
Neural Computing Research GroupDept of Computer Science & Applied MathematicsAston UniversityBirmingham B4 7ETUnited KingdomTel: +44 (0)121 333 4631Fax: +44 (0)121 333 4586http://www.ncrg.aston.ac.uk/
Neural Network BasedWind Vector Retrieval fromSatellite Scatterometer DataDan Cornford, Ian T. Nabney, Christopher M. Bishopad.cornford@aston.ac.ukTechnical Report NCRG/99/003 January 26, 1999Accepted Neural Computing and ApplicationsaMicrosoft Research, 1 Guildhall Street, Cambridge CB2 3NH, UK

AbstractObtaining wind vectors over the ocean is important for weather forecasting and ocean modelling.Several satellite systems used operationally by meteorological agencies utilise scatterometers toinfer wind vectors over the oceans. In this paper we present the results of using novel neuralnetwork based techniques to estimate wind vectors from such data. The problem is partitioned intoestimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron(MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we modelthe full periodic probability density of direction conditioned on the satellite derived inputs usinga Mixture Density Network (MDN) with periodic kernel functions. A committee of the resultingMDNs is shown to improve the results.
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2 Neural Network Based Wind Vector Retrieval from Satellite Scatterometer Data1 IntroductionObtaining wind vectors over the ocean is important to Numerical Weather Prediction (NWP)since the ability to produce a forecast of the future state of the atmosphere depends critically onknowing the current state accurately [Haltiner and Williams, 1980], particularly since the systemis non-linear. However, the observation network over the oceans (especially in the southern hemi-sphere) is very limited [Daley, 1991]. Thus it is hoped that the global coverage of ocean windvectors provided by satellite borne scatterometers will improve the accuracy of numerical weatherforecasts by providing better initial conditions [Harlan and O'Brien, 1986; Lorenc et al., 1993].The scatterometer data also o�ers the ability to improve wind climatologies over the oceans [Levy,1994] and the possibility of studying, at high resolution, interesting meteorological features suchas cyclones [Dickinson and Brown, 1996].
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azimuth angleFigure 1: Schematic illustration of the geometry of the ERS-1 satellite showing the footprintsof the three radar scatterometers.The ERS-1 satellite was launched in July 1991 by the European Space Agency [O�ler, 1987]. Theon-board microwave radar operates at 5.3 GHz and measures the amount of backscatter generatedby small ripples on the ocean surface of around 5 cm wavelength, although this depends on theincidence angle of the radar beam. Measured backscatter from the ocean surface is given as theNormalised Radar Cross Section, and generally denoted by �o, which has units of decibels. A 500km wide swathe is swept by the satellite along the track of its polar orbit, with nineteen cellssampled across the swathe, each cell having dimensions of roughly 50 by 50 km (see Figure 1).Thus there is some overlap between cells. Also, each cell is sampled from three di�erent directionsby the fore, mid and aft beams respectively giving a triplet of observations, (�of ; �om; �oa). This �otriplet, together with the incidence angle of the mid-beam (which varies across the swathe) can beused to determine the average wind vector within the cell [O�ler, 1994].Many methods to compute wind vectors from scatterometer data exist. Most have consideredmodel based techniques [O�ler, 1994; Wentz, 1991; Sto�elen and Anderson, 1992; Sto�elen andAnderson, 1997] where a physically based mapping from wind vectors to �o is formulated. In[Thiria et al., 1993] the mapping from �o to wind vectors was modelled using simulated data anda neural network based classi�er, which gave probabilities of the wind direction being in each ofthirty-six intervals. Simulated data was used since real �o measurements were not available at thetime the work was undertaken.While the outputs of the networks in [Thiria et al., 1993] were interpreted as probabilities they arenot strictly such since they can take negative values and are not required to sum to one. The winddirection network has 30 inputs, 2 hidden layers each of 25 units and 36 output units giving a totalof 2361 weights. With a training set of size approximately 6000 observations there is considerabledanger of over-�tting [Bishop, 1995]. Despite this the networks in [Thiria et al., 1993] appear



Neural Network Based Wind Vector Retrieval from Satellite Scatterometer Data 3to have performed very well on the simulated data. In this study we use a neural network toestimate the full local conditional probability density of the wind direction given �o in a simpleand well-founded manner [Bishop and Nabney, 1996].2 The Geophysical ModelMuch e�ort has been put into understanding the theoretical relationship between �o and winddirection [Wentz, 1991; Sto�elen and Anderson, 1997]. This has been based on studies of thephysical processes that govern backscattering from water surfaces [Ebuchi et al., 1993] togetherwith a statistical analysis of the relation between wind vectors (both buoy observed and NWPderived) and scatterometer measurements [O�ler, 1994]. From these studies empirical forwardmodels between single �o's and relative wind direction (#) have been established of the generalform �o � b0 + b1cos(#) + b2cos(2#) (1)where the coe�cients are complicated functions of the scatterometer incidence angle (�) and thewind speed (kuk). The most widely used, and currently operational, forward model is known asCMOD4 [O�ler, 1994; Sto�elen and Anderson, 1997]. There are three �o measurements for eachcell and these together de�ne a self-intersecting cone-like manifold in 3 dimensional space, whichhas been shown to approximate a Lissajous curve [Thiria et al., 1993]. For most �o triples, whichare observed with noise, there is ambiguity over the optimal direction to select (see Figure 2).
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270Figure 2: Sketch of a cross section (at constant wind speed) of the 2D manifold (embedded ina 3D space) of the mapping from (�o1 ; �o2 ; �o3) to direction (�). The solid line givesthe empirical forward model � ! �o (e.g. CMOD4) while the grey area gives anestimate of the uncertainty due to instrument error and geophysical noise. Exam-ple observations are plotted as black dots, with one labelled to show that there isgenerally more than one possible wind direction for a given �o triplet.This is typical of many inverse problems in the geophysical sciences, where the forward modeloutput (i.e. �o as a function of wind direction) is uni-valued for a given set of inputs but theinverse model (i.e. wind direction as a function of �o) is multi-valued. It is known that therelation between wind speed and �o is uni-valued [Thiria et al., 1993]. Since the wind speed islargely uncorrelated with the wind direction relative to the satellite azimuth1 angle, the problem1The azimuth angle gives the clockwise angle from North of the scatterometer beam incident on the cell.



4 Neural Network Based Wind Vector Retrieval from Satellite Scatterometer Dataof modelling wind vectors can be split into modelling the speed and direction separately.
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maximum speed 15.0 ms−1(b)Figure 3: Two scenes showing the target wind vectors for (a) a gradient in wind speed anddirection and (b) a cyclonic circulation.Operationally, the problem of obtaining local wind directions from scatterometer data is resolvedusing the CMOD4 forward model and minimising some cost function (which is typically a meansquare error) between the observed �o triplets and the manifold de�ned by CMOD4. In generalup to four valid solutions are obtained (although there are often two dominant modes with approx-imately 180 degree ambiguity | the true and alias solutions). Disambiguation methods [Cheltonet al., 1989; Schultz, 1990; Sha�er et al., 1991] (such as smoothing �lters) are then applied globallyto decide which local direction is to be selected, often based on the spatial correlation present inwind �elds (see examples in Figure 3). Ambiguity removal is not discussed in this paper but will beaddressed in future work2. An advantage of our probabilistic models is that this allows Bayesianmethods to be applied to the disambiguation problem. Here we consider only the local predictionof wind speed and direction given the local �o observation.3 Neural Networks for Modelling Scatterometer DataMany applications of neural networks can be formulated in terms of a multivariate non-linear map-ping from an input vector x to a target vector t. A conventional neural network approach, basedon a least squares error function, for example, leads to a network mapping which approximatesthe regression (i.e. the conditional average) of t given x. However, for mappings which are multi-valued, such as wind direction in this application, this approach breaks down, since the average oftwo solutions is not necessarily a valid solution.This problem can be resolved by recognising that the conditional mean is just one aspect of amore complete description of the relationship between input and target, obtained by estimatingthe full conditional probability density of t conditioned on x, written as p(tjx). The least squaresapproach then corresponds to maximum likelihood for the special case in which p(tjx) is modelledby a Gaussian distribution which is spherically symmetric in t-space and which has an x-dependentmean and constant variance. The mapping from �o to direction will typically be multi-valued andthus our model of p(#j�o) cannot be modelled by a uni-modal distribution; instead we show how2More details of the project this work forms part of can be found athttp://www.ncrg.aston.ac.uk/Projects/NEUROSAT/.



Neural Network Based Wind Vector Retrieval from Satellite Scatterometer Data 5mixtures of uni-modal distributions can be used. The wind speed mapping, on the other hand, isuni-valued and can be sensibly modelled using a regression approach, as outlined below. Thus weaddress prediction in (kuk; #) space rather than using the Cartesian vector components.3.1 Neural Networks for Modelling Wind SpeedOur model for predicting wind speed is a fully connected two layer multi-layer perceptron withsigmoidal activation functions in the hidden layer and exponential units in the output layer, toensure that only positive speeds are generated:zj = g dXi=0 w(1)ji xi! ; (2)with the output layer: kupk = exp0@ HXj=0w(2)j zj1A ; (3)where kupk is the predicted wind speed, H is the number of hidden (sigmoidal) units zj , d is thenumber of inputs xi (for our networks this was four - the �o triplet and the mid-beam incidenceangle). The w's represent the weights of the network with w(1)ji being the �rst layer weights fromthe ith input to the jth hidden unit and w(2)j being the second layer weight from the jth hiddenunit to the output (wind speed). w(1)j0 and w(2)0 are the bias parameters for the hidden and outputunits respectively. The function g is the sigmoid function:g(a) = 11 + exp(�a) : (4)The network was trained using a sum of squares error function:Ekupk = 12 nXk=1 (kupkk � kukk)2 (5)where n is the number of observations in the training set, kupkk is the output of the network forthe kth example for the training set and kukk is the kth target value; that is the observed speedfor the kth example for the training set. Back-propagation (to determine the gradient of the errorfunction with respect to the network weights) together with a conjugate gradient optimisationalgorithm was applied to determine the optimal weights in the networks. Only 500 iterations ofthis algorithm were required for convergence for all numbers of hidden units investigated. Earlystopping using independent training and validation sets [Bishop, 1995, Section 9.2.4] reduced thepossibility of over-�tting and di�erent numbers of hidden units were investigated.In order to assess the degree of non-linearity in the wind speed retrieval problem, linear andquadratic regression models of the formkupk = exp0@w0 + PXj=1 dXi=1 wijxji1A ; (6)where P is the order of the polynomial (1 or 2) and d is as before, were also tested on the samedatasets. The parameters were computed using standard least squares estimation on the trainingset [Press et al., 1992].



6 Neural Network Based Wind Vector Retrieval from Satellite Scatterometer Data3.2 Neural Networks for Modelling Wind DirectionWhen modelling wind direction some care must be taken since not only is the target variablemulti-valued, it is also periodic. This section describes one method of estimating the conditional(probability) density of periodic variables: see also [Bishop and Nabney, 1996] for computationaldetails.3.2.1 Density Estimation for Periodic VariablesA commonly used technique for unconditional density estimation is based on mixture models ofthe form p(t) = lXi=1 �i�i(t); (7)where �i are the mixing coe�cients, and the l component functions, or kernels, �i(t), are typicallychosen to be Gaussians [Titterington et al., 1985; McLachlan and Basford, 1988]. In order to turnthis into a model for conditional density estimation, the mixing coe�cients, as well as any adaptiveparameters in the component densities, are set to be functions of the input vector x:p(tjx) = lXi=1 �i(x)�i(tjx): (8)These functions are likely to be non-linear, so we set the mixing coe�cients and kernel parametersfrom the outputs of a neural network which takes x as input. This underlies the `mixture ofexperts' model [Jacobs et al., 1991] and has also been considered by a number of other authors[Bishop, 1994; Liu, 1994].In this section two methods for modelling the conditional density p(#jx) of a periodic variable #conditioned on an input vector x are reviewed. Both methods use the same kernel functions (andoutput error function) but allow di�erent sets of parameters to be varied.3.2.2 Circular Normal DensitiesBy using a mixture of kernel functions in (8) which are periodic themselves the overall conditionaldensity function will be periodic. The kernel function of the wind direction # is given by:�i(#) = 12�I0(mi) expfmi cos(#�  i)g; (9)which is known as a circular normal or von Mises distribution [Mardia, 1972]. The normalisationcoe�cient is expressed in terms of the zeroth order modi�ed Bessel function of the �rst kind,I0(mi), and the parameter mi is analogous to the inverse variance parameter in a conventionalnormal distribution. The parameter  i is the mean of the density function.A multi-layer perceptron, with a single hidden layer of sigmoidal units (2) and linear output units,is used to set the parameters in the mixture model (8) and (9). The linear outputs are given by:zok = HXj=0w(2)kj zj ; (10)



Neural Network Based Wind Vector Retrieval from Satellite Scatterometer Data 7where H is the number of hidden units and w(2)kj weight from the jth hidden unit (zj) to thekth linear output. We divide the network outputs into three classes, corresponding to mixingcoe�cients, means and variances and apply a suitable transform to each class of output.In order to ensure that the mixture model in (8) is a probability density function, it is su�cientthat the mixing coe�cients �i(x) satisfy the constraints:lXi=1 �i(x) = 1; 0 � �i(x) � 1; (11)for all x. This can be achieved by choosing the �i to be related to the corresponding networkoutputs by a normalised exponential, or softmax function [Jacobs et al., 1991]:�i = exp (z�i )Plj=1 exp �z�j � ; (12)where z�j represent the corresponding network outputs (i.e. the component of zok which representsthe mixing coe�cients). The centres  i(x) of the kernel functions are represented directly bythe network outputs since these may take any value over the reals. This is also motivated bythe corresponding choice of an uninformative Bayesian prior, assuming that the relevant networkoutputs have uniform probability distributions [Jacobs et al., 1991; Berger, 1985]. The inversevariance parameters mi(x) of the kernel functions are scale parameters and so it is convenient torepresent them in terms of the exponentials of the corresponding network outputs. This ensuresthat mi(x) > 0 and discourages mi(x) from tending to 0, which corresponds to a pathologicalsolution. Again, it can be motivated by the concept of an uninformative prior in the Bayesianframework.3.2.3 Expansion in Fixed KernelsThe other technique used in this paper involves a conditional density model as in (8) consisting ofa �xed set of periodic kernels, again given by circular normal functions as in (9). In this case themixing coe�cients alone are determined by the outputs of a neural network (through a softmaxactivation function (12)) and the centres  i and scale parameters mi are �xed. We selected auniform distribution of centres, and set mi = m for each kernel, where the value for m waschosen to give moderate overlap between the kernel functions. Fixed kernels are only appropriatefor targets from low dimensional spaces since the number needed grows exponentially with thedimension of the target space.3.2.4 Computational DetailsThe �o triple together with the (mid-beam) incidence angle and wind speed predicted by (3) wereused as inputs to the mixture density network (i.e. x = (�o; �; kupk)). The use of incidence angleas an additional input to our neural network makes our model more 
exible than those in [Thiria etal., 1993] where a separate network was trained for each of the 10 incidence angles (they consideredonly every other cell). Wind speed was included as an input since [Thiria et al., 1993] suggestedthat the relationship between direction and �o is dependent on the wind speed.For both models the adaptive parameters of the model (the weights and biases in the network) areoptimised by maximising the likelihood of the data given the model. In practice it is convenient tominimise an error function E given by the negative logarithm of the likelihood function. Derivativesof E with respect to the network weights can be computed using the rules of calculus [Bishop and



8 Neural Network Based Wind Vector Retrieval from Satellite Scatterometer DataNabney, 1996], and these derivatives can then be used with standard optimisation procedures to�nd a minimum of the error function. In such non-linear problems care must be taken to ensuregood initialisation of the model parameters to avoid bad local minima. In this case we initialise thenetwork weights so that the centres are approximately evenly spaced, the scale parameters are largeenough to ensure overlapping of the kernel functions and the mixing coe�cients are approximatelyequal. These are, however, set with a small random component so that we can investigate thee�ect of di�erent initialisations.A conjugate gradient algorithm was used to minimise the mixture density error function. Earlystopping [Bishop, 1995] was used to ensure reasonable generalisation performance. The networkthat was used on the test set was the one with the lowest validation set error Ev . Generallyafter around 1200 iterations the early stopping rule had selected the best fully adaptive CircularNormal (CN) network, and this was always attained within 2000 iterations. When training theFixed Kernel (FK) networks convergence was much quicker, usually occuring within 250 iterations.Several network architectures were investigated by varying the number of hidden units and thenumber of circular normal functions used. When using �xed kernels the scale parameter m wasalso varied.Once the networks were trained, a committee of networks [Bishop, 1995] was constructed whichcombined the predictive conditional densities p(#jx) from several models. The networks formingthe committee were weighted equally since all had similar accuracies.4 Evaluation FunctionIn order to compare di�erent models a Figure of Merit (FoM) evaluation function has beenproposed by David O�ler of the UK Meteorological O�ce [Sto�elen and Anderson, 1997]. TheFoM re
ects the extent to which the transfer model meets the design speci�cations of �2 ms�1for wind speed and �20o for wind direction. The FoM is computed over the 4 � 24 ms�1 windspeed range. A FoM of greater than one indicates the transfer function is performing to withinthese speci�cations, although the exact form is rather ad-hoc. The FoM details can be foundin Appendix I. The FoM is considered in both weighted and unweighted forms, which take intoaccount the performace of the algorithm at di�erent wind speeds. If we wish to perform well onthe sum of the weighted and unweighted evaluation functions then we must either explicitly adaptthe cost function in the network training (by weighting the error function by a factor depending onthe wind speed class) or carefully select the training set. In this study we chose the latter option.The wind direction used when computing the FoM was chosen using a very simple disambiguationalgorithm. Initially the most likely direction is selected. If this is more than �90o from theobserved direction the second most likely direction is chosen. If this is still more than �90o fromthe observed direction then the third most likely direction is chosen and so on until the �rst fourmodes have been considered. This must be done to allow a sensible value of the direction errors tobe calculated in the absence of a more sophisticated ambiguity removal algorithm. The algorithmused here is not applicable in practice since it requires knowledge of the target values, and is simplyused to compare the performance of `local models'.5 DataThe data used in this study was compiled by the European Space Agency in collaboration withthe UK Meteorological O�ce. The database consisted of 115 scenes, each of which contains 19 by



Neural Network Based Wind Vector Retrieval from Satellite Scatterometer Data 919 cells, or observation locations, corresponding to a square of area roughly 500 by 500 km. Twoexamples can be seen in Figure 3. The scenes were classi�ed into 6 cases:� low wind speeds (10 scenes)� homogeneous cases (15 scenes)� gradients in speed or direction (59 scenes)� cyclonic circulations (10 scenes)� anti-cyclonic circulations (11 scenes)� fronts and other `di�cult' cases (10 scenes)This classi�cation was made by meteorologists. Each of the 39,611 observations in this datasetcontained information on its location, the �o triple, incidence and azimuth angles, wind speedand wind direction. In this work all wind directions were computed relative to the azimuth angle,so the wind direction in the training data does not give the absolute direction, but rather therelative direction. The wind speed and direction were obtained from the UK Meteorological O�ceUni�ed Model3, which has a horizontal resolution of approximately 150 km [Milton and Wilson,1996]. Thus the targets (i.e. wind speed and direction) are interpolated from a model designed torepresent the large scale dynamics of the atmosphere [Haltiner and Williams, 1980]. This meansthere is likely to be considerable smoothing of the target values.We use NWP model wind �elds since these are the best estimates of the true winds available overthe ocean surface that are collocated with the scatterometer observations. Care must be takensince there is a danger in using one model to de�ne the targets for another model. However theNWP model derived estimates of wind speed and direction are based on assimilated data whichcombines those indepedent observations available from bouys and ships with a good forecast fromthe previous state of the atmosphere, and represents the best available estimate of the true winds.Due to the sparsity of observations over the oceans the forecast state dominates the analysis andthe location and intensity of features in the wind �elds may be in error, thus the quality of thetargets was improved by matching the position of low pressure centres in the forecast winds withthose observed by the scatterometer by linearly translating the model wind �elds.Despite having nearly 40,000 observations, there are in reality far fewer truly independent obser-vations, since the within-scene spatial correlations between both wind speed and wind directionwill be very high. This implies that care must be taken when selecting data to train, validate andtest the neural network models. The local models we are training consider only the informationfrom within the relevant cell to infer wind speed and direction. Thus to retrieve all speeds anddirections well we require a training set with all possible combinations of wind speed, direction andbeam incidence angle represented. In order to retain some totally independent data for testing 13scenes were selected from the whole dataset and removed from further analysis. The remaining102 scenes were used for parameter estimation.Figure 4 shows the distribution of the target values in these 102 scenes. Wind speed has a distribu-tion strongly skewed towards lower speeds, which re
ects the distribution of surface wind speeds inthe atmosphere. We wish to train our networks to learn the transfer function at all speed ranges tominimise the FoM evaluation function. Thus when selecting a subset of 3,000 observations to trainthe networks, 1,500 observations were selected to give as uniform a distribution of wind speed aspossible. A further 1,500 randomly chosen observations were also selected. This implies that equalweight is given to the weighted and unweighted FoM . The validation set, which was used in the3See http://www.meto.govt.uk/sec5/NWP/NWP.html.
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(b)Figure 4: Histograms showing the distribution of (a) wind speed and (b) direction.early stopping procedure, was selected in a similar manner. Finally a test set of 3,000 observationswas chosen randomly from the test scenes. All variables (except wind speed and direction) werelinearly transformed to have zero mean and unit variance, using the mean and standard deviationderived from the direction training dataset. All results in this paper refer to the test set.6 Results6.1 Wind Speed
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Neural Network Based Wind Vector Retrieval from Satellite Scatterometer Data 11unit network, demonstrating that a reasonable approximation is made at all wind speeds, althoughthere are some large residuals. The wind speed results are also computed for di�erent wind speedbins, as suggested in the section on evaluation functions.Table 1: Results for the 4 hidden unit multi-layer perceptron, binned by wind speed and alinear regression model. The regression model included terms up to quadratic in thevariables but no interaction terms. All �gures given in ms�1.Speed Range Bias SDa RMSEb Nc< 4 1.37 1.71 2.19 5124 { 8 0.18 1.43 1.44 13248 { 12 0.05 1.85 1.86 70312 { 16 -0.74 2.13 2.25 32416 { 20 -0.30 2.17 2.19 126> 20 -0.94 1.23 1.55 11whole test set 0.23 1.80 1.81 3000optimal regression model -0.14 1.85 1.85 3000aStandard DeviationbRoot Mean Square ErrorcNumber of observationsFrom Table 1 it is clear that the network is having some di�culty learning the transfer functionfor speed at higher and lower wind speeds (shown especially in the large biases). This is a featurecommon to all reported transfer models [O�ler, 1994; Wismann, 1992] and the regression model.The root mean square error of 1.81 ms�1 for the full test set is within the design speci�cation ofthe instrument of 2 ms�1.6.2 Wind Direction
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Figure 6: Conditional density functions for 2 cells showing the results of 2 circular normal, 2�xed kernel and the committee of these 4 models. Both the true and aliased (i.e.incorrect by 180 degrees) targets are shown.Figure 6 illustrates that the di�erent techniques of using adaptive circular normals and expansionin �xed kernels produces similar conditional densities for the wind direction given the scatterometerinputs. There is however some variability in the results, suggesting that a committee of networksmight improve performance. In both cases there is good agreement between the observed direction
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(b)Figure 7: Scatter-plots of observed versus predicted direction for (a) the most likely and (b)the second most likely solutions. The lines show perfect �t and 180o alias solutions.and the predicted conditional densities. Figure 7 shows the results of the committee of networks,choosing the most likely and second most likely vectors (since generally there are two dominantsolutions; the true one and its 180 degree alias). Also marked on Figure 7 is the line of correctsolutions (observed = predicted) in the centre, and the two lines (observed = predicted �180degrees) that are the alias solutions. The data clusters around these lines in both �gures, althoughthere is considerable scatter.Table 2: Results of the network techniques applied to the direction data. Columns give thepercentage of observations within �20o of the target solution considering the mostlikely, �rst and second most likely and the �rst four most likely directions. For eachexample the best �tting solution is chosen.Network Con�guration / Technique 1 solution 2 solutions 4 solutionsFK 24 18 0.7a 53.0 72.0 79.0FK 48 36 0.6 51.7 70.9 86.5CN 12 6b 47.2 70.8 77.5CN 50 4 45.1 72.9 78.74 net committee 53.8 74.2 84.0aFK = �xed kernel, number of hidden units, number of �xed kernels, scale of kernels relative to inter-kernelspacing.bCN = circular normals, number of hidden units, number of adaptive kernels.Table 2 shows selected results for two of the better �xed kernel and circular normal approaches aswell as the committee results. By considering both �rst and second solutions and picking the betterone, using the circular normal technique we obtain the correct solution within 20 degrees morethan 70% of the time. The committee of networks outperform all their members when consideringonly one or two solutions, however when considering the four most likely solutions some of the�xed kernel results are marginally better.



Neural Network Based Wind Vector Retrieval from Satellite Scatterometer Data 13Table 3: Comparison of results using di�erent algorithms (results computed in speed range the4{24 ms�1). Note that the �nal CMOD4 result uses a completely di�erent dataset,and that the other studies used a di�erent ambiguity removal procedure than wasused in this study. All units ms�1 (speed) and o (direction).Method Used Speed Bias Speed SDa Dir. Bias Dir. SDNeural networks - this study -0.01 1.73 0.73 23.05CMOD4 - same data 0.3 1.8 { {Subset of data [26] -0.44 �2 -1.37 �20CMOD4 [8] 0.1 1.9 -1.6 17.0CMOD4 [11] 0.06 1.65 0.76 16.69aStandard Deviation7 Discussion and ConclusionsThe equivalent results for the operational CMOD4 algorithm are only available for an (unknown)subset of the dataset we used, excluding those cases with wind speeds < 4 ms�1, and are shownin Table 3. These may be comparable with our results since we have used a representative sampleof the full (40,000 observation) dataset in testing.Table 3 shows the limited number of comparable results published; however CMOD4, being theoperational algorithm, can be used as a benchmark. The neural networks used in this study pro-duced comparable results to CMOD4 on speed, however they did not perform as well on direction.Given that the estimated noise on the wind speed targets is of the order of 2 ms�1 the speedresults may well represent the best that can be achieved given the data available, and fall withinthe speci�cation of the instrument, which required less than 2 ms�1 root mean square error. Itmust be noted that the neural networks trained in this study were trained on a combination ofuniformly and randomly (i.e. as the data) distributed wind speed data, and thus are unlikely toproduce an optimal solution over the observed distribution of wind speeds. This was done so thatthe networks would minimise the Figure of Merit evaluation function. However, the almost uni-form distribution of relative wind direction means there should be no such problems with respectto wind direction.Results for the neural network approach to wind direction retrieval proposed in [Thiria et al., 1993],are not directly comparable since they used simulated data as well as a spatial input context. Theyobtained 72% of the �rst solution within 20 degrees and 98.4% of the �rst two solutions within 20degrees. Our committee of networks obtained the correct solution to within 20 degrees roughly75% of the time considering the two most likely directions only. In further work we have performedusing a di�erent training set based on co-located scatterometer �o triples and wind vectors fromthe ECMWF numerical weather prediction model the same committee produced results of 77.4%within 20o of the true direction, taking the �rst two most likely solutions. A more representativedata set, with far more patterns in the training set is likely to improve results. The more simpleCMOD4 forward model was trained using almost 40,000 observations.Our techniques produced Figure of Merit scores of 1.08 (weighted average over the speed bins)and 1.16 (unweighted), which compare with the CMOD4 scores of 1.13 (weighted) and 1.16 (un-weighted). These scores cannot be directly compared since they were computed from di�erentdata sets, however there is some potential bene�t in the neural network approach. It would beconsiderably less computer intensive since once the networks are trained, new wind vectors can becomputed using forward propagation in the model, whereas the current operational models requirethe minimisation of a complex function or the use of large look-up tables.
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16 Neural Network Based Wind Vector Retrieval from Satellite Scatterometer DataAppendix IIn order to compare di�erent models a Figure of Merit `evaluation function' has been proposed byDavid O�ler of the UK Meteorological O�ce (personal communication). This evaluation functiontakes the form: FoM = (F1 + F2 + F3)3 (13)where F1 = 40=(Ubias + 10Usd + Dbias + Dsd); F2 = (2=Urms + 20=Drms)=2; F3 = 4=Vrms; Ugives the wind speed, D the wind direction and V the wind vector. This re
ects the extent towhich the model meets the instrument speci�cations of �2ms�1 and �20o. A FoM of greaterthan one indicates the transfer function is performing to within these speci�cations, although thisis a rather ad-hoc measure. The bias is given by:Ubias = 1n nXi=1 Ures(i) (14)where the residual wind speed Ures = Upred � Uobs, the predicted speed (Upred) coming from theneural network, the observed speed (Uobs) from the numerical weather prediction model and n isthe number of observations. The standard deviation of the residuals is given by:Usd =vuut� 1n nXi=1(Ures(i))2�� (Ubias)2 (15)Similarly the root mean square error Urms is given by:Urms =vuut 1n nXi=1(Ures(i))2 (16)The vector residual Vres is given by:Vres =qU2obs + U2pred � 2UobsUpred cos(Dres) (17)The wind speed is known to a�ect the ability of the on-board instruments to resolve wind direction.Thus the FoM is computed by binning the cases in 5 wind speed classes; 4�8 ms�1, 8�12 ms�1,12� 16 ms�1, 16� 20 ms�1 and > 20 ms�1. The bias, standard deviation and root mean squareerror (of the residuals) are computed for each bin and a �nal FoM is computed from both weighted(by the number of observations in each bin) and unweighted means of the binned statistics. Theweighted mean takes into account the distribution of wind speed values in the atmosphere. Theunweighted mean gives much larger importance to performance at higher wind speeds, which arearguably the cases of greatest interest to atmospheric scientists.


