Skip to main content
Log in

Outlier-resistant variance-constrained \(\mathit{H}_{\infty }\) state estimation for time-varying recurrent neural networks with randomly occurring deception attacks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper investigates the outlier-resistant variance-constrained \(H_{\infty }\) state estimation problem for a class of discrete time-varying recurrent neural networks with randomly occurring deception attacks. The randomly occurring deception attacks are modeled by a series of random variables satisfying the Bernoulli distribution with known probability. In addition, the saturation function is introduced to reduce the negative impact from the measurement outliers onto the estimation performance. The objective of this paper is to propose an outlier-resistant finite-horizon state estimation scheme without utilizing the augmentation method such that, in the presence of measurement outliers and randomly occurring deception attacks, some sufficient criteria are obtained ensuring both the desired \(H_{\infty }\) performance index and the error variance boundedness. Finally, a numerical example is used to illustrate the feasibility of the presented outlier-resistant variance-constrained \(H_{\infty }\) state estimation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Sakthivel R, Aravinth N, Aouiti C, Arumugam K (2021) Finite-time synchronization of hierarchical hybrid coupled neural networks with mismatched quantization. Neural Comput Appl 33(24):16881–16897

    Google Scholar 

  2. Dong L, Zhang H, Yang K, Zhou D, Shi J, Ma J (2022) Crowd counting by using Top-k relations: a mixed ground-truth CNN framework. IEEE Trans Consum Electron 68(3):307–316

    Google Scholar 

  3. Morocho-Cayamcela ME, Lim W (2021) Pattern recognition of soldier uniforms with dilated convolutions and a modified encoder-decoder neural network architecture. Appl Artif Intell 35(6):476–487

    Google Scholar 

  4. Vladimir G, Yury M, Natalya K (2022) Pattern recognition techniques for classifying aeroballistic flying vehicle paths. Neural Comput Appl 34(5):4033–4045

    Google Scholar 

  5. Liao M, Wang C, Sun Y, Lin H, Xu C (2022) Memristor-based affective associative memory neural network circuit with emotional gradual processes. Neural Comput Appl 34(16):12667–13682

    Google Scholar 

  6. Zhou Y, Jiao X (2021) Intelligent analysis system for signal processing tasks based on LSTM recurrent neural network algorithm. Neural Comput Appl. https://doi.org/10.1007/s00521-021-06478-6

    Article  Google Scholar 

  7. -Blanco EF, Rivero D, Pazos A (2020) EEG signal processing with separable convolutional neural network for automatic scoring of sleeping stage. Neurocomputing 410:220–228

    Google Scholar 

  8. Tan KH, Lin FJ, Shih CM, Kuo CN (2020) Intelligent control of microgrid with virtual inertia using recurrent probabilistic wavelet fuzzy neural network. IEEE Trans Power Electron 35(7):7451–7464

    Google Scholar 

  9. Shen H, Xing M, Huo S, Wu ZG, Park JH (2019) Finite-time \(H_{\infty }\) asynchronous state estimation for discrete-time fuzzy Markov jump neural networks with uncertain measurements. Fuzzy Sets Syst 356:113–128

    MATH  Google Scholar 

  10. Hu J, Jia C, Liu H, Yi X, Liu Y (2021) A survey on state estimation of complex dynamical networks. Int J Syst Sci 52(16):3351–3367

    MathSciNet  Google Scholar 

  11. Jia X-C (2021) Resource-efficient and secure distributed state estimation over wireless sensor networks: a survey. Int J Syst Sci 52(16):3368–3389

    MathSciNet  MATH  Google Scholar 

  12. Ge X, Han Q-L, Wang Z (2019) A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans Cybern 49(1):171–183

    Google Scholar 

  13. He J, Liang Y, Yang F, Yang F (2020) New \(H_{\infty }\) state estimation criteria of delayed static neural networks via the Lyapunov–Krasovskii functional with negative definite terms. Neural Netw 123:236–247

    MATH  Google Scholar 

  14. Dong H, Hou N, Wang Z, Ren W (2018) Variance-constrained state estimation for complex networks with randomly varying topologies. IEEE Trans Neural Netw Learn Syst 29(7):2757–2768

    MathSciNet  Google Scholar 

  15. Gao Y, Hu J, Chen D, Du J (2019) Variance-constrained resilient \(H_{\infty }\) state estimation for time-varying neural networks with randomly varying nonlinearities and missing measurements. Adv Differ Equ 1:380

    MathSciNet  MATH  Google Scholar 

  16. Liu L, Ma L, Zhang J, Bo Y (2021) Distributed non-fragile set-membership filtering for nonlinear systems under fading channels and bias injection attacks. Int J Syst Sci 52(6):1192–1205

    MathSciNet  MATH  Google Scholar 

  17. Ding D, Han Q-L, Wang Z, Ge X (2019) A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans Ind Inf 15(5):2483–2499

    Google Scholar 

  18. Shen B, Wang Z, Wang D, Li Q (2020) State-saturated recursive filter design for stochastic time-varying nonlinear complex networks under deception attacks. IEEE Trans Neural Netw Learn Syst 31(10):3788–3800

    MathSciNet  Google Scholar 

  19. Pang Z-H, Fan L-Z, Dong Z, Han Q-L, Liu G-P (2022) False data injection attacks against partial sensor measurements of networked control systems. IEEE Trans Circuits Syst II Express Br 69(1):149–153

    Google Scholar 

  20. Pang Z-H, Fan L-Z, Sun J, Liu K, Liu G-P (2021) Detection of stealthy false data injection attacks against networked control systems via active data modification. Inf Sci 546:192–205

    MathSciNet  Google Scholar 

  21. Zhang J, Song J, Li J, Han F, Zhang H (2021) Observer-based non-fragile \(H_{\infty }\)-consensus control for multi-agent systems under deception attacks. Int J Syst Sci 52(6):1223–1236

    MathSciNet  MATH  Google Scholar 

  22. Ding D, Han Q-L, Xiang Y, Ge X, Zhang X (2018) A survey on security control and attack detection for industrial cyber-physical systems. Neurocomputing 275:1674–1683

    Google Scholar 

  23. Ding D, Wang Z, Ho DWC, Wei G (2017) Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks. Automatica 78:231–240

    MathSciNet  MATH  Google Scholar 

  24. Feng Z, Wen G, Hu G (2017) Distributed secure coordinated control for multiagent systems under strategic attacks. IEEE Trans Cybern 47(5):1273–1284

    Google Scholar 

  25. Yoo SJ (2020) Neural-network-based adaptive resilient dynamic surface control against unknown deception attacks of uncertain nonlinear time-delay cyberphysical systems. IEEE Trans Neural Netw Learn Syst 31(10):4341–4353

    MathSciNet  Google Scholar 

  26. Liu J, Xia J, Tian E, Fei S (2018) Hybrid-driven-based \(H_{\infty }\) filter design for neural networks subject to deception attacks. Appl Math Comput 320:158–174

    MathSciNet  MATH  Google Scholar 

  27. Catak FO, Mustacoglu AF (2019) Distributed denial of service attack detection using autoencoder and deep neural networks. J Intell Syst 37(3):3969–3979

    Google Scholar 

  28. Wang X, Ding D, Ge X, Han Q-L (2022) Neural-network-based control for discrete-time nonlinear systems with denial-of-service attack: the adaptive event-triggered case. Int J Robust Nonlinear Control 32(5):2760–2779

    MathSciNet  Google Scholar 

  29. Amma NGB, Selvakumar S (2022) Optimization of vector convolutional deep neural network using binary real cumulative incarnation for detection of distributed denial of service attacks. Neural Comput Appl 34(4):2869–2882

    Google Scholar 

  30. Ding D, Shen Y, Song Y, Wang Y (2016) Recursive state estimation for discrete time-varying stochastic nonlinear systems with randomly occurring deception attacks, sensor saturation and denial-of-service attacks. Int J Gen Syst 45(5):548–560

    MathSciNet  MATH  Google Scholar 

  31. Qi W, Lv C, Park JH, Zong G, Cheng J, Shi K (2022) SMC for semi-Markov jump cyber-physical systems subject to randomly occurring deception attacks. IEEE Trans Circuits Syst II-Express Br 69(1):159–163

    Google Scholar 

  32. Song W, Wang Z, Wang J, Shan J (2021) Particle filtering for a class of cyber-physical systems under round-robin protocol subject to randomly occurring deception attacks. Inf Sci 544:298–307

    MathSciNet  MATH  Google Scholar 

  33. Hou N, Wang Z, Ho DWC, Dong H (2020) Robust partial-nodes-based state estimation for complex networks under deception attacks. IEEE Trans Cybern 50(6):2793–2802

    Google Scholar 

  34. Gao C, He X, Dong H, Liu H, Lyu G (2022) A survey on fault-tolerant consensus control of multi-agent systems: trends, methodologies and prospects. Int J Syst Sci. https://doi.org/10.1080/00207721.2022.2056772

    Article  MathSciNet  MATH  Google Scholar 

  35. Gao C, Wang Z, He X, Dong H (2022) Fault-tolerant consensus control for multiagent systems: an encryption-decryption scheme. IEEE Trans Autom Control 67(5):2560–2567

    MathSciNet  MATH  Google Scholar 

  36. Shen Y, Wang Z, Shen B, Dong H (2021) Outlier-resistant recursive filtering for multisensor multirate networked systems under weighted try-once-discard protocol. IEEE Trans Cybern 51(10):4897–4908

    Google Scholar 

  37. Li J, Wang Z, Dong H, Ghinea G (2021) Outlier-resistant remote state estimation for recurrent neural networks with mixed time-delays. IEEE Trans Neural Netw Learn Syst 32(5):2266–2273

    MathSciNet  Google Scholar 

  38. Fu H, Dong H, Han F, Shen Y, Hou N (2020) Outlier-resistant \(H_{\infty }\) filtering for a class of networked systems under round-robin protocol. Neurocomputing 403:133–142

    Google Scholar 

  39. Alessandri A, Zaccarian L (2018) Stubborn state observers for linear time-invariant systems. Automatica 88:1–9

    MathSciNet  MATH  Google Scholar 

  40. Shen B, Wang Z, Qiao H (2017) Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements. IEEE Trans Neural Netw Learn Syst 28(5):1152–1163

    Google Scholar 

  41. Shen B, Wang Z, Shu H, Wei G (2011) \(H_{\infty }\) filtering for uncertain time-varying systems with multiple randomly occurred nonlinearities and successive packet dropouts. Int J Robust Nonlinear Control 21(14):1693–1709

    MathSciNet  MATH  Google Scholar 

  42. Dehghani A, Seyyedsalehi SA (2022) Time-frequency localization using deep convolutional maxout neural network in Persian speech recognition. Neural Process Lett. https://doi.org/10.1007/s11063-022-11006-1

  43. Shashidhar R, Patilkulkarni S (2022) Audiovisual speech recognition for Kannada language using feed forward neural network. Neural Comput Appl 34(18):15603–15615

    Google Scholar 

  44. Liu B, Cai H, Zhang Z, Ding X, Wang Z, Gong Y, Liu W, Yang J, Wang Z, Yang J (2022) More is less: domain-specific speech recognition microprocessor using one-dimensional convolutional recurrent neural network. IEEE Trans Circuits Syst I-Regul Pap 69(4):1571–1582

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 12171124 and 72001059, the Natural Science Foundation of Heilongjiang Province of China under Grant ZD2022F003, the Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration of China under Grant HPKL-CICS-202203, the Postdoctoral Science Foundation of Heilongjiang Province of China under Grant LBH-Z22199, the Fundamental Research Funds in Heilongjiang Provincial Universities of China under Grant 135509121, the Educational Research Project of the Qiqihar University of China under Grant YB201904, and the Alexander von Humboldt Foundation of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A \(H_{\infty }\) Performance analysis

Proof of Theorem 1:

Define

$$\begin{aligned} \bar{L}_{k}\,=\, & e_{k+1}^{T}Q_{k+1}e_{k+1}-e_{k}^{T}Q_{k}e_{k}. \end{aligned}$$
(A1)

To proceed, considering the EE dynamical system (6), we can get

$$\begin{aligned} \mathbb {E}\{\bar{L}_{k}\}\,=\, & \mathbb {E}\left\{ e_{k}^{T}A_{k}^{T}Q_{k+1}A_{k}e_{k} +f^{T}(e_{k}\right. \nonumber \\{} & {} \left. +\,\hat{x}_{k})B_{k}^{T}Q_{k+1}B_{k}f(e_{k}+\hat{x}_{k})+f^{T}(\hat{x}_{k})B_{k}^{T}\right. \nonumber \\{} & {} \left. \times \, Q_{k+1}B_{k}f(\hat{x}_{k})+v_{k}^{T}C_{k}^{T}Q_{k+1}C_{k}v_{k}\right. \nonumber \\{} & {} \left. +\,\bar{\sigma }_{k}^{T}K_{k}^{T}Q_{k+1}K_{k}\bar{\sigma }_{k}+2e_{k}^{T}A_{k}^{T}Q_{k+1} \right. \nonumber \\{} & {} \left. \times \, B_{k}f(e_{k}+\hat{x}_{k})-2e_{k}^{T}A_{k}^{T}Q_{k+1}K_{k}\bar{\sigma }_{k}-2f^{T}(e_{k}\right. \nonumber \\{} & {} \left. +\,\hat{x}_{k})B_{k}^{T}Q_{k+1}K_{k}\bar{\sigma }_{k} \right. \nonumber \\{} & {} \left. -\,2e_{k}^{T}A_{k}^{T}Q_{k+1}B_{k}f(\hat{x}_{k})-2f^{T}(e_{k}\right. \nonumber \\{} & {} \left. +\,\hat{x}_{k})B_{k}^{T}Q_{k+1}B_{k}f(\hat{x}_{k})+2\bar{\sigma }_{k}^{T}K_{k}^{T}\right. \nonumber \\{} & {} \left. \times \,Q_{k+1}B_{k}f(\hat{x}_{k})-e_{k}^{T}Q_{k}e_{k}\right\} , \end{aligned}$$
(A2)

where \(\bar{\sigma }_{k}=\sigma [D_{k}e_{k}-\tilde{\beta }_{k}D_{k}(\hat{x}_{k}+e_{k})-\bar{\beta }D_{k}(\hat{x}_{k}+e_{k})+\tilde{\beta }_{k}\xi _{k}+\bar{\beta }\xi _{k}].\)

Using the fundamental inequality \(2x^{T}Py\le x^{T}Px+y^{T}Py\) \((P>0)\), we can get the following results

$$\begin{aligned} \mathbb {E}\{\bar{L}_{k}\}\le & {} \mathbb {E}\left\{ 3e_{k}^{T}A_{k}^{T}Q_{k+1}A_{k}e_{k}\right. \nonumber \\{} & {} \left. +\,3f^{T}(e_{k}+\hat{x}_{k})B_{k}^{T}Q_{k+1}B_{k}f(e_{k}+\hat{x}_{k})\right. \nonumber \\{} & {} \left. +\,4f^{T}(\hat{x}_{k})B_{k}^{T}Q_{k+1}B_{k}f(\hat{x}_{k})\right. \nonumber \\{} & {} \left. +\,v_{k}^{T}C_{k}^{T}Q_{k+1}C_{k}v_{k}+4\bar{\sigma }_{k}^{T}K_{k}^{T}Q_{k+1}\right. \nonumber \\{} & {} \left. \times \, K_{k}\bar{\sigma }_{k}+2e_{k}^{T}A_{k}^{T}Q_{k+1}B_{k}f(e_{k}+\hat{x}_{k})-e_{k}^{T}Q_{k}e_{k}\right\} . \end{aligned}$$
(A3)

Adding the zero term \(\tilde{z}^{T}_{k}\tilde{z}_{k}-\gamma ^{2}v_{k}^{T}U_{\varphi }v_{k}-\tilde{z}^{T}_{k}\tilde{z}_{k}+\gamma ^{2}v_{k}^{T}U_{\varphi }v_{k}\) to \(\mathbb {E}\big \{\bar{L}_{k}\big \}\) yields

$$\begin{aligned} \mathbb {E}\{\bar{L}_{k}\}\le & {} \mathbb {E}\left\{ \begin{bmatrix} \Phi _{k}^{T} &{} v_{k}^{T} \\ \end{bmatrix} \tilde{\Psi }\begin{bmatrix} \Phi _{k} \\ v_{k} \\ \end{bmatrix} -\tilde{z}^{T}_{k}\tilde{z}_{k}+\gamma ^{2}v_{k}^{T}U_{\varphi }v_{k}\right\} , \end{aligned}$$
(A4)

where

$$\begin{aligned} \Phi _{k}\,=\, & \begin{bmatrix} e_{k}^{T} &{} f^{T}(e_{k}+\hat{x}_{k})&{} 1 &{}\bar{\sigma }_{k}^{T}&{}\xi _{k}^{T}\\ \end{bmatrix}^{T},\nonumber \\ \tilde{\Psi }\,=\, & \begin{bmatrix} \tilde{\Psi }_{11} &{} A_{k}^{T}Q_{k+1}B_{k} &{} 0&{} 0&{} 0&{} 0\\ *&{} 3B_{k}^{T}Q_{k+1}B_{k} &{} 0 &{} 0 &{} 0&{} 0\\ *&{} *&{} \tilde{\Psi }_{33} &{} 0 &{} 0&{} 0\\ *&{} *&{} *&{} 4K_{k}^{T}Q_{k+1}K_{k}&{} 0&{} 0\\ *&{} *&{} *&{} *&{} 0&{} 0\\ *&{} *&{} *&{} *&{}*&{} \Psi _{66}\\ \end{bmatrix},\nonumber \\ \tilde{\Psi }_{11}\,=\, & 3A_{k}^{T}Q_{k+1}A_{k}+M_{k}^{T}M_{k}-Q_{k},\nonumber \\ \tilde{\Psi }_{33}\,=\, & 4f^{T}(\hat{x}_{k})B_{k}^{T}Q_{k+1}B_{k}f(\hat{x}_{k}) \end{aligned}$$
(A5)

with \(\Psi _{66}\) defined below (12).

According to Lemma 1, the following form can be obtained

$$\begin{aligned} \mathbb {E}\{\bar{L}_{k}\}\le & {} \mathbb {E}\left\{ \begin{bmatrix} \Phi _{k}^{T} &{} v_{k}^{T} \\ \end{bmatrix} \tilde{\Psi }\begin{bmatrix} \Phi _{k} \\ v_{k} \\ \end{bmatrix} \right. \nonumber \\{} & {} \left. -\,\tilde{z}^{T}_{k}\tilde{z}_{k}+\gamma ^{2}v_{k}^{T}U_{\varphi }v_{k}-[e_{k}^{T}R_{1k}e_{k}+2e_{k}^{T}R_{2k}\right. \nonumber \\{} & {} \left. \times \, f(e_{k}+\hat{x}_{k})+2e_{k}^{T}R_{3k}^{T}-2f^{T}(e_{k}+\hat{x}_{k})f(\hat{x}_{k})\right. \nonumber \\{} & {} \left. +\,f^{T}(e_{k}+\hat{x}_{k})f(e_{k}+\hat{x}_{k})\right. \nonumber \\{} & {} \left. +\,f^{T}(\hat{x}_{k})f(\hat{x}_{k})]-\lambda \left\{ \bar{\sigma }_{k}^{T}\bar{\sigma }_{k}-\bar{g}[D_{k}e_{k}\right. \right. \nonumber \\{} & {} \left. \left. +\,\tilde{\beta }_{k}D_{k}(e_{k}+\hat{x}_{k})-\bar{\beta }D_{k}(e_{k}+\hat{x}_{k})\right. \right. \nonumber \\{} & {} \left. \left. +\,\tilde{\beta }_{k}\xi _{k}+\bar{\beta }\xi _{k}]^{T}\bar{\sigma }_{k}-\bar{\sigma }_{k}^{T}[D_{k}e_{k}\right. \right. \nonumber \\{} & {} \left. \left. +\,\tilde{\beta }_{k}D_{k}(e_{k}+\hat{x}_{k})-\bar{\beta }D_{k}(e_{k}+\hat{x}_{k})+\tilde{\beta }_{k}\xi _{k}\right. \right. \nonumber \\{} & {} \left. \left. +\,\bar{\beta }\xi _{k}]+\bar{g}[D_{k}e_{k}+\tilde{\beta }_{k}D_{k}(e_{k}+\hat{x}_{k})\right. \right. \nonumber \\{} & {} \left. \left. -\,\bar{\beta }D_{k}(e_{k}+\hat{x}_{k})+\tilde{\beta }_{k}\xi _{k}+\bar{\beta }\xi _{k}]^{T}\right. \right. \nonumber \\{} & {} \left. \left. \times \,[D_{k}e_{k}+\tilde{\beta }_{k}D_{k}(e_{k}+\hat{x}_{k})-\bar{\beta }D_{k}(e_{k}\right. \right. \nonumber \\{} & {} \left. \left. +\,\hat{x}_{k})+\tilde{\beta }_{k}\xi _{k}+\bar{\beta }\xi _{k}]\right\} \right\} \nonumber \\\,=\, & \mathbb {E}\left\{ \begin{bmatrix} \Phi _{k}^{T} &{} v_{k}^{T} \\ \end{bmatrix} \Psi \begin{bmatrix} \Phi _{k} \\ v_{k} \\ \end{bmatrix} -\tilde{z}^{T}_{k}\tilde{z}_{k}+\gamma ^{2}v_{k}^{T}U_{\varphi }v_{k}\right\} , \end{aligned}$$
(A6)

where \(\Psi\) is defined in (12).

Summarizing both sides of (A6) from 0 to \(N-1\) on k, we obtain

$$\begin{aligned} \sum _{k=0}^{N-1}\mathbb {E}\{\bar{L}_{k}\}\,=\, & \mathbb {E}\{e_{N}^{T}Q_{N}e_{N} -e_{0}^{T}Q_{0}e_{0}\}\nonumber \\\le & {} \mathbb {E}\left\{ \sum _{k=0}^{N-1}\begin{bmatrix} \Phi _{k}^{T} &{} v_{k}^{T} \\ \end{bmatrix} \Psi \begin{bmatrix} \Phi _{k} \\ v_{k} \\ \end{bmatrix} \right\} \\{} & {} -\,\mathbb {E}\left\{ \sum _{k=0}^{N-1}(\tilde{z}^{T}_{k}\tilde{z}_{k}-\gamma ^{2}v_{k}^{T}U_{\varphi }v_{k})\right\} . \end{aligned}$$

Furthermore, we derive the following form

$$\begin{aligned} J_{1}\le \mathbb {E}\left\{ \sum _{k=0}^{N-1}\begin{bmatrix} \Phi _{k}^{T} &{} v_{k}^{T} \\ \end{bmatrix} \Psi \begin{bmatrix} \Phi _{k} \\ v_{k} \\ \end{bmatrix} +\,e_{0}^{T}(Q_{0}-\gamma ^{2}U_{\phi })e_{0}\right\} -\mathbb {E}\{e_{N}^{T}Q_{N}e_{N}\}. \end{aligned}$$
(A7)

Noting \(\Psi <0\), \(Q_{N}>0\) and \(Q_{0}\le \gamma ^{2}U_{\phi }\), it follows that \(J_{1}<0\). \(\square\)

Appendix B Boundedness analysis of error variance

Proof of Theorem 2

According to (7), we can calculate the EE covariance matrix \(X_{k}\) as follows:

$$\begin{aligned} X_{k+1}\,=\, & \mathbb {E}\left\{ e_{k+1}e_{k+1}^{T}\right\} \nonumber \\\,=\, & \mathbb {E}\left\{ A_{k}e_{k}e_{k}^{T}A_{k}^{T}+B_{k}f(e_{k})f^{T}(e_{k})B_{k}^{T}\right. \nonumber \\{} & {} \left. +\,C_{k}v_{k}v_{k}^{T}C_{k}^{T}+K_{k}\bar{\sigma }_{k}\bar{\sigma }_{k}^{T}K_{k}^{T}\right. \nonumber \\{} & {} \left. +\,B_{k}f(e_{k})e_{k}^{T}A_{k}^{T}+A_{k}e_{k}f^{T}(e_{k})B_{k}^{T}\right. \nonumber \\{} & {} \left. -\,K_{k}\bar{\sigma }_{k}e_{k}^{T}A_{k}^{T}-A_{k}e_{k}\bar{\sigma }_{k}^{T}K_{k}^{T}\right. \nonumber \\{} & {} \left. -\,K_{k}\bar{\sigma }_{k}f^{T}(e_{k})B_{k}^{T}-B_{k}f(e_{k})\bar{\sigma }_{k}^{T}K_{k}^{T}\right\} , \end{aligned}$$
(B8)

where \(\bar{\sigma }_{k}=\sigma [D_{k}e_{k}-\tilde{\beta }_{k}D_{k}(\hat{x}_{k}+e_{k})-\bar{\beta }D_{k}(\hat{x}_{k}+e_{k})+\tilde{\beta }_{k}\xi _{k}+\bar{\beta }\xi _{k}].\)

Using the inequality \(xy^{T}+yx^{T}\le xx^{T}+yy^{T}\), it can be obtained

$$\begin{aligned} X_{k+1}\le & {} \mathbb {E}\left\{ 3A_{k}e_{k}e_{k}^{T}A_{k}^{T} +3B_{k}f(e_{k})f^{T}(e_{k})B_{k}^{T}\right. \\{} & {} \quad \left. +3K_{k}\bar{\sigma }_{k}\bar{\sigma }_{k}^{T}K_{k}^{T} +C_{k}v_{k}v_{k}^{T}C_{k}^{T}\right\} . \end{aligned}$$

It follows from Lemma 2 that

$$\begin{aligned} \mathbb {E}\{f(e_{k})f^{T}(e_{k})\}\le & {} \mathbb {E}\{\textrm{tr}(f(e_{k})f^{T}(e_{k}))\}I\\\,=\, & \mathbb {E}\{f^{T}(e_{k})f(e_{k})\}I \le Y\mathbb {E}\{e_{k}^{T}e_{k}\}I,\\ \mathbb {E}\{\bar{\sigma }_{k}\bar{\sigma }_{k}^{T}\}\le & {} \mathbb {E}\{\textrm{tr}(\bar{\sigma }_{k}^{T}\bar{\sigma }_{k})\}I, \end{aligned}$$

where Y is defined in (14).

According to (5), the following results can be obtained by calculation

$$\begin{aligned}{} & {} \bar{\sigma }_{k}^{T}\bar{\sigma }_{k}-\bar{g}[D_{k}e_{k}-\tilde{\beta }_{k}D_{k}(e_{k}\\{} & {} \quad +\,\hat{x}_{k})-\bar{\beta }D_{k}(e_{k}+\hat{x}_{k})+\tilde{\beta }_{k}\xi _{k} +\bar{\beta }\xi _{k}]^{T}\bar{\sigma }_{k}\\{} & {} \quad -\,\bar{\sigma }_{k}^{T}[D_{k}e_{k}-\tilde{\beta }_{k}D_{k}(e_{k}+\hat{x}_{k})\\{} & {} \quad -\,\bar{\beta }D_{k}(e_{k}+\hat{x}_{k})+\tilde{\beta }_{k}\xi _{k}+\bar{\beta }\xi _{k}]+\bar{g}[D_{k}e_{k}\\{} & {} \quad -\,\tilde{\beta }_{k}D_{k}(e_{k}+\hat{x}_{k})-\bar{\beta }D_{k}(e_{k}\\{} & {} \quad +\,\hat{x}_{k})+\tilde{\beta }_{k}\xi _{k}+\bar{\beta }\xi _{k}]^{T}[D_{k}e_{k}-\tilde{\beta }_{k}D_{k}(e_{k}\\{} & {} \qquad +\,\hat{x}_{k})-\bar{\beta }D_{k}(e_{k}+\hat{x}_{k})+\tilde{\beta }_{k}\xi _{k}+\bar{\beta }\xi _{k}]\le 0. \end{aligned}$$

Noticing \(x^{T}y+y^{T}x<\varpi x^{T}x+\frac{1}{\varpi }y^{T}y\), we can derive that

$$\begin{aligned} \mathbb {E}\{\bar{\sigma }_{k}^{T}\bar{\sigma }_{k}\}\le & {} \frac{(1-2\varpi )\bar{g}+2\varpi (2\varpi -1)\bar{g}\bar{\beta }+(1+2\varpi \bar{\beta }+4\varpi ^{2}+4\varpi ^{2}\bar{g})\bar{g}\bar{\beta }+1+\bar{\beta }}{2\varpi -\varpi ^{2}(1+\bar{g}+3\bar{\beta }+3\bar{g}\bar{\beta })}\\{} & {} \times \,\textrm{tr}(D_{k}^{T}D_{k})e_{k}^{T}e_{k}+\frac{(3+4\bar{\beta }-2\varpi \bar{\beta })\bar{g}\bar{\beta }+\bar{\beta }+(4-2\varpi )\bar{g}\bar{\beta }(1-\bar{\beta })}{2\varpi -\varpi ^{2}(1+\bar{g}+3\bar{\beta }+3\bar{g}\bar{\beta })}\delta \\{} & {} +\,\frac{(3-2\varpi \bar{\beta })\bar{g}\bar{\beta }+\bar{\beta }+2(1+\varpi ^{2})\bar{g}\bar{\beta }^{2}+(2+2\varpi ^{2}-2\varpi )\bar{g}\bar{\beta }(1-\bar{\beta })}{2\varpi -\varpi ^{2}(1+\bar{g}+3\bar{\beta }+3\bar{g}\bar{\beta })}\\{} & {} \times \,\textrm{tr}(D_{k}^{T}D_{k})\hat{x}_{k}^{T}\hat{x}_{k}, \end{aligned}$$

where \(0<\varpi <\frac{2}{1+\bar{g}+3\bar{\beta }+3\bar{g}\bar{\beta }}\).

Based on the above derivation results, we can get

$$\begin{aligned} \mathbb {E}\{\textrm{tr}(\bar{\sigma }_{k}^{T}\bar{\sigma }_{k})\}I \le (\iota _{1}\mathbb {E}\{e_{k}^{T}e_{k}\}+\iota _{2}\hat{x}_{k}^{T}\hat{x}_{k}+\iota _{3}\delta )I, \end{aligned}$$

where \(\iota _{1}\), \(\iota _{2}\) and \(\iota _{3}\) are defined in (14). Furthermore, it can be obtained that

$$\begin{aligned} X_{k+1}\le & {} \mathbb {E}\left\{ 3A_{k}e_{k}e_{k}^{T}A_{k}^{T} +3YB_{k}e_{k}^{T}e_{k}B_{k}^{T}\right. \nonumber \\{} & {} \left. +\,3\iota _{1}K_{k}e_{k}^{T}e_{k}K_{k}^{T}+3\iota _{2}K_{k}\hat{x}_{k}^{T}\hat{x}_{k}K_{k}^{T}\right. \nonumber \\{} & {} \left. +\,3\iota _{3}\delta K_{k}K_{k}^{T}+C_{k}V_{k}C_{k}^{T}\right\} . \end{aligned}$$
(B9)

According to the feature of the trace, one has

$$\begin{aligned} \mathbb {E}\{e_{k}^{T}e_{k}\}\,=\, & \mathbb {E}\{\textrm{tr}(e_{k}e_{k}^{T})\}=\textrm{tr}(X_{k}),\nonumber \\ \mathbb {E}\{\hat{x}_{k}^{T}\hat{x}_{k}\}\,=\, & \mathbb {E}\{\textrm{tr}(\hat{x}_{k}\hat{x}_{k}^{T})\}. \end{aligned}$$
(B10)

Combining (B9) with (B10) results in

$$\begin{aligned} X_{k+1}\le & {} 3A_{k}X_{k}A_{k}^{T}+3\textrm{tr}(X_{k})B_{k}YB_{k}^{T}\\{} & {} +\,3\iota _{1}\textrm{tr}(X_{k})K_{k}K_{k}^{T}+3\iota _{2}\textrm{tr}(\hat{x}_{k}\hat{x}_{k}^{T})K_{k}K_{k}^{T}\\{} & {} +\,3\iota _{3}\delta K_{k}K_{k}^{T}+C_{k}V_{k}C_{k}^{T}\\\,=\, & \Theta (X_{k}). \end{aligned}$$

It is easy to get that \(G_{0}\ge X_{0}\). Letting \(G_{k}\ge X_{k}\), the following inequality can be derived as

$$\begin{aligned} \Theta (G_{k})\ge \Theta (X_{k})\ge X_{k+1}. \end{aligned}$$
(B11)

Then, from (13) and (B11), we obtain

$$\begin{aligned} G_{k+1}\ge & {} \Theta (G_{k})\ge \Theta (X_{k})\ge X_{k+1}. \end{aligned}$$
(B12)

The proof is complete. \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Hu, J., Yu, H. et al. Outlier-resistant variance-constrained \(\mathit{H}_{\infty }\) state estimation for time-varying recurrent neural networks with randomly occurring deception attacks. Neural Comput & Applic 35, 13261–13273 (2023). https://doi.org/10.1007/s00521-023-08419-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08419-x

Keywords

Navigation