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Abstract
A light microscopy-based histopathology diagnosis of human brain specimens obtained from epilepsy surgery remains the

gold standard to confirm the underlying cause of a patient’s focal epilepsy and further inform postsurgical patient

management. The differential diagnosis of neocortical specimens in the realm of epilepsy surgery remains, however,

challenging. Herein, we developed an open access, deep learning-based classifier to histopathologically assess whole slide

microscopy images (WSI) and to automatically recognize various subtypes of Focal Cortical Dysplasia (FCD), according

to the ILAE consensus classification update of 2022. We trained a convolutional neuronal network (CNN) with fully

digitalized WSI of hematoxylin–eosin stainings obtained from 125 patients covering the spectrum of mild malformation of

cortical development (mMCD), mMCD with oligodendroglial hyperplasia in epilepsy (MOGHE), FCD ILAE Type 1a, 2a

and 2b using 414 formalin-fixed and paraffin-embedded archival tissue blocks. An additional series of 198 postmortem

tissue blocks from 59 patients without neurological disorders served as control to train the CNN for homotypic frontal,

temporal and occipital areas and heterotypic Brodmann areas 4 and 17, entorhinal cortex and dentate gyrus. Special stains

and immunohistochemical reactions were used to comprehensively annotate the region of interest. We then programmed a

novel tile extraction pipeline and graphical dashboard to visualize all areas on the WSI recognized by the CNN. Our deep

learning-based classifier is able to compute 1000 9 1000 lm large tiles and recognizes 25 anatomical regions and FCD

categories with an accuracy of 98.8% (F1 score = 0.82). Microscopic review of regions predicted by the network con-

firmed these results. This deep learning-based classifier will be made available as online web application to support the

differential histopathology diagnosis in neocortical human brain specimens obtained from epilepsy surgery. It will also

serve as blueprint to build a digital histopathology slide suite addressing all major brain diseases encountered in patients

with surgically amenable focal epilepsy.
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1 Introduction

Advancements in WSI technology helped to further pro-

mote digital pathology and the development of artificial

intelligence (AI)-based disease classification algorithms at

a larger scale [8, 14]. However, published AI studies cover

only few topics of the diagnostic spectrum in neuro- or

histopathology including epilepsy surgery, yet. Recently, a

deep learning-based algorithm was able to demonstrate the

ability to differentiate the cellular profile of FCD Type 2b

from cortical tuber on routine hematoxylin–eosin (HE)-

stained WSI [19]. Their algorithm recognized bulky and

strand-like matrix reaction, halo-like balloon cell artifacts

as well as bigger astroglial cell nuclei in cortical tuber

compared to FCD ILAE Type 2b as disease-specific sig-

natures. These small differences at the cellular level and in
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the texture were not recognized by light microscopy before

and also helped to define a histopathology scoring system

when training colleagues not specialized in this diagnostic

arena. Another hurdle in the development of AI-based

histopathology classifiers is the huge work burden for

annotation of large datasets and which support the use of

weakly supervised deep learning pipelines [8, 14]. This

applies also for the prediction of defined genetic mutations

in histopathology specimens, e.g., colorectal, gastric and

bladder cancer [14]. A different AI-based approach was

able to replicate histochemical and immunohistochemical

stainings from unstained slides without actually performing

the staining procedures [12, 29]. In contrast, AI-based

classifiers are increasingly developed in neuroradiology in

order to reduce the burden of reviewing large stacks of MR

images at various protocols and to detect small lesions in

drug-resistant focal epilepsy, i.e., FCD [15]. However, the

full potential of cost-effective and AI-based digital

pathology classifiers needs to be further explored.

Malformations of cortical development (MCD) repre-

sent the first most common structural brain lesion in chil-

dren with drug-resistant focal epilepsy. Focal Cortical

Dysplasia (FCD) represents approx. 75% of all MCD

entities collected in large epilepsy surgery series [6, 20].

The International League against Epilepsy (ILAE) has

proposed a consensus classification scheme for FCD in

order to cover the clinical spectrum of FCD, their associ-

ated histopathology patterns and likely etiology, e.g., brain

somatic mutations in the mTOR pathway [3, 4, 7]. The

histopathological classification of these categories remains,

however, an ever-challenging issue in daily routine practice

[22, 23], and which has been documented many times in

the scientific literature [1, 4, 5, 9, 11]. Molecular neu-

ropathology has been recognized as a helpful diagnostic

tool to objectively classify human brain lesions, e.g., in

brain tumors, and was recently introduced also into the

realm of epileptology and epilepsy surgery, e.g., FCD

ILAE Type 2 with brain somatic mTOR pathway mosai-

cism or MOGHE, SLC35A2 altered [3, 4]. These entities

have been also included into the ILAE consensus FCD

classification update of 2022, which mandates an integra-

tion of clinical, histopathological and neuroimaging infor-

mation into the final FCD diagnosis [22]. Molecular testing

of surgical human brain samples remains, however, cost

intensive and may not be accessible to many surgical

centers and pathology laboratories around the world. An

AI-based histopathology classifier for FCD would be cost-

effective, available online and thus improve the knowledge

and access to routine histopathology diagnosis. In the

current work, we retrieved a large series of MCD speci-

mens covering the spectrum of common and rare FCD

subtypes, used the WSI technology and developed a

supervised, deep learning-based histopathology classifier to

reliably detect FCD subtypes in surgically resected human

brain tissue specimens.

2 Materials and methods

2.1 Patients included in this study

Archival microscopy slides of tissue specimens from 125

patients with the histopathological diagnosis of mMCD,

MOGHE, FCD Type 1a, 2a and 2b according to the ILAE

classification scheme [7, 22] were retrieved from the

Neuropathological Institute at Universitätsklinikum Erlan-

gen (see supplemental Table 1 and supplemental Figure 1).

In addition, we retrieved age-matched postmortem brain

tissue of Brodmann areas 4 and 17, entorhinal cortex and

dentate gyrus from 59 patients without any neurological

disorder from the Neuropathological Institute at Univer-

sitätsklinikum Erlangen and the Ludwig-Maximillian

University München. Histological sections were 3–5 lm
thin, obtained from formalin-fixed and paraffin-embedded

(FFPE) tissue blocks and stained with hematoxylin–eosin

(HE) and HE-Luxol-Fast-Blue (HE-LFB) according to

routine neuropathology workup protocols [2]. Additional

HE, HE-LFB or immunohistochemical stainings for NeuN,

MAP2, SMI32, and Olig2 epitopes were prepared from

archival FFPE tissue blocks when necessary using the same

protocols. All slides were microscopically reviewed by

experienced neuropathologists (IB, JoHe, SR and RC) to

select a minimum of 20 cases from each histopathology

entity to be included in this study (see supplemental

Table 1). The FCD1a category included those patients

described recently [17]. The glossary summarizes the

definition applied for each category. Whole slide images

(WSI) were digitally recorded from HE as well as adjacent

immunohistochemical stainings using a Hamamatsu S60

scanner (Hamamatsu Photonics Europe, Herrsching, Ger-

many) with a mean of 3.02 Gb per slide, ranging from 0.47

to 5.72 Gb. Each patient’s clinical history was retrieved

from the archival hospital files. The study was approved by

the University of Erlangen ethical review board under the

agreement number 193_18B.

Glossary of 25 anatomo-pathological categories

BA04-PM Postmortem FFPE tissue sample characterized by

heterotypic neocortical architecture of Brodmann area

4 with giant pyramidal neurons of Betz.

Immunohistochemistry for SMI32—neurofilament

staining was made available for annotations

BA17-PM
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Postmortem FFPE tissue sample characterized by

heterotypic neocortical architecture of Brodmann area

17 including the strip of Gennari. HE-LFB staining

was made available for annotation.

OCX-PM Postmortem FFPE tissue sample characterized by

homotypic neocortical architecture, adjacent to

Brodmann area 17. HE-LFB staining was made

available for annotation

OCX-SX Surgical FFPE tissue samples characterized by

homotypic neocortical architecture, obtained from

occipital lobe resections in patients included in the

FCD1a category (see therein)

FLX-PM Postmortem FFPE tissue characterized by homotypic

neocortical architecture of the frontal lobe

TLX-PM Postmortem FFPE tissue characterized by homotypic

neocortical architecture of the temporal lobe, obtained

from the midlevel of the hippocampal body

ECX-PM Postmortem FFPE tissue characterized by the

heterotypic entorhinal cortex architecture. No further

immunohistochemistry was performed

DG-PM Postmortem FFPE tissue characterized by the granule

cell layer of the Dentate Gyrus and adjacent to the

polymorphic molecular cell layers at the level of the

mid-hippocampal body

WM-PM Postmortem FFPE tissue characterized by myelin

containing white matter from occipital, frontal,

temporal Lobe specimens. No further

immunohistochemistry was performed

WM-SX Surgical FFPE tissue from the white matter of frontal,

parietal, temporal and occipital lobes without any

further evidence of histopathologic lesions as

evidenced by a systematic immunohistochemical

review using the epilepsy workup staining panel [2]

mMCD Surgical FFPE tissue characterized by subcortical white

matter with excessive heterotopic neurons as

histochemically confirmed with MAP2 antibodies.

Tissue sections were obtained from frontal and

temporal lobe regions. These areas should not include

the crown of gyrus

mMCD-

WM

Adjacent subcortical region of mMCD specimens

without excessive heterotopic neurons as

histochemically confirmed with MAP2 antibodies

mMCD-

hCx

Adjacent cortical region of mMCD specimens. We have

not performed additional immunohistochemical

stainings

MOGHE Surgical FFPE tissue characterized by patchy

oligodendroglial hyperplasia of the white matter

preferably at the gray–white matter boundary as

immunohistochemically confirmed with antibodies

directed against OLIG2

MOGHE-

hCx

Surgical FFPE tissue of the homotypic neocortex

adjacent to the MOGHE

FCD1a Surgical FFPE tissue obtained from temporal, parietal

and occipital lobe resections and histopathologically

characterized by excessive neuronal microcolumns

and immunohistochemically confirmed with

antibodies directed against the NeuN epitope [17]

FCD2a Surgical FFPE tissue characterized by abnormal

neocortical architecture and dysmorphic neurons as

immunohistochemically evidenced with antibodies

directed against non-phosphorylated neurofilament

epitopes (SMI)

FCD2a-

hCX

Surgical FFPE tissue obtained from the homotypic

neocortex adjacent to the FCD2a lesion

FCD2a-

WM

Surgical FFPE tissue of the white matter adjacent to the

FCD2a lesion

FCD2b Surgical FFPE tissue characterized by abnormal cortical

architecture, dysmorphic neurons and balloon cells as

evidenced by immunohistochemistry for SMI32 and

vimentin

FCD2b-

hCx

Surgical FFPE tissue characterized by homotypic

neocortical architecture adjacent to the FCD2b lesion

FCD2b-

WM

Surgical FFPE tissue characterized by the subcortical

white matter adjacent to FCD2b lesion

NTU ‘‘No tissue’’ describes the translucent WSI space around

the stained tissue section

SUB-SX Surgical FFPE tissue including the subarachnoidal

space with their blood vasculature and meninges

SUB-PM Postmortem FFPE tissue characterized by the

subarachnoidal space filled with blood vessels and the

pia mater. No further immunohistochemical stainings

were performed

The nine major categories were labeled in bold (see also supplemental

Figure 1)

2.2 Hardware and software configuration
to compute the FCD classifier

We implemented the data extraction, data preparation,

storage and the required arithmetic operations on a local

computer unit with AMD CPU (AMD RYZEN THREA-

DRIPPER 1900X 3.8 GHz 8-Core) and 64 Gb of RAM,

running on Ubuntu 20.04.03 LTS. The tensor calculations

were performed on a Gigabyte GeForce 2070 Super 8 GB,

Cuda Version 11.2. The input data for the model calcula-

tion were stored and provided via SSD hard drives with a

total storage capacity of 8 TB.

We selected the ResNet18 CCN architecture from a pre-

test of CNN architectures of the ResNet and VGG family,

e.g., ResNet18, ResNet34 and VGG16. Larger networks of

the ResNet family could not be tested due to our limited

GPU resources. The ResNet18 CNN architecture (http://dx.

doi.org/10.1109/CVPR.2016.90, last visited 21.06.2022)

was selected due to its fast and GPU-resource saving per-

formance on the ImageNet data set (https://doi.org/10.

1109/CVPR.2009.5206848) (data not shown) and was

embedded in the open-source Python package and AI-

project fastai (https://doi.org/10.3390/info11020108, last

visited 10.06.2022). Tensor-based calculations were based

on the pytorch backend (https://doi.org/10.48550/arXiv.

1912.01703, last visited 15.06.2022). The basic network

architecture was not changed with the exception of the
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application-related classifier head in order to compute all

defined tissue categories (see glossary). All data manage-

ment of WSI tiles was performed on an open access library

as recently published [24] and whose structure precisely

reflects the required workflow of data generation, data

management and data evaluation.

2.3 The annotation and extraction pipeline

The region of interest (ROI) representing the anticipated

anatomical region or cortical malformation was manually

annotated on the microscopy slide or WSI using the

Hamamatsu NDPi viewer by our experienced neu-

ropathologists IB, RC, JHe, SR using HE-LFB and/or

respective immunostainings (Fig. 1b). Regions not cut

perpendicular to the cortical surface were excluded from

the study. Annotations were digitally introduced onto the

WSI of the adjacent HE staining (Fig. 1c). A Python script

was developed to identify the vector coordinates of these

annotations and to automatically extract 1mm2 tiles with a

stride of 100 lm at Hamamatsu ndpi-Level 2, perpendic-

ular to the annotation line by using the open access

OpenSlide (https://doi.org/10.4103/2153-3539.119005)

and diagonal-crop libraries (GitHub—jobevers/diagonal-

crop: Diagonally crop an image using python and pillow)

(Fig. 1d). Tiles were then resampled at a resolution of

1024 9 1024 pixels and stored locally for later use by the

CNN adding the histopathology label to each unique

filename.

2.4 Dataset splitting

In order to monitor and control the training process, we

divided the total set of available training images into a

training group and a validation group. To do this, we

determined the total number of training images for each of

our eight main entities to be examined (see Supplement

Figure 1) and assigned 20% from each group for the val-

idation process. The splitting process was carried out using

a random number generator at the patient level and sub-

sequently using an iteration selection, also at the patient

level, until the required number of validation images had

been separated, i.e., all images of a specific patient were

available in either the training group or in the validation

group. The aim of this approach was to prevent the system

from assignments based on specific individual character-

istics of the individual patient samples in order to posi-

tively support the generalization of the model and avoid

overfitting in the context of hidden variables within the

patient data, e.g., HE coloring patterns of a given case or

certain repetitive artifacts.

Fig. 1 Annotation pipeline

developed for the FCD

classifier. a WSI of a

postmortem FFPE sample from

the occipital lobe stained with

HE. The distance between each

scale is 500 lm. b For each

category we used a special stain

or immunostaining to

reproducibly recognize

anatomical landmarks or the

histopathological lesion. Here,

we delineated Gennari’s strip of

Brodmann area 17 on the

microscopy glass slide with HE-

LFB. c The same region was

then annotated with npdi viewer

on the WSI (same shown in a).
d A Python script was

developed to generate and

extract tiles perpendicular to the

annotation line
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2.5 Metric output of the ResNet18 CNN

The prediction score given by the CNN is a measure of the

likely probability of a tile to match with any of the intro-

duced categories, i.e., ‘‘maximum confidence.’’ To achieve

this value, we applied a sigmoid activation function for

multi-label classification tasks to the array of values (dig-

its) that was given by the final linear layer of a neuronal

network for each image.

All metrics were obtained from the fastai library and

adapted to our multi-label classification approach. Fastai

itself hereby uses scikit-learn metrics and pytorch loss-

functions. We monitored the training performance by

train_loss and validation_loss as calculated by the

BCEWithLogitsLoss function (threshold 0.5). Generally

both parameters should converge toward zero as the

number of epochs is rising. We determined overfitting of

the training process as the divergence between training

loss, i.e., numbers decrease, compared to validation loss,

i.e., numbers increase, and other metrics, i.e., numbers

decrease. Train_loss and validation_loss were therefore

monitored to optimize computation time for training and to

find the best time point to stop training the model.

In addition, we monitored accuracy_multi, Preci-

sionMulti, RecallMulti and F1ScoreMulti to evaluate the

practicability of the trained models as well as overfitting.

The accuracy_multi score was calculated from the logits

score provided by the ResNet18 for each image. These

logits were normalized therefore into a value range

between 0 and 1 by using the sigmoid function. From these

values, we defined a positive prediction at a threshold

higher or equal 0.5 (Table 1). Values below this threshold

were considered to not meet the prediction (negative).

These predictions were converted into a one-hot-encoded

format and compared with the basic ground truth, i.e., the

manually labeled values for the corresponding image. The

mean of all element-wise compared values then provides

the accuracy_multi score metric (see below).

We applied weighted averaging for PrecisionMulti,

RecallMulti and F1ScoreMulti across all labels in this work

to take the presence of unbalanced categories into account

(see dataset splitting) [26]. This means that the calculated

metrics for the respective individual classes are weighted

with the proportion of training images in this class in

relation to the size of the total population of training image

data. Other averaging regimes were not used herein.

3 Results

A total of 612 WSI slides were obtained from 184 patients

(see supplement Table 1), representing at least 20 inde-

pendent patients for each of the main anatomo-pathological

categories. With this dataset, we generated a total 533.461

tiles for further use in this study, labeled for 25 subcate-

gories, including nine major histopathology categories of

diagnostic interest and their helper classes (see glossary

and supplemental Figure 1). Training of the ResNet18

CNN was carried out with a batch size of 16 tiles each and

the Adams optimizer (https://doi.org/10.48550/arXiv.1412.

6980). The learning process used the cyclic learning rate

policy (https://doi.org/10.1109/WACV.2017.58). The

maximum learning rate multiplier variable was set to

0.015, as determined by the fastai learning rate finder. The

basic model was trained for 10 epochs (supplement

Table 2, column 1). In addition, a fivefold cross-validation

Table 1 Example for calculation of accuracy_multi

Logit Sigmod One-hot-encoded prediction after applied threshold One-hot-encoded ground truth Comparison Label (example)

0.50 0.62 1 1 1 BA04-PM

1.10 0.75 1 1 1 BA17-PM

- 0.60 0.35 0 0 1 DG-PM

0.50 0.62 1 0 0 ECX-PM

- 1.20 0.23 0 0 1 FCD1a

1.30 0.79 1 0 0 FCD2a

… … … … … …

1st column: logit values represent the not yet normalized output of prediction probabilities of the classifier for each WSI tile. 2nd column: The

sigmoid function was applied to each logit to normalize the probability values into a value range between 0 = very unlikely and 1 = very likely.

3rd column: A threshold value was set to 0.5 to derive one-hot-encoded predictions from the probabilities shown in 2nd column. If the value in

column 2 was above the threshold value (0.5), a positive prediction (1) is assigned for the presence of the category (= label in 6th column).

Values below 0.5 were assigned as negative prediction (0). The real presence of one or more histopathology categories in the original WSI was

reported as One-Hot coding ground truth in column 4. 5th column: The comparison of the model’s prediction with the ground truth provides

logical truth values for each label trained in the classifier. The summation of calculated truth values and their subsequent averaging resulted in the

accuracy_multi-score for the input image
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was carried out on the base of this model in which vali-

dation sets were unique across all fivefold (Table 2). Other

sub-models were trained for 5 epochs depending on the

achieved metrics score until no significant improvement in

control parameters could be recognized (see supplement

Table 2). The pre-trained convolution base was not chan-

ged during training for all models. All models mentioned

above were re-initialized with the ImageNet weights before

training. Data augmentation was applied during the training

at batch level including horizontal and vertical mirroring,

rotation up to 180�, image zoom from factor 0.9 to 1.1, and

‘‘zeros’’ as padding mode (fastai).

The training of the model was performed with a case

cohort representing approx. 80% of each of the 25 cate-

gories was validated with the remaining cases, i.e., dataset

splitting at the patient level. The ResNet18 CNN was fed

with tiles from our comprehensive extraction routine and

managed by the WSI processing pipeline [24]. The first run

achieved an accuracy_multi of 0.986, however, which

prompted us to stop the training after the tenth run at an

accuracy_multi of 98.8% (F1MultiScore = 82.2%) within

the best epoch (epoch nine, total computing time of approx.

16 h, supplement Table 2). Training progress ceased after

the seventh training epoch. Any further training epoch did

not show notable improvement in the control metrics (data

not shown). However, we did not observe overfitting, i.e.,

discrepancies between train_loss and validation_loss,

accuracy_multi and F1MultiScore at higher epochs (sup-

plemental Figure 2). The advantage of dataset splitting at

the patient level vs. random dataset splitting became fur-

ther evident when challenging the two approaches with

entirely new cases of genetically confirmed diagnosis never

presented to the CNN (supplement Table 1). This analysis

revealed a poorer generalization of the random-split model

(supplement Table 3) and was not considered further,

therefore.

Our basic model (Table 3) included all categories

specified (see glossary) and achieved a maximum accu-

racy_multi score of 0.988 after the tenth epoch. The

RecallMulti score for this basic model achieved 0.780 and

showed more variation across our categories (Table 3).

Best PrecisionMulti score and F1MultiScore with applied

weighted averaging were calculated with 0.900 and 0.820,

respectively. The accuracy_multi score was equally high

across the major anatomo-pathological categories

(Table 3). Within this group, best accuracy_multi values

were achieved for FCD2a (0.991) and least for mMCD

(0.955). Overall, the highest values were achieved for DG-

PM (1.000), along with WM-PM (1.000) followed by

BA17-PM (0.998). WM-PM also achieved a high recall

value (1.000), whereas recall for WM-SX reached 0.720.

Samples of white matter (WM) adjacent to the FCD2a and

FCD2b areas showed lower values for precision and recall

(FCD2a-WM (0.290, 0.580), FCD2b-WM (0.450, 0.360).

WM adjacent to mMCD could not be recognized by the

model as a separate class. However, the evaluation results

showed sufficient differentiation between cortex and white

matter in general as did anatomical border zones of the

subarachnoidal space (SUB) or the unstained glass slide

with non-tissue background (NTU). Out of the 8 main

categories, F1 score and recall were lowest for MOGHE

(0.450/0.420), followed by mMCD (0.600, 0.460). FCD2b

(0.830, 0.770) showed higher metrics compared to FCD2a

(0.740, 0.670). Best results could be achieved for BA04-

PM, BA17-PM and DG-PM (see Table 3).

3.1 A weakly supervised classifier approach did
not achieve successful results

In another approach, we collected all slides from FCD1a,

FCD2a, FCD2b, MOGHE and mMCD, extracted approx.

1 9 106 tiles from the entire tissue region of the WSI using

the previously published library [24]. No specific annota-

tion was applied in this approach, i.e., weakly supervised.

All tiles were assigned to one of the five labels mentioned

above. The ResNet18 CNN was trained with five epochs

for approximately two weeks. Neither training nor valida-

tion accuracy reached a level above 50%. This experiment

confirmed the importance and value of our supervised

approach of time-costly histopathology annotation.

3.2 Calculating the most efficient number
of labels/categories for the FCD classifier

Another question pertinent to our approach was to assess

the best and most efficient number of discriminating cate-

gories or the combinations thereof, e.g., grouping together

homotypic neocortices from postmortem and surgical

Table 2 Performance overview

for fivefold cross-validation
Fold 1 2 3 4 5 Mean SD

Accuracy_multi 0.988 0.986 0.988 0.984 0.988 0.987 0.001

PrecisionMulti 0.892 0.898 0.872 0.827 0.896 0.877 0.027

RecallMulti 0.778 0.764 0.796 0.747 0.783 0.774 0.017

F1ScoreMulti 0.818 0.800 0.818 0.764 0.822 0.804 0.022

Metrics for each cross-validation fold with overall mean (mean) and standard deviation (SD)
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tissues and of frontal, temporal and occipital regions, or

grouping anatomical compartments of each disease cate-

gory, i.e., white matter (WM) and adjacent cortices (hCx).

The best performance of the CNN was achieved when all

anatomo-pathological labels were included into the training

and validation process (supplement Table 2). Each of the

aforementioned groupings reached less accuracy. Along

these lines, exclusion of categories such as all postmortem

controls, no tissue regions (NTU) or adjacent FCD com-

partments did not achieve a better performance of the

algorithm. In a next step, we developed a data class to

manage calculated predictions and their graphical repre-

sentation on the WSI by the trained model and to provide

an interpretation aid, i.e., the histopathology classifier

(Fig. 2). All digitally available information was extracted

from the WSI by OpenSlide including the magnification

scale and spatial x and y dimension of each WSI image

under study. This information was necessary to extract tiles

with the same specification used to train the CNN. Then,

the program was able to generate a grid of tiles covering

the entire space of the WSI (1000 9 1000 lm and

1024 9 1024 pixels each; see Fig. 2a). The tiles were fed

into the trained model in a png-format, and their prediction

score was calculated (Fig. 2b). The results of this calcu-

lation were stored with reference to the respective patches.

A raster image was created from these predicted values in

the same dimension as the original patch raster. An algo-

rithm then determined the average prediction probability

for all categories recognized on the slide. Using an

adjustable threshold value, categories with low predictive

values were hidden, e.g.,\ 0.5 (Fig. 2b). A color and

transparency value was calculated for categories above the

Table 3 Detailed metrics for

labeled subcategories within the

basic model

Label accuracy_multi PrecisionMulti RecallMulti F1ScoreMulti

1 BA04-PM 0.9947 0.9500 0.9300 0.9400

2 BA17-PM 0.9981 0.9900 0.9500 0.9700

3 DG-PM 1.0000 1.0000 1.0000 1.0000

4 ECX-PM 0.9955 0.9800 0.4300 0.6000

5 FCD1a 0.9688 0.9400 0.5800 0.7200

6 FCD2a 0.9908 0.8200 0.6700 0.7400

7 FCD2a-WM 0.998 0.290 0.580 0.390

8 FCD2a-hCx 0.996 0.750 0.610 0.670

9 FCD2b 0.989 0.890 0.770 0.830

10 FCD2b-WM 0.984 0.450 0.360 0.400

11 FCD2b-hCx 0.972 0.970 0.430 0.590

12 FLX-PM 0.989 0.820 0.740 0.780

13 MOGHE 0.970 0.490 0.420 0.450

14 MOGHE-hCx 0.970 0.730 0.310 0.430

15 NTU 0.995 0.970 1.000 0.980

16 OCX-PM 0.994 0.680 0.650 0.660

17 OCX-SX 0.979 0.800 0.250 0.380

18 SUB-PM 0.998 0.980 0.950 0.970

19 SUB-SX 0.997 0.990 0.980 0.990

20 TLX-PM 0.991 0.940 0.880 0.910

21 WM-PM 1.000 1.000 1.000 1.000

22 WM-SX 0.963 0.760 0.720 0.740

23 mMCD 0.955 0.870 0.460 0.600

24 mMCD-WM 0.993 0.000 0.000 0.000

25 mMCD-hCx 0.989 0.900 0.590 0.710

Weighted average 0.988 0.900 0.780 0.820

label = BA04 Brodmann area 4; BA17 Brodmann area 17; PM post mortem; OCX occipital cortex; SX

surgical sample; FLX frontal cortex; TLX temporal cortex; ECX entorhinal cortex; DG Dentate Gyrus;

WM white matter; mMCD mild malformation of cortical development; hCx homotypic cortex; MOGHE

mMCD with oligodendroglial hyperplasia; FCD1a Focal Cortical Dysplasia ILAE Type 1a; FCD2a Focal

Cortical Dysplasia ILAE Type 2a; FCD2b Focal Cortical Dysplasia ILAE Type 2b; NTU no tissue; SUB

subarachnoidal space; all defining histological features were specified in the Glossary; accuracy_multi,

PrecisionMulti, RecallMulti, F1ScoreMulti were calculated as described in Material and Methods
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prediction threshold, and which were based on a pre-de-

fined RGB color code table depending on the prediction

probability as defined by the user (Fig. 2c). A thumbnail of

the original WSI image was assembled from the individual

png-formatted tiles, anticipating the large file size of each

original WSI. The raster image was scaled up to the size of

the generated thumbnail, and the two images were merged

using an alpha channel and the pillow software package

[10]. Our first visualization attempts confirmed the benefit

of helper categories such as non-tissue background (NTU)

and the subarachnoidal space (SUB-PM and SUB-SX) for

training the CNN in order to improve the graphical output

of the classifier. During each experiment, we applied the

visualization program to 20 randomly selected cases of the

validation cohort and microscopically reviewed regions of

the slides identified by the CNN with an accuracy threshold

above 0.5. This analog review confirmed the presence of

the predicted lesion in all our cases, i.e., BA17, BA4, DG,

mMCD, MOGHE, FCD1a, FCD2a and FCD2b. This sys-

tem was further tested using WSI of genetically defined

disease probes of MOGHE-SLC35A2 altered, FCD2a-

DEPDC5 altered and FCD2b-MTOR altered. These

histopathologically and genetically defined cases were not

seen by the CNN before and were correctly assigned to

their respective category (Fig. 2e, f).

A third approach addressed the potential disease dif-

ferentiating anatomo-pathological signatures recognized by

the CNN. We downloaded, therefore, the most accurately

recognized tiles from the training and validation cohort of

the CNN with a predicted confidence C 0.99 for micro-

scopy review. It was evident from this analysis that the

CNN has captured the specific disease tissue pattern for

each category. Prominent examples are depicted in Fig. 3

showing the clusters of increased oligodendroglial cell

densities in MOGHE, dysmorphic and balloon cells in

FCD2b and excessive microcolumnar cortical architecture

in FCD1a. An online accessible reviewing program was

programmed and made accessible online to nine interna-

tionally renowned colleagues experienced in the classifi-

cation of epilepsy-associated brain lesions to survey their

agreement with our CNN’s prediction. This study disclosed

that 62.47% of the CNN’s best tiles would have been

classified as the respective brain disorder also by inde-

pendent external referees, i.e., MOGHE, FCD1a, FCD2a,

FCD2b (ranging from 10 to 96%, and kappa values ranging

from poor (- 0.80) to almost perfect (0.92), respectively;

see Table 4).

Training results as well as the expert panel agreement

trial suggested that our model was able to recognize

complex tissue patterns within large WSI tiles with rea-

sonable accuracy. To improve transparency of the model’s

decision-making process, we applied several discrimina-

tion software tools and algorithms for this interpretation

using open access libraries, e.g., LIME [28], Captum

[https://doi.org/10.48550/arXiv.2009.07896] with Guided-

Grad-CAM [https://doi.org/10.48550/arXiv.1610.02391],

integrated gradients [https://doi.org/10.48550/arXiv.1703.

01365], an occlusion procedure [https://doi.org/10.48550/

arXiv.1311.2901] as well as the torchcam library

[github.com/frgfm/torch-cam] and the therein included

Layer-CAM approach [https://doi.org/10.1109/TIP.2021.

3089943] to visualize the common patterns of tissue tex-

ture as a heatmap trained in the model and which can help

us guiding the microscopic examination of a surgical

specimen [19] (Fig. 4).

We further investigated the class activation across

convolution levels of our trained ResNet18 model applying

the torchcam library and Layer-CAM approach included

therein (Fig. 5). This analysis showed evidence for feature

recognition taking place from layer 2 to layer 4 of the

CNN. No more complex features were recognized in earlier

or later convolutional layers of the model.

Finally, we assembled all features of our deep learning-

based histopathology classifier for FCD into a web-based

application to facilitate an automated interpretation of WSI

slides of epilepsy surgery brain tissue (https://fcd-classifier.

eu.ngrok.io). The application has several dashboards to

access and review all of the information. It is important to

note that the user can individually select the anatomical

categories to be reviewed by the model, i.e., 1–25 (see

glossary), and more importantly, that the user can verify

the model’s prediction ad hoc using a digital microscopy

bFig. 2 Evaluation and visualization of a complete WSI slide. a A grid

of tiles each measuring 1000 9 1000 lm, 1024 9 1024 pixel,

respectively, was automatically calculated to cover the entire WSI

image. b Prediction values for each tile were obtained from the

trained CNN. The threshold to visualize the prediction value was

defined as variable and set to 0.5 in this example. c All tiles reaching
the defined threshold can be visualized by our color index map.

Furthermore, the color intensity indicates the probability value. (The

darker the color, the more probable is the prediction and vice versa.)

Values were given on the upper left corner of the output file. d We

used a blurring image filter for the final output image with all

information shown in a–c hidden. Please note that the user can choose
which of the 26 labels should be displayed, e.g., NTU is not shown in

this example. e A validation case example of a WSI obtained from a

patient with histopathologically confirmed FCD2b and genetically

confirmed pathogenic MTOR mosaicism. Color coding of categories

as follows: FCD2b in dark blue (max. confidence = 0.924); FCD 2b

white matter in yellow (max. confidence = 0.969); FCD 2b neocortex

in light blue (max. confidence = 0.367); FCD2a (X) and MOGHE

(Y) were spotted across the WSI with low confidence (\ 0.415,

0.562) and were histopathologically not confirmed. f A validation

case example of a WSI obtained from a patient with histopatholog-

ically confirmed MOGHE and SLC35A2 mutation. Red color coding

for the prediction of MOGHE with a maximum confidence score of

1.000 and average confidence score of 0.916. The prediction score of

FCD1a (Z) and FCD2a (not visible at upper right) was below 0.534

and 0.328, respectively. Other categories were not recognized herein
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tool. Figures 6, 7, 8 and 9 will help to guide through the

application and get acquainted with its functionality.

However, this version has a database of readily uploaded

WSI images as the model can currently process only ndpi-

image formats obtained from 4–5 lm thin and HE-stained

FFPE sections.

The possibility to review each tile’s prediction score at

the microscopic level is of utmost importance to validate

the AI-based approach and to achieve a final and reliable

histopathology diagnosis in routine practice.

4 Discussion

We developed a WSI-based deep learning algorithm to

automatically detect and further classify FCD in epilepsy

surgery brain specimen, including those entities newly

introduced in to the ILAE consensus FCD classification

update of 2022, i.e., mMCD and MOGHE [22]. Compre-

hensive training and validation experiments revealed a

success rate for the prediction of a total of 25 categories at

98.9%. The predicted categories can then be visualized at a

high spatial resolution on the WSI by color coding and

additional metrics to further specify these results. This

prototype can be used online for diagnostic routine

assessments and may become a template for a digital slide

suite for neuropathology and epilepsy surgery in the near

future. Notwithstanding, such an automated diagnostic

device shall only support the diagnostic workup as a

screening tool, e.g., when large surgically resected en bloc

brain samples were submitted for neuropathology exami-

nation, and will not replace the microscopic inspection by

an experienced and board certified neuro-/pathologist.

Fig. 3 Best tile prediction of the CNN with confidence scores above

0.99. a MOGHE with increased oligodendroglial cell density at the

upper left (arrow). b FCD ILAE Type 1a with excessive micro-

columns of the neocortex (arrow). c FCD ILAE Type 2a with

dysmorphic neurons (arrow). d FCD ILAE Type 2b with dysmorphic

neurons and balloon cells (arrow). HE staining. Scale bar in

D = 200 lm applies also to A-C

Table 4 Independent expert

review of 50 best tiles of each

disease category predicted by

the trained ResNet18 model

Reviewer FCD1a FCD2a FCD2b MOGHE Total

A 70.00 (0.40) 92.00 (0.84) 96.00 (0.92) 84.00 (0.68) 85.50 (0.71)

B 18.00 (- 0.64) 80.00 (0.60) 60.00 (0.20) 50.00 (0.00) 52.00 (0.04)

C 10.00 (- 0.80) 96.00 (0.92) 52.00 (0.04) 64.00 (0.28) 55.50 (0.11)

D 46.00 (- 0.08) 60.00 (0.20) 38.00 (- 0.24) 38.00 (- 0.24) 45.50 (- 0.09)

E 24.00 (- 0.52) 42.00 (- 0.16) 32.00 (- 0.36) 38.00 (- 0.24) 34.00 (- 0.32)

F 42.00 (- 0.16) 42.00 (- 0.16) 34.00 (- 0.32) 40.00 (- 0.20) 39.50 (- 0.21)

G 68.00 (0.36) 78.00 (0.56) 84.00 (0.68) 22.00 (- 0.56) 63.00 (0.26)

H 32.00 (- 0.36) 76.00 (0.52) 72.00 (0.44) 66.00 (0.32) 61.50 (0.23)

J 92.00 (0.84) 94.00 (0.88) 68.00 (0.36) 70.00 (0.40) 81.00 (0.62)

Total 56.89 (0.23) 67.78 (0.36) 66.33 (0.33) 58.89 (0.18) 62.47 (0.25)

Nine independent experts (A–J) were invited to review 50 best tiles predicted by the model with a

confidence score C 0.99. Please note that the agreement among experts varied substantially across all

disease categories, i.e., from poor (kappa = - 0.80/red) to almost perfect (k = 0.84/green) for FCD1a, from

k = - 0.16 to k = 0.92 for FCD2b, from k = - 0.36 to k = 0.92 for FCD2a and from k = - 0.56 to 0.68

for MOGHE. Total—average across all values per category (columns) and across experts (rows). Each first

number = percentage of agreed diagnosis from 50 best tiles. Number in brackets = calculated kappa value

and assigned as following: POOR\ 0.00; SLIGHT = 0.00–0.20; FAIR = 0.21–0.40; MODERATE =

0.41–0.60; SUBSTANTIAL = 0.61–0.80; ALMOST PERFECT = 0.81–1.00 [21]
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To the best of our knowledge, our deep learning-based

histopathology classifier of FCD is first to process large

image tiles of 1000 9 1000 lm. Digital tiles of this size

represent a rich brain tissue texture with complex cellular

and extracellular content, e.g., the various neuronal profiles

of different diameter and shape, orientation and architec-

tural organization in layers. The same holds true for the

various glial cell types, endothelial cells, blood vessel

diameter and the large extracellular space comprising

almost 20% of the adult brain tissue [25, 27]. In addition,

perisurgical and laboratory artifacts, e.g., bleeding, wrin-

kles and scratches, were often included in such large tiles

and also challenge this approach. During the experimental

training phases, the question arose whether a 1 mm2 tile

size is suited for this classifier challenge as all previous

models have used smaller images focusing only on the

disease-specific cellular pattern, e.g., dysmorphic neurons

w/o calcification in cortical tubers vs. FCD2b [8, 19] as

well as addressing specific histopathology domains, such as

carcinoma islets [8], pituitary glands or immunohisto-

chemical staining patterns [24]. We computed smaller tiles,

therefore, during the course of this project, e.g., of

224 9 224 and 512 9 512 pixel. Accuracy scores were

lower in all of these conditions (data not shown), and we

concluded from these results the algorithm’s difficulty to

Fig. 4 Automated pattern recognition of tile content and its tissue

texture. Different approaches for the interpretation of the classifier’s

prediction. From left to right: a original HE WSI tile of histopatho-

logically confirmed FCD2a and recognized as FCD2a by our classifier

as base; b Captum integrated gradients; c Captum with guided

gradients, B and C recognized dysmorphic neurons at different

sensitivity levels; d an occlusion algorithm visualized no specific

cellular pattern and was not further investigated; e interpretation of

the discriminating image area for the classifiers’ prediction based on

the python library LIME; and f torchcam library (see also Fig. 5). g, h
Higher magnification of same HE WSI shown above with integrated

gradient interpretation recognizing dysmorphic neurons of FCD2a; i–j
integrated gradient interpretation recognizing balloon cells of FCD2b;

k–l integrated gradient interpretation recognizing microcolumns of

FCD1a. Color coding of the interpretation maps: dark = low with

min. of 0.0, light = high with max of 1.0

Fig. 5 Layered ResNet18 activation of complex tissue patterns.

a Input image at 1024 9 1024 pixel. b Activation of convolutional

layer 1. No features were detected by the network (512 9 512 pixel);

c Pattern recognition was strongest at layer 2 as indicated by a color

scale from dark (0.0) to light (1.0), size of activation map 256 9 256

pixel; and d, e No detection of additional complex features in the

following network layers 3 and 4. f, g Reinforcement of activation in

already recognized image areas through interpolation of the decreas-

ing activation maps in the course of the model, i.e., layers 5 and 6

(64 9 64 pixel and 32 9 32 pixel, respectively). h Superimposed

image of all layer activations highlighted predominantly areas of

dysmorphic neurons as confirmed by the input image in A. White and

red arrows in A-H repeatedly point to same two regions with

dysmorphic neurons as recognized by the model
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differentiate FCD while admixed with normal brain tissue

of the neocortex and white matter.

We reviewed the microcopy signature of best predicted

tiles chosen by the CNN ([ 0.99) for each category and

recognized the prototypical tissue texture (Fig. 3). In

addition, we applied several discrimination software tools

to highlight the CNN’s activation using open access

libraries (Fig. 4). Results confirmed the recognition of

prototypical tissue texture including cellular disease hall-

marks, e.g., dysmorphic neurons in FCD2a and FCD2b and

excessive microcolumns in FCD 1a (Figs. 4, 5). This is an

interesting observation given the similarity of many

histopathology features and the variability of normal

anatomical landmarks. As an example, the microcolumnar

architecture defining FCD1a was also reported to be par-

tially presented in normal brain, in particular in the

occipital region close or adjacent to BA17 [16]. Giant cells

of Betz characterize Brodmann area 4 in the frontal lobe

and may be difficult to differentiate from dysmorphic

neurons in FCD2 of the frontal lobe (supplemental Fig-

ure x1A). Our trained application never reported this issue,

however. White matter was always differentiated from

neocortex based on HE staining alone, and the edges of the

tissue specimen were always correctly recognized by the

model, i.e., the subarachnoidal space. The assignment of

different white matter categories still poses the biggest

challenge to the system (Table 3), whether it belongs to

normal brain obtained from patients without any epileptic

disorders or to mMCD characterized by an excess of

heterotopic neurons in the white matter or to MOGHE with

increased oligodendroglial cell densities. Results predicted

by the system should, therefore, always be confirmed by

microscopic inspection of an experienced and specialized

neuro-/pathologist and preferably also by specific

immunohistochemical markers as recommended by the

ILAE classification schemes [2, 7].

We took this approach to another level and invited nine

histopathologists around the world and experienced in

epilepsy surgery to review the 50 best tiles selected by the

CNN (Table 4). This trial was not designed to challenge the

CNN’s selection but rather understand its prediction rules.

The results were stunning and very much comparable to the

variable inter-rater agreement of previous histopathology

trials in epilepsy surgery when presenting analog glass

slides or digital WSI series to be iteratively reviewed by

expert panels [4, 9, 11]. Such agreement scores reached

62.5% in one study [9], with best values for FCD Type 2

and lowest for FCD Type 1, respectively. Similarly, a

kappa value of 0.64 was reported for the FCD classification

scheme of 2011 with best consensus for FCD Type 2 cat-

egories [11]. A more recent approach achieved a kappa

score of 0.65 only after four rounds of microscopic review

and when molecular testing was disclosed [4]. These scores

were pretty similar to those obtained in our current study,

however. Overall, our inter-rater agreement varied between

10 and 96% across the expert panel with kappa values

Fig. 6 Landing page of the online FCD classifier application. 1 First,

go to the accordion-tab on the left to select your WSI of interest (see

also Fig. 7). A set of WSI slides is already stored in its database.

Future versions will enable the upload of external WSI. Technical

issues to allow different WSI formats and size need to be adjusted,

however. This tab also allows to choose among trained classifier

models. Currently, the herein described basic ResNet18 and One-vs-

All FCD2b models can be selected (supplement Table 2), but future

applications may envisage different topic-specific models addressing

the larger spectrum of lesions associated with epilepsy surgery [6]. 2
Adjust the visual representation of the classifier’s prediction (see

Fig. 8 for more detail). 3 Output area: at this entry level it provides a

short instruction manual. At other stages it reveals the status of the

system during/after the calculation process, or will allow zooming,

panning and saving of the output image. 4 Access to live microscopy

review of a chosen area of interest (HE-stained WSI, Fig. 9). 5 To

review the model’s prediction scores of all chosen categories. 6
Receive a report
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ranging from poor (- 0.80) to almost perfect (0.96). The

category with best agreement was that of FCD2a, for which

three raters reached an almost perfect kappa score of[
0.81. In contrast, the FCD1a category achieved agreement

with the CNN’s selection in 10% to 92% of tiles and kappa

values ranging from - 0.80 (poor) to 0.84 (almost perfect).

While these numbers tell us that some raters could recog-

nize the features selected by the CNN, the subjective nature

of human microscopy studies in FCD remains an ever-

challenging issue. This assumption also supports our

foremost study aim to develop an AI-based histopathology

classifier to support difficult-to-diagnose FCD lesions at the

microscopy level.

Another application of this model could be the recog-

nition of double pathologies which is currently not inclu-

ded in the ILAE classification of FCD. Although we have

not systematically performed such studies with this new

classifier, the probability that architectural dysplasia of

FCD ILAE Type 1 can occur in the vicinity of FCD Type 2

lesions caught our attention in several cases (see Fig. 2f)

and shall be further examined in the near future. Another

challenge remains, however, that the model falsely assigns

small regions or individual tiles to a different disease cat-

egory when the majority of tiles were predictive otherwise.

An example is also shown in Fig. 2e, f with genetically

confirmed FCD2b or MOGHE and small islets of other

FCD entities identified herein by our model. It is important

to review the prediction score, which was below 0.5 in both

cases confirming a low probability of such a double

pathology. Visual inspection of the microscopic slide did

also not confirm the presence of additional pathologies. We

recommend to use this classifier, therefore, as a screening

tool in which areas with a high probability rate should be

microscopically reviewed to achieve a final diagnosis.

Despite the great success in the application of CNN in

the arena of digital pathology, we have to also consider its

limitation. Poor traceability of the decision-making process

is due to the complexity of CNN architectures. We

addressed this issue (see Fig. 4) but cannot further resolve

the nature of its decision-making, yet. Another limitation in

the context of digital pathology reflects on the robustness

of generalization. We cannot exclude overfitting from use

of a single scanner model and protocols established in our

histopathology laboratory, including formalin fixation,

Fig. 7 How to pick your slide and DL model. Please click on the

‘‘predict on wsi file’’ accordion in the upper left to start the

application. Two file selection dialogs will be presented in order to

choose a WSI file (shown on left) and a trained prediction

model (shown on right). The application already provides WSI files

obtained from epilepsy surgery as well as two trained models:

01_all_resnet18.mod representing our basic model (Table 3); the

second model represents the One-vs-All model for FCD2b (supple-

ment Table 2). File upload is not enabled in this version. In addition,

the selection list is secured by an informatics sandbox. Take the

following steps to complete this task. 1 Select your slide of interest. 2
Push ‘‘select’’ to confirm your selection. 3 Select your DL model. 4

Push ‘‘select’’ to confirm your selection. 5 You can use sliders to

manually adapt the parameters of the image. Please note that

dimension and resolution must match that of the trained model, i.e.,

1024 9 1024 pixels and image edge length of 1000 mm. These are

set as default and should not be changed. 6 Choose your inference

mode. In ‘‘normal’’ mode, each extracted tile is scored simple. In the

‘‘test-time augmentation’’ (tta) mode, each tile is evaluated four times

to further augment the image output. This procedure takes signif-

icantly longer in time. 7 Push the ‘‘predict’’ button to start the

algorithm. Calculation progress can be followed on the output area

(Fig. 6)
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paraffin embedding, tissue cutting and use of staining dyes

(Schmitt et al. 2021; https://doi.org/10.2196/23436). These

issues need to be addressed in future studies when testing

the model with datasets from different laboratories. Pre-

vious experiments showed also that CNN networks are

vulnerable to adversarial attacks, when smallest permuta-

tions at the pixel level of an input image can cause a

change in the predicted value of a classification model (Su

et al. 2017; https://doi.org/10.48550/arXiv.1710.08864).

Other approaches have used artificially produced images

that are completely unrecognizable to humans, but can

force CNN’s to predict outcomes with high confidence,

(Nguyen et al. 2014; https://doi.org/10.48550/arXiv.1412.

1897, Kumano et al. 2020; https://doi.org/10.48550/arXiv.

2012.03843). This implies that a trained classification

model should only be used with image inputs for which it

was explicitly trained to avoid misclassification. In addi-

tion, a basic knowledge of the structure and functionality of

the classification network is necessary to ensure its correct

handling and interpretation of results. This notion demands

data preselection and coarse pre-classification by a

pathology expert in the context of digital neuropathology

of epilepsy surgery. As mentioned above, we unanimously

mandate to use such tools in the future as diagnostic aid to

reduce work burden but not to replace the diagnostic

decision maker.

Fig. 8 Use various display options to visualize the results. The box

‘‘overview’’ of the middle panel will reveal the computed prediction

map for the WSI. The accordion on the left allows to modify the

display options by selecting either all anatomic categories available

for the model or a preselection thereof. Check boxes on left to make a

choice. Please note that only checked as well as recognized categories

will be shown. For your convenience, maximum and average

confidence scores for those categories detected are readily visible

on the upper left of the image. The sliders on the lower left allow to

adjust the graphic presentation with more or less ‘‘blurring’’ to

visualize all tiles. ‘‘Transparency’’ is a measure of the detection

probability. The AVG-threshold slider can be applied to define or

modify the prediction threshold. Only tiles above this threshold will

then be shown in the image. The last tab on the lower left allows the

user to choose the display mode. The application offers different

illustrations of color-coded tiles, e.g., as clouds, rectangles or circles,

each with/out recognition scores as attached legend (see supplement

Figure 2). When color-coded circles are chosen, the diameter of each

circle indicates the level of the detection probability. The output

image will be recalculated and displayed in the middle panel

following each change of display options. Please accept any time

delay of the output results after each interactive adaptation of the user

due to data transfer and recalculation ([ 5–10 s). Results will best

displayed at 16:9 scaled monitors. Asterisk in overview: the output

table is magnified on lower right for better readability

12788 Neural Computing and Applications (2023) 35:12775–12792

123

https://doi.org/10.2196/23436
https://doi.org/10.48550/arXiv.1710.08864
https://doi.org/10.48550/arXiv.1412.1897
https://doi.org/10.48550/arXiv.1412.1897
https://doi.org/10.48550/arXiv.2012.03843
https://doi.org/10.48550/arXiv.2012.03843


4.1 A free access, online application of the FCD
classifier

We developed a web-based open access application to use

our FCD classifier on a daily diagnostic routine basis. This

application may also become helpful in view of the first

update of the FCD consensus classification scheme of the

ILAE [22]. This update includes for the first time the

histopathologically difficult-to-diagnose disease entities of

mMCD and MOGHE, and our model can help to train

colleagues not yet familiar with these diagnosis online. The

application prototype is accessible via https://fcd-classifier.

eu.ngrok.io. A user will have to register to the platform to

get free access (please send an email with your registration

request to the senior authors). Currently, the application

has a database of securely stored WSI for testing purpose

as our analysis pipeline is able to compute only WSI of the

Hamamatsu scanning.ndpi/.ndpa formats, however. Further

advancements to add conventional WSI formats are in

progress but largely pending on the availability of a

common DICOM format offered from all vendors [18]. It

will also be mandatory that the FFPE tissue section has a

cutting thickness of 4–5 lm and the HE staining protocol

was performed according to ILAE recommendations [2].

The large WSI file size is another hurdle for any transfer

and upload pipeline and should be limited, therefore, to

\ 3 Gb.

In conclusion, we developed an AI-based histopathology

classifier to support routine diagnosis of FCD samples

obtained from epilepsy surgery. The ResNet18-trained

classifier currently recognizes 25 anatomo-pathological

categories of five major disease entities compared to nor-

mal human neocortex. Major achievements include the use

of large 1 mm2 WSI tiles allowing to recognize the disease

phenotype admixed with an otherwise normal appearing

human neocortex or white matter. Extraction of the acti-

vation patterns showed concordance with disease defining

cellular phenotypes which was also confirmed by our

invited expert panel. However, the low concordance among

histopathology experts is an ongoing challenge in the

Fig. 9 Review the results. This figure describes the functionality of

the three tabs on the upper right of the application (see Fig. 6), i.e.,

selection, predictions and slide report in rectangle mode with legend

display. You can review the original histopathology image (WSI

slide) of each tile to confirm or challenge the model’s prediction.

Click on any region of interest on the output image, e.g., tile 141

(indicated by white circle on output image). 1 A gray-colored

thumbnail with a resolution of 1024 9 1024 pixels will be displayed

for this tile. 2 If the\\detail-view[[ button is pressed, this tile is

retrieved from the WSI file and the HE staining accessible at high

resolution for the user’s digital microscopy review. 3 The prediction

scores for the selected tile were disclosed for all categories (... to

secure space on this image we removed few categories without any

further information). 4 A slide report can be issued for the studied

WSI: 1st column: selected categories (label); 2nd column: number of

tiles assigned to this class (count); 3rd column: sum of predicted

scores of all tiles assigned to this category (sum); 4th column: highest

prediction score (0–1) calculated for any tile of this category (max);

and 5th column (not shown): average value of all predictions across

all tiles of this category (avg). The footer displays the leading class

(category) for this WSI. In this example, the model predicts FCD2a

with an average prediction score of 85%
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neuropathological examination of epilepsy surgery brain

tissue specimens and may be resolved by introducing our

AI-based algorithm available online and open access to the

worldwide community of neuro-/pathologists.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00521-

023-08364-9.
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20. Lamberink HJ, Otte WM, Blümcke I, Braun KPJ (2020) Seizure

outcome and use of antiepileptic drugs after epilepsy surgery

according to histopathological diagnosis: a retrospective multi-

centre cohort study. Lancet Neurol 19:748–757. https://doi.org/

10.1016/s1474-4422(20)30220-9

21. Landis JR, Koch GG (1977) The measurement of observer

agreement for categorical data. Biometrics 33:159–174

22. Najm I, Lal D, Vanegas MA, Cendes F, Lopes-Cendes I, Palmini

A, Paglioli E, Sarnat H, Walsh CA, Wiebe S et al (2022) The

ILAE consensus classification of Focal Cortical Dysplasia (FCD):

an update proposed by an ad hoc Task Force of the ILAE

Diagnostic Methods commission. Epilepsia 63:1899–1919
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HP, Paris, France

12 International Center for Epilepsy Surgery, Hospital HMG,
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