temporal horizon.

Then, for each time window tw 2 TW , we obtain an esti-

mate of the parameters ajtw and bjtw by applying the OLS.

Finally, we average the estimates in each window to obtain

the final parameters, as in 6.

aj ¼ 1

j TW j
X

tw2TW
ajtw bj ¼ 1

j TW j
X

tw2TW
bjtw ð6Þ

After determining the model coefficients, we aim to delete

the exposition on each risk factor. In other words, we want

to create a portfolio such that the weighted sum of the

coefficients associated with the risk factor Fi is zero for

each i 2 AC. As mentioned in the Introduction, we define a

portfolio as a linear combination of stock returns where

each component of the weights vector / ¼ ð/1; :::;/cÞ
represents the exposition on the related stock. Furthermore,

as we allow for both long and short positions and we

require the invested amount to not exceed the total capital,

we impose the l1 norm of the weights to be 1. Accordingly,

we can represent a portfolio made up of the stocks in C as:

Portt ¼
X
j2C

/jrjt ¼
X
j2C

/jaj þ
X
i2AC

�X
j2C

/jbji

�
Fi;t

þ
X
j2C

/jejt 8t 2 T
ð7Þ

Observe that as there is a one-to-one correspondence

between admissible weights vectors and portfolios, we

sometimes overlap the two concepts in the following.

If we impose the market neutral condition, then we

require the terms into the curved brackets to be zero, so we

have a homogeneous linear system of a equations in the c

variables /1; :::;/c. Furthermore, with the l1 condition, we

obtain an optimization problem with both linear (8) and

nonlinear (9) constraints:X
j2C

/jbji ¼0 8i 2 AC ð8Þ

X
j2C

j /j j¼1 ð9Þ

Assuming that there are at least aþ 1 stocks in C, we can

construct a market-neutral portfolio. We indicate with PC

the set of all the weights vectors such that both 8 and 9 are

satisfied. For a generic portfolio in PC, the return at time t

can be reduced as the sum of aPort and ePortt :

Portt ¼
X
j2C

/jrjt ¼
X
j2C

/jaj þ
X
j2C

/jejt ¼ aPort þ ePortt 8t 2 T

ð10Þ

where aPort is a constant and ePortt is the sum of c Gaussian

random variables. As already discussed above, several

works in the recent literature have assessed the utility of the

idiosyncratic risks in constructing an investment strategy.

In other words, it has been shown that there are hidden

patterns in the residual sum that can improve the quality

and the performance of a strategy for portfolio construc-

tion. So, we consider them by searching in PC the portfolio

PC that optimizes a specific criterion.

As there are infinite portfolios that satisfy the con-

straints, which are both linear and nonlinear, we apply a

nonlinear optimization algorithm to find the optimal one. In

particular, the Sequential Least SQuares Programming

(SLSQP) is used (see [40] and [41] for further references).

The choice for this algorithm is due to its global conver-

gence property [42] and super-linear speed. It works by

repeatedly splitting the main problem into subproblems

solved by linearizing the constraints. Regarding the

objective function, which is the criterion used to choose the

portfolios to invest in, we carry out experiments by trying

to minimize the variance, that is,

PC ¼ argmin P2PC
VarðPÞ. Once a portfolio for each cluster

is obtained, we apply the same criterion to select the three

optimal ones. Finally, we invest in them. We choose three

portfolios and not just one to increase the diversification

effect and to reduce the investment risk by making the

strategy more robust. The entire investment strategy is

reported in Algorithm 3.

The computational time is contained, in the order of a

few seconds for the whole Algorithm 3.

4 Experimental results

This Section is concerned with the experimental stage.

Firstly, we describe the datasets used and the preprocessing

stage. Then, we describe the evaluation strategy used for

the comparison and show and discuss the experimental

results obtained in the various markets.
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4.1 The dataset

We assess our proposal in six different stock markets in the

experimental stage. In particular, the datasets cover both

developed and emerging markets. In this way, we are able

to analyze our proposal performances in different situa-

tions. The experiments are carried out individually, without

any interactions between each other. The period considered

is the same for all the experiments: from 2011-12-21 to

2021-12-20. The employed datasets are:

• Italian Stock Market: the dataset contains stocks from

the FTSE Italia All Share. The data are publicly

available on the website of Il Sole 24 Ore, an Italian

newspaper. The exact link is provided at the end of this

article.

• German Stock Market: the dataset is referred to the

stocks belonging to the index Classic All Share -

German and whose time series are available on

Investing.com, one of the most significant sources for

public financial data. The exact link can be found at the

end of this article.

• American Stock Market: the dataset is created starting

from the stocks belonging to the index S&P100. The

data are provided by Investing.com, see the Data &

Code Availability Statement.

• Japanese Stock Market: the stocks belonging to the

Topix 100 index are grouped in this dataset. The data

provider is Investing.com and further information can

be found at the end of this work.

• Brazilian Stock Market: the dataset collects stocks

from the Bovespa index. For the data link, see the Data

& Code Availability Statement.

• Indian Stock Market: the dataset is related to the Nifty

100 index. The data are provided by Investing.com, as

stated at the end of the paper.

All the datasets considered can be viewed as matrices

whose rows represent the time axis (i.e., the observations)

and whose columns are the stocks considered. The pre-

processing stage is done through multiple steps. Firstly,

from the prices dataset, we calculate the returns one. After

that the rows representing the weekends and holidays are

removed from the dataset, as for the columns correspond-

ing to stocks with poor data, i.e., full of missing values.

Moreover, in the case of the Italian dataset, some initial

rows are deleted as many missing values for several stocks

occurred in the first observations. Then, the remaining

missing values are imputed with 0 (that is, no price change

has occurred these days). Finally, in the train set and for the

computation of the investment strategy, the values are

standardized columns by columns. That is, if r̂j is the row

return corresponding to stock j, we consider rj ¼
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1ffiffiffiffiffiffiffiffiffiffiffi
Varðr̂jÞ

p ðr̂j �Meanðr̂jÞÞ in place of r̂j. The data used for the

comparison are not handled in any way.

As for the number of PCs we consider, it is empirically

determined by looking at the results obtained in similar

previous experiments. The same is true also for the

threshold th, which is chosen in such a way to preserve

many monthly components and avoid multicollinearity. In

this direction, we set th ¼ 0:5 for all the experiments. The

condition number gives output values lower than 10

(specifically, values lower than 5 in all the experiments),

which means negligible multicollinearity among variables.

Table 2 summarizes the final datasets we work with after

the preprocessing stage and the number of PCs considered,

which is determined as a function of the overall number of

stocks. Furthermore, the condition number results are also

shown (in particular, for each dataset, the highest value

obtained among all the folds is reported). Finally, also the

number of resulting PCs is displayed. As already stated in

Sect. 3.2, within the same dataset, the considered risk

factors could vary as time progress, so our proposal can

follow covariance shifts. However, the risk factors set

exhibits certain robustness among the 12 folds we consider

for CV in that it does not show huge variations. We can

interpret this result as no considerable changes have

occurred in such a short time. In other words, significant

variations in the patterns among assets are noticeable at

bigger time intervals.

4.2 Results and discussion

Before describing the results obtained, we briefly show

some details about the evaluation of the proposal and the

comparison with other benchmarks. Firstly, we describe the

performance measures used for the comparison. In the

following, we indicate the value of the portfolio to analyze

with P ¼ fPtgt2Te0 and its returns with Pr ¼ fPrtgt2Te0 ,
where Te0 ¼ f1; :::;Ng is the test set. The performance

measures are:

• Percentage Profit P % It is the percentage profit

obtained by the strategy. It can be defined as the ratio

P% ¼ PN

P1
� 1. In comparing different strategies, we

prefer high values.

• Max Percentage Drawdown (MD %) It is the

maximum percentage loss the portfolio suffered. For-

mally, it can be viewed as MD% ¼ 1�mint\s2TeðPs

Pt
Þ.

In comparing different strategies, we prefer low values.

• Recovery Factor (RF) It is a proxy of the capability of

the portfolio to recover losses. It can be defined as the

ratio between the final profit and the max suffered loss.

Formally, RF ¼ Profit
Loss with Profit ¼ PN � P1 and

Loss ¼ maxt\s2TeðPt � PsÞ. In comparing different

strategies, we prefer high values.

• Profit Factor (PF) It is the ratio between the sum of the

profits and the losses computed daily. That is, PF ¼
ProfitsSum
LossesSum with ProfitsSum ¼

PN
t¼2 maxfPt � Pt�1; 0g

and LossesSum ¼
PN

t¼2 maxfPt�1 � Pt; 0g. In compar-

ing different strategies, we prefer a high value.

• Sharpe Ratio (ShR) It is a measure of how the risk is

rewarded in terms of extra gain. It is formally defined as

the ratio between the difference of the expected return

and the risk-free rate, and the standard deviation of the

portfolio returns, which is used as a proxy for the

riskiness, i.e., ShR ¼ MeanðPrÞ�irffiffiffiffiffiffiffiffiffiffiffiffi
VarðPrÞ

p where ir is the risk-free

rate. Observe that, in the computation of ShR, we

approximate ir with zero. This assumption is not

relevant to the comparison as ShR is a monotonic

function with respect to ir. In comparing different

strategies, we prefer a high value.

• Sortino Ratio (SoR) It is a measure of the reward for

the risk, as ShR. The only difference is that, as a

riskiness proxy, the downside deviation, i.e., the

standard deviation referred only to negative returns, is

considered. So, we can write SoR ¼ MeanðPrÞ�irffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Down VarðPrÞ

p . The

Table 2 Summary statistics of the datasets after the preprocessing

stage. For each of the considered markets, we report: the number of

stocks in the universe J (Num Stocks); the number of observations

in the whole dataset (Num Obs.); the number of observations in the

first train set and the first test set (Tr1=Te0); the number of PCs

extracted on both daily and monthly basis (Num PCs); the number of

total risk factors Fi, obtained by merging the daily and monthly PCs

as described above (Num Fi); the highest result (with respect to the

12 folds) obtained in the condition number (Cond. Num.)

Italian German American Japanese Brazilian Indian

Num Stocks 151 65 86 85 63 71

Num Obs. 2423 2506 2515 2444 2471 2465

Tr1 / Te0 2168/255 2252/254 2263/252 2199/245 2225/246 2218/247

Num PCs 7 5 6 6 5 6

Num Fi 11 8 7 7 7 8

Cond. Num. 4.359 2.913 2.278 2.653 3.802 3.683
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assumption regarding ir is the same as in ShR. In

comparing different strategies, we prefer high values.

As already stated in the Introduction, we remind that our

aim is the construction of a strategy that is robust through

time. To achieve this task, we perform the CV to evaluate

some of the most commonly used metrics for investment

strategies. In more detail, we apply a block W-fold CV, so

each fold preserves the temporal dimension. So, the dataset

is split into train and test sets, which are indicated with Tr1
and Te0, respectively. The test set is further split into W

consecutive folds according to the temporal dimension. So,

where is the disjoint union of sets.

Then, for the first iteration, we consider Tr1 as the train set

and Te1 as the test set. For the ðwþ 1Þ-th iteration, we

exploit as the train set and Tewþ1 as

the test set. Figure 3 graphically explains the procedure.

After applying the CV, we have a vector of results for

each metric, one for each fold. Then, the mean and the

standard deviation of these vectors are computed. Finally,

the mean minus the std is considered the proxy of the lower

bound confidence interval, which is a proxy of the worst-

case scenario (wcs). By evaluating this quantity, we expect

to assess the robustness of the strategy. That is, it not only

has to be profitable, i.e., with a high mean, but it also has to

be stable with respect to the time, i.e., its std among the

fold should be as low as possible. Finally, note that, only in

the case of MD%, as for this metric a lower value is better,

we consider as target measure for the wcs, the upper bound,

i.e., the sum between mean and std.

Regarding the number and the length of the folds used

for the comparison, as we extract monthly risk factors as

long-term ones, the investment strategy has a monthly time

horizon. So, the length of each fold is one month. Fur-

thermore, we use one year of data as the test set. So, there

areW ¼ 12 folds, and each one is made up of one month of

data.

The last detail to be clarified is the benchmarks used for

the comparison. As we work in a context where both long

and short positions are allowed, we use as benchmarks the

minimum variance and the mean-var portfolios. These

portfolios are constructed by looking at the historical data.

A vector of weights is optimized through the SLSQP by

means of minimum variance or maximal ratio between

mean and variance, respectively. These weights form the

portfolios in which we invest. Moreover, also the Expo-

nential Gradient is used, as done in [32, 43].

Now, we show the results obtained in the experimental

stage. For each fold in the CV, we simulate the perfor-

mance obtained by a portfolio with an initial amount of

wealth equal to 1000. Table 3 shows the results obtained in

the Italian, German and American markets. Instead, the

results for the Japanese, Brazilian and Indian stock markets

are reported in Table 4.

For each table, we report the mean, the variance, and the

wcs. Furthermore, the results obtained by both our strategy

(Port), the minimum variance portfolio (MinVar) and the

mean-variance portfolio (M-V) are reported for compari-

son. Finally, the best result in each field is reported in bold,

and the second one is underlined.

For a visual inspection, we also report the plots of the

strategies in the evaluation stage. In particular, Fig-

ures from 4 to 9 show the results in each market.

As already mentioned above, all the strategies in each

fold are considered to start with an initial capital of 1000.

The proposed strategy is reported in blue, the minimum

variance benchmark is represented by the green line, and

the mean-variance portfolio is shown by the red line.

Furthermore, the black dotted line represents the value

1000, which corresponds to an overall return of 0.

As the results show, our portfolio optimization strategy

seems promising. In fact, despite the mean value often is

not the best, the wcs, which is our target, is very often the

optimal one, with the only exception of the American

dataset. This happens because the std is almost ever the

lowest or the second-lowest, in all the considered datasets.

In particular, it can be interesting to compare the

American and Brazilian Stock Markets from one side, and

the others on the other side. In fact, in the second case, the

mean across the folds is not very exciting. Indeed, the

benchmark strategies obtain better results. However, the

strategy shows its robustness by obtaining a low variance.

In the Italian and Japanese cases, this allows it to overcome

the benchmarks when evaluating the worst-case scenario in

all performance measures except for the Profit and the Max

Drawdown, where the results obtained are still far from the

best. In the Indian dataset, the wcs performances are sig-

nificantly better than benchmark approaches. The only

Fig. 3 The block Cross-Validation we adopted for the comparison.

The time set T is split into two subsets, namely Tr1 for the training

and Te0 for the test. Then, Te0 is split into W disjoints consecutive

subsets Te1; :::; TeW . The first iteration of the strategy is trained on Tr1
and tested on Te1. Then, the wþ 1-th iteration is trained on

and tested on Tewþ1
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exception is Max Drawdown, where the difference between

our proposal and the mean-variance portfolio is very low,

less than 0.007%. Instead, in the American example, the

proposal fails to overcome the competitors. However, it

obtains discrete results, especially in the Max Drawdown

and the Recovery Factors, where it is the best, and in the

Profit and Profit Factor, where it is very close to the best

result. Finally, in the German and Brazilian datasets, the

strategy achieves the best mean in almost all the considered

metrics, and also, the std is relatively low. This means the

worst-case scenario overcomes that obtained by competi-

tors in all the cases except that Max Drawdown.

Fig. 5 The plots of the experimental results obtained in the German

Stock Market. The 12 plots represent the 12-Folds in the CV, each

one with a starting amount equal to 1000. The blue line represents the
proposed strategy, the green line represents the minimum variance

portfolio and the red line represents the mean-variance portfolio.

Finally, the dotted black line represents the 0 returns portfolio. (Color

figure online)

Fig. 4 The results we obtained in the Italian Stock Market by the

portfolios constructed through the 12-Folds CV. All the portfolios are

considered to have an initial value of 1000. Our strategy is reported in

blue, the minimum variance portfolio in green and the mean-variance

one in red. The horizontal dotted line represents the value 1000, i.e.,

the initial value of the portfolios. (Color figure online)
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5 Conclusion

In this work, a framework for statistical arbitrage is dis-

cussed. We proposed a cluster-based multi-step data-driven

strategy that considers risk factors related to different

temporal horizons. Our proposal is contextualized in the

literature, and its performance is repeatedly assessed

through several experiments on several stock markets. We

find that this kind of strategy seems to be quite robust and

profitable in various stock markets belonging to both

emerging and developed countries. Furthermore, this

finding holds also when comparing our proposal with other

benchmark strategies. In fact, the comparison shows that

Fig. 6 The results obtained during the experimental stage in the

American stock market. The 12 plots correspond to the folds in the

CV. The portfolios have an initial value of 1000, which is represented

by the black horizontal line. The three lines, blue, green and red,
correspond to the portfolios obtained by our strategy, minimum

variance and mean-var criteria, respectively. (Color figure online)

Fig. 7 The plot of the experimental results in the Japanese stock market. Our proposal, in blue, is compared with minimum variance (green) and
mean-var portfolio (red). (Color figure online)
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our methodology obtains almost every good performance,

superior to those obtained by the benchmarks.

To summarize, we can analyze more in detail the pro-

posed framework by highlighting its strengths and weak-

ness, thus providing possible directions for further studies.

Firstly, the assumptions we made, although classical in the

financial literature, can represent an obstacle in applying

the proposal in a real-world scenario. In fact, there is an

open debate on their reliability ([44, 45]). So, it can be

worth investigating what happens when some of the

assumptions are relaxed.

Then, regarding the feature extraction, the proposed

factor model, and the feature selection, we have chosen to

stay in the linear case. In fact, a previous empirical study

Fig. 8 Results in the Brazilian stock market. Our proposal, the minimum variance, and mean-variance portfolios are plotted in blue, green, and
red, respectively. (Color figure online)

Fig. 9 Comparison of strategies behavior in the Indian stock market. Our proposal is drawn in blue, while the minimum variance and the mean-

variance portfolios are in green and red, respectively. (Color figure online)
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has shown the reliability of such a model and the com-

plexity and the computational times are lower than in

nonlinear environments. However, a careful study of the

problem through nonlinear methods could show hidden

patterns that can improve the performance of our

methodology. Moreover, the patterns among asset time

series could change accordingly to the considered time

granularity. In other words, it is also noteworthy to

investigate hybrid approaches where different extraction

methods are used in different granularities.

Regarding hyperparameter optimization, it has been

observed it is the most expensive part of the whole

framework. A trick to reduce the number of iterations and

alleviate its computational cost can be the introduction of

the Randomized Grid Search. Another idea is the shrinkage

of the searching space to a narrow boundary surrounding

the solution in the previous period. However, they should

be further investigated in the future. As for the clustering

strategy, it shows both pros and cons. For example, it does

not need to explicitly define a distance between time series,

which can be a difficult task. In contrast, some of the

clusters show little significance in that they are made up of

a small number of stocks, so they are unusable for the

investment strategy. Furthermore, the number of PCs to

consider is currently empirically determined, which could

lead to a bias. Future works could try to fix these disad-

vantages. For example, it can be worth investigating the

optimal number of PCs to consider by analyzing the trade-

off between representation accuracy and sensitivity to

noise.

Regarding the investment strategy and the idiosyncratic

risks, other experiments have been carried out to find the

optimal portfolio by means of the Sharpe ratio instead of

minimum variance. However, these experiments have

shown no profitability. In more detail, it seems that a mean-

reverting process in such a case is more convenient for

describing the price dynamic. In the future, it could be

helpful to accurately investigate what type of dynamic

(mean-reverting rather than momentum) better fits the

particular context under evaluation.
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1. Horváth L, Rice G (2019) Asymptotics for empirical eigenvalue

processes in high-dimensional linear factor models. J Multivar

Anal 169:138–165

2. Williams B (2020) Identification of the linear factor model.

Economet Rev 39(1):92–109

3. Salmerón R, Garcı́a C, Garcı́a J (2018) Variance inflation factor

and condition number in multiple linear regression. J Stat Comput

Simul 88(12):2365–2384

4. Ressel V, Berati D, Raselli C, Birrer K, Kottke R, van Hedel HJ,

Tuura RO (2020) Magnetic resonance imaging markers reflect

cognitive outcome after rehabilitation in children with acquired

brain injury. Eur J Radiol 126:108963

5. Mozun R, Ardura-Garcia C, Pedersen ES, Goutaki M, Usemann

J, Singer F, Latzin P, Moeller A, Kuehni CE (2021) Agreement of

parent-and child-reported wheeze and its association with mea-

surable asthma traits. Pediatr Pulmonol 56(12):3813–3821

6. Connor G (1995) The three types of factor models: a comparison

of their explanatory power. Financ Anal J 51(3):42–46

7. Fama EF, French KR (2016) Dissecting anomalies with a five-

factor model. Rev Financ Stud 29(1):69–103

8. Fama EF, French KR (2021) Common risk factors in the returns

on stocks and bonds. University of Chicago Press, Chicago

9. Koopman SJ, van der Wel M (2013) Forecasting the us term

structure of interest rates using a macroeconomic smooth

dynamic factor model. Int J Forecast 29(4):676–694
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