
Efficient K-NN Search in Polyphonic Music Databases
Using a Lower Bounding Mechanism

Ning-Han Liu
Department of Computer Science

National Tsing Hua University
Hsinchu,Taiwan 300, R.O.C

886-3-5715679

nhliou@yahoo.com.tw

Yi-Hung Wu
Department of Computer Science

National Tsing Hua University
Hsinchu,Taiwan 300, R.O.C

886-3-5715131-2847

yihwu@mx.nthu.edu.tw

Arbee L.P. Chen
Department of Computer Science

National Tsing Hua University
Hsinchu,Taiwan 300, R.O.C

886-3-5715131-1065

alpchen@cs.nthu.edu.tw

ABSTRACT
Querying polyphonic music from a large data collection is an
interesting and challenging topic. Recently, researchers attempt to
provide efficient techniques for content-based retrieval in
polyphonic music databases where queries can also be polyphonic.
However, most of the techniques do not perform the approximate
matching well. In this paper, we present a novel method to
efficiently retrieve k music works that contain segments most
similar to the user query based on the edit distance. A list-based
index structure is first constructed using the feature of the
polyphony. A set of candidate approximate answers is then
generated for the user query. A lower bounding mechanism is
proposed to prune these candidates such that the k answers can be
obtained efficiently. The efficiency of the proposed method is
evaluated by real data set and synthetic data set, reporting
significant improvement over existing approaches in the response
time yielded.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing – indexing methods. H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval – search
process.

General Terms
Algorithms, Management, Performance

Keywords
Polyphonic music information retrieval, indexing methods, search
process, lower bounded edit distance

1. INTRODUCTION
The amount of music data in digital formats has been increasing
with the progress of computer and network technologies. To
provide content-based retrieval on these music data, a variety of
approaches [13] have been proposed, which address the issues
including data representation and index structure. Regarding the
representation of music data, several approaches [13] have been
introduced to model music data based on various features, such as
pitch, rhythm, interval, chord, and contour. To deal with the
efficiency issue, different techniques [2] have been presented in
the literature, including string matching, dynamic programming,
n-gram indexing, list-based indexing, and tree-based indexing.

Two types of approaches are commonly used for content-based
retrieval on polyphonic data. The first type of approaches is to
transform the polyphony into a monophony and then apply the
techniques on monophonic data for content-based retrieval. For
example, Themefinder [6] represents each polyphonic datum by
monophonic themes. Given a query, similar themes are retrieved
by using the string matching algorithms. Meldex [9] transforms
each polyphonic datum into a monophony based on the highest-
pitch approach proposed by Uitdenbogerd and Zobel [16]. The
common drawback in this type of approaches lies in its
assumption that the polyphonic data can be represented as
monophonic data, which is not always true [13].

The second type of approaches is to design specialized algorithms
for content-based retrieval on polyphonic data. SEMEX [7]
extends the well-known shift-or algorithm [18] for string
matching to find all the segments in the polyphonic data, which
contain the monophonic query. This system also enables its
searching with transposition invariant. To enable polyphonic
query processing, PROMS [1] adopts the inverted-file based
method to record the information about every note in the
polyphonic data. The recorded information includes pitch, bar,
and note onset time. It only returns the music segments with
exactly the same pitches and onset times of notes as the ones of
the query. This system is good for exact matching but ineffective
for approximate matching because the onset times of notes still
have to match with those of the query. On the other hand, Dovey
[3] proposes a dynamic programming based algorithm for
processing a polyphonic query. In addition to exact matching, this
algorithm further takes approximate matching into consideration.
However, due to the limitation of dynamic programming, its
performance suffers from both the long length of a music datum
and the large number of data in the database. Pickens [14] uses

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MIR’03, November 7, 2003, Berkeley, California, USA.
Copyright 2003 ACM 1-58113-778-8/03/00011…$5.00.

163

HMM (Hidden Markov Model) to describe the probability
distributions of chords in polyphonic data and polyphonic queries
respectively. These probability distributions are represented as the
probability matrices. In this way, the distance between a query
and a datum can be estimated according to the difference between
their probability matrices. Such approach is appropriate for the
music with variation. However, the probability distribution of a
string can be very different from the probability distribution of its
substring. Therefore, the HMM-based approach can only be used
for the case where the query and data have almost the same
lengths.

Given any two strings, a variety of scoring functions can be used
to estimate the similarity degree between them. Given a query
string and a scoring function, two approaches are commonly used
to select the proper answers, i.e., to prune the improper ones. One
is to prune the data whose scores are below a predefined threshold.
However, it is difficult to find a threshold that is suitable for
different queries. The other is to select only a fixed number of
data whose scores are the highest (named the k nearest neighbors
search and abbreviated as K-NN search). This approach is more
suitable for music retrieval since only a pre-determined number of
music works are returned to the users.

The set of notes that begin at the same time is defined as an event
[3]. Therefore, a piece of music is regarded as a string of events.
Owing to the variety of events, the conventional indexing method
such as suffix tree [10, 12] or n-gram [4] may generate a complex
and costly index and the K-NN search can be inefficient. Some
methods for music reduction [13] have been proposed to reduce
the complexity of the index structure by grouping similar events
into one. However, a change of the similarity measure for events
may result in the reconstruction of the index.

In this paper, we design a query processing method that is
efficient to K-NN search given a query and a similarity measure
of events. An index structure is constructed which keeps the
position of every event in a music datum. Given a query as a
string of events, all candidate approximate answers under the user
provided similarity measure will be identified from the index
structure. A method to prune impossible candidates is then
designed such that the K-NN results can be obtained efficiently.
From the experimental results, our method performs much better
than the previous works [3, 12]. The remainder of this paper is
organized as follows. In Section 2, we define a similarity measure
for polyphonic data. Section 3 presents the indexing structure and
the methods for query processing are introduced in Section 4.
Section 5 shows the experiment results and performance analysis.
Finally, Section 6 summarizes the contributions of this work with
some future research directions.

2. SIMILARITY MEASURE FOR THE
POLYPHONY

There are several symbolic representations in digital music, such
as MIDI [11] and CHARM [17]. We adopt the MIDI
representation because of its popularity. Moreover, we focus on
the classical music because most of them are polyphonic music.
We determine the pitch scales following the MIDI standard,
where the pitch values are non-negative integers smaller than 128.
In this way, an event is represented as a set of pitch values and a
piece of music is represented by a string of events, where only the

ordering of the note onsets is preserved. The representation is
often named homophonic reduction [13] that assumes
independence between the notes with the overlapping duration.
Figure 1 is an example of the above representation for the
polyphony. The signs ‘<’ and ‘>’ imply an event and the values
between them are the pitch values of the notes. For example,
<60> means the event only contains the middle-C note and
<64,67> means the event contains both the E note and the G note.

Figure 1: An example of a string of events

To provide the ability of approximate matching, we adopt the

edit distance based approach to measure the similarity degree
between two strings. Based on the definition in [2], there are three
types of local transformations from string A (denoted as a1…am)
to string B (denoted as b1…bn) as follows, where ai and bi denote
a single symbol (or value) and λ means a null character.

 Insertion: λ→bj

 Deletion: ai→λ

 Replacement: ai→ bj

The edit distance between strings A and B is the minimum
number of local transformations required to transform A into B.
The cost of the local transformations is defined as follow:

Both the costs of insertion and deletion are set to 1. For the cost
of replacement cost(a,b), we define the similarity degree sim(a,b)
first, where 0≤ sim(a,b) ≤1. Moreover, we define g(a,µa) as the set
of events whose similarity degrees with a are larger than a
predefined threshold µa. The cost function cost(a,b) for a
replacement between a and b is then computed as 1-sim(a,b) if
b∈g(a,µa), and 1 otherwise. Notice that since events a and b may
have different thresholds, b∈g(a, µa) does not imply a∈g(b, µb)
and vice versa. From the cost of replacement as defined above, it
implies that an event b matches with an event a when b is similar
enough with a. Otherwise, it is considered as an unmatched
symbol in A and B, which spends the same cost as insertion and
deletion. The unmatched symbols include the symbols of deletion,
insertion and replacement with cost 1. The gap is defined as the
number of consecutive unmatched symbols between two strings.
In our method, we also adopt the gap constraint δ [3] to limit the
maximum length of gaps between two strings such that none of
the gaps in the returned answers has a length larger than the gap
constraint. In this way, both the edit distance and the gap
constraint are used to determine the final answers.

To perform the experiments for our approach, a similarity
measure of the events is proposed in the following. This measure
is based on the number of pitches in common between the events,
which follows the proposed methods in [3, 14]. Moreover, the
user can specify the degree of significance to each note in the
event based on the user’s need. An event is regarded as a vector
with 128 dimensions following the MIDI standard. For example,

164

an event <60, 63> corresponds to the vector with 128 dimensions
in which only the dimensions 60 and 63 have values of 1 and the
others are 0. Furthermore, for each event a, a weighting function
fa

i is used to adjust the value of dimension i whose original value
is 1 to keep the degree of significance for the corresponding pitch
with respect to this event. In this way, we can use the parametric
cosine function to measure the similarity degree between two
events as follows.

∑ ∑
∑∑

∑
= =

==

= ===
128

1

128

1128
1

2128
1

2

128
1)1(1)(,1)(,

)(*)(

)(*)(
),(

i i
i

i
Vi

i
U

i i
i

Vi i
i

U

i i
i

Vi
i

U vfuf
vfuf

vfuf
VUsim

U, V: the vectors of events with 128 dimensions
ui, vi: the values of dimension i in U, V vectors respectively
fU

i(ui), fV
i(vi): the weighted functions of U, V for dimension i

respectively

From this formula, when two events are the same, the cosine
value is 1. When all of the notes in these two events are different,
the cosine value is 0. For example, assume there are three events
<65,67>, <60,63>, and <60,67>. If the user feels that the highest
note in an event plays the most important role in the polyphony,
by respectively assigning the higher and lower notes the weights
of 70% and 30%, the above formula will compute the similarity
degree between <65,67> and <60,67> as 0.845. Similarly, the
similarity degree between <60,63> and <60,67> is computed as
0.5. Therefore, it implies that <65,67> is closer to <60,67>. By
contrast, if the user assigns the same weights to both notes (i.e.,
50%), the similarities will become the same.

3. INDEXING STRUCTURE
Many data structures such as suffix trees and suffix arrays
[2] have been proposed to store the substrings of a string
for fast string searching. However, these index structures
are not adequate to solve the problem mentioned in this
paper, because they do not deal with the k approximate
strings searching efficiently. On the other hand, the n-gram
based indexing techniques [2] are also not adequate to this
problem, because too many types of events in the
polyphony will make their performance poor. In our
previous work [8], we designed an index structure called
the 1D-list [8] to index music strings. An example is shown
in Figure 2(a). Each node in the linked list keeps a pair of
information (i : j), which indicates the j-th event of the i-th
music in the database. All the events in the database of the
same type are linked together in order.
For instance, in Figure 2(a), the 1D-list of event <60> has
three nodes, indicating the 7th event of the 1st music, the 1st
event of the 2nd and the 9th events of the 3rd music piece,
respectively.
Based on the 1D-list, the query processing for exact answer is
illustrated by an example as follows. Given a query Q=(<60>,
<64,67>, <62>), the three 1D-lists involved in Q are retrieved and
two dummy nodes are added as shown in Figure 2(b). We check
every pair of nodes in the adjacent two linked lists. For two nodes
x (ix:jx) and y (iy:jy) where x is to the left of y, we build a link
from x to y if ix=iy and jx=jy-1. Such a link indicates a segment in
a music work that matches a part of Q. In Figure 2(b), four such
links are found and drawn as solid bold lines. We then start from

the dummy node “start” to traverse these links. If there exists a
path to the dummy node “end”, it represents an exact answer to Q.

<60,62>

1:10

2:7

2:8

1:4

<62>

1:3

1:9

2:2

1:2

2:6

3:12

<64,67>

1:6

1:8

2:5

1:5

3:10

<65>

1:11

1:12

1:13

1:1

2:3

2:4

<60>

2:1

3:9

1:7

<60>

2:1

3:9

1:7

<64,67>

1:6

1:8

2:5

1:5

3:10

<62>

1:3

1:9

2:2

1:2

2:6

3:12

start end

(a)

(b)

Figure 2: (a) A 1D-list (b) Traversal of the 1D-list

For approximate matching, three kinds of errors, i.e., deletion,
insertion and replacement, should be considered. Among them,
the processing of deletion and replacement will be discussed in
Section 4. In this section, we consider the matched segments with
insertion errors. The query processing is similar to the case of
exact matching except that extra links from x to y where ix=iy,
jx<jy-1 and jy-jx-1 ≤ δ are allowed. The value of jy-jx-1 implies the
number of insertion errors between x and y. For instance, in
Figure 2(b), the dotted lines indicate the extra links. Two paths
from “start” to “end,” which contain an extra link are constructed
to form possible approximate answers, as shown in Figure 2(b).
Further comparison with other approximate answers generated
from considering deletion and replacement is needed to determine
the final K-NN answers.

4. QUERY PROCESSING FOR K-NN
ANSWERS

In this section, we introduce our strategy of query processing in
detail. The user submits a segment of music as a query that is
transformed into a string of events. In addition, the user also
specifies the following parameters to control the quality of query
results.

1. The number of query results k that the system has to return.

165

2. The weighting function fa
i to adjust the value of the i-th

dimension in event a.

3. The threshold µa for event a to determine the set of events
g(a,µa).

4. The gap constraint δ to restrict the number of continuous
differences between two strings.

Our approach of query processing is summarized as follows. It
will be detailed in Sections 4.1, 4.2, and 4.3.

All the candidate approximate answers (abbreviated as candidates)
with deletion and replacement errors are first generated from a
query based on the above parameters. After the candidates are
generated, the system evaluates the distance of each candidate and
the query by summing up the costs of deletions and replacements
between them. This distance is called the lower-bound distance
(abbreviated as LB distance) of the candidate. The system then
selects the candidate with the minimal LB distance to search for
possible answers from the 1D-list index structure. The edit
distances of the possible answers are computed considering the
insertion errors. In the next iteration, the LB distances of the
remaining candidates are refined and the above process is
repeated until none of the LB distances of the remaining
candidates are less than the maximum of the edit distances of the
k possible answers with the minimal edit distances. At this
moment, all the answers are returned to the user.

4.1 Generation of Candidates
The generation of all candidates consists of three steps.

Step 1: For each event a in the query, the similarity degree
between a and each event in the database, i.e., all the different
types of events in the 1D-list, is computed by formula (1) and the
events with similarity degrees larger than µa are collected as g(a,
µa). Note that one event may be involved in more than one group.
For example, Figure 3 shows the four groups generated from a
query, where each alphabet stands for a distinct event.

a b
d

Query: adbc

ab
e

dc
e

d
e

Figure 3: A query and its associated groups

Step 2: A candidate is formed from concatenating the events,
each from a distinct group. Considering the groups in Figure 3,
the candidates generated includes adbc, adbd, adb, etc. Define a
segment in the query, which does not match with the events in a
candidate, as a cut of the candidate, and the length of the cut the
cut length. For example, the candidate adb has a cut c. Notice that
any cut length must be smaller or equal to δ since a candidate
cannot have a gap larger than δ.

Step 3: For each candidate, we evaluate the initial value of the LB
distance as follows. Without loss of generality, we represent the
query Sq with respect to the candidate S1=a11a12…a1n as
Sq=C0aq1C1aq2C2…aqnCn.
Note that aqi and a1i are events where a1i∈g(aqi,µ), and Ci is a cut
of S1 with respect to Sq. Let L(Ci) be the cut length of Ci. The

function cost(aqi,a1i) as defined in Section 2 stands for the cost for
a local transformation from event aqi to a1i. We initialize the LB
distance (denoted by LB(S1,Sq)) by the following formula:

∑ ∑
= =

+=
n

i

n

i
iqiiq aaCLSSLB

0 1
)2(),()(),(11 cost

For the refinement of the LB distance, we use an array (named
candidate array) to store the costs of the unmatched symbols, i.e.,
deletions, insertions and replacements with cost 1 for the
candidate. The value in each cell of the array is denoted as
Cell(axay) where axay is the identifying string of the cell. In the
beginning, only the costs of deletions are stored. Figure 4 shows
an example where x is an unmatched symbol (deletions):

Sq=aq1 aq2 x aq3 x aq4 x x aq5 x x aq6 x aq7 x aq8 x aq9 (query)

S1=a11 a12 a13 a14 a15 a16 a17 a18 a19 (candidate)

a11 a12 a13 a14 a15 a16 a17 a18 a19

0 1 1 2 2 1 1 1

∑
=

+=
9

1
),(9),(

i
i1qiq aacostSSLB 1

Figure 4: An example candidate array

4.2 Computing Edit Distances of Possible
Answers

After candidates are generated, the candidate with the minimal LB
distance is selected to process. Denote this candidate as
S1=a11a12…a1n. We use the method of approximate matching
described in Section 3 to find the possible answers and compute
their edit distances. The possible answers include all the events in
S1 and keep the order of the events, which can be represented as
S1

ans=a11I11a12I12…I1n-1a1n where I1i denotes insertion errors. Let
L(I1i) be the number of the insertions between a1i and a1i+1, which
can be obtained by traversing the 1D-list. The edit distance
between the possible answer S1

ans and the query Sq is evaluated by
the following formula:

∑ ∑
−

= =
+++=

1

1 1
0)3(),()())(),(()(),(

n

i

n

i
iqiniiq

ans aaCLILCLCLSSdist 111 costmax

Because each event in the candidate aligns with an event in the
query, the events of a possible answer that appear in the candidate
aligns with the same events in the query. Under this alignment of
events, the cost of unmatched symbols between any two
consecutive events in the candidate is the maximum of the cost on
deletions (i.e., L(Ci)) and the one on insertions (i.e., L(I1i)). From
formula (2) and (3), we see that LB(S1,Sq)≤dist(S1

ans,Sq).

4.3 Refinement of the LB Distances
The query processing terminates when none of the LB distances
of the remaining candidates is less than the maximum edit
distance of the k possible answers with the minimal edit distances.
This is because none of the remaining candidates can produce a
possible answer better than the current k answers. In this way, the
LB distance can be used to reduce the generations of possible
answers.

166

Because the initial LB distance only considers the costs of
deletions and replacements, it is a loose bound to the real
minimum edit distance of the possible answers. To reduce the
generations of possible answers, the minimum number of the
insertions, which can be computed after the traversal of the 1D-
list, is used to tighten the bounds of the remaining candidates.
Based on the max function in formula (3) if we consider the
minimal number of the insertions to increase the LB distance, the
refined LB distance is guaranteed to be lower than the edit
distance of the associated possible answers.

Event-Pattern

ab

bc

abc

Interval

1

1

3

Data1: acb Data2: addbec

cd infinite

1:1

a

2:1

b c

1:3

2:4

1:2

2:6

2:2

2:3

d

Start End

1

2 1

Candidate: abcd

abcd infinite

Figure 5: Evaluation of MNIs

During a traversal of the 1D-list, two sets of substrings of the
candidate are collected, which are called event-patterns. One set
consists of all the substrings containing only two events. The
other set contains all the substrings that are prefixes of the
candidate. For each event-pattern, the minimum number of the
insertions (denoted MNI) can be computed. Consider the example
shown in Figure 5. For the candidate abcd, the 1D-lists of a, b, c,
d are traversed. After the links are constructed, it can be seen that
there are two links connecting list a to list b. We compute the
MNI of ab as follows. Since the insertion from node (1:1) to node
(1:3) is 1 and from node (2:1) to node (2:4) is 2, the MNI of ab is
1. The MNI of an event-pattern implies the lowest cost of the
insertions between the query and any string in the database, which
contains the event-pattern. Moreover, for the event-patterns with
more than two events, which is a prefix of the candidate, we can
compute their MNIs in the same way. For instance, the MNI of
abc is 3 because there is only one such path and the total number
of the insertions from event a to event c through event b is 3. In
addition, the MNI of an event-pattern is set to infinite if there is
no path connecting all the evens in the event-pattern, which
implies the candidates containing this pattern are not needed to be
further considered.

After the MNIs of the event-patterns are computed, we refine the
LB distance of the remaining candidates as follows.

We use a heuristic method to refine the LB distance using the
MNIs. First, for each remaining candidate, an extra candidate
array that initially is a duplicate of the candidate array is created
for recording the refined costs of the unmatched symbols.

Moreover, referring to Figure 6(a), we associate with an event-
pattern axax+1…ay-1ay, y ≥x+1, a single cell named event-pattern
cell with the value of the cell being the MNI of the event-pattern.
Second, the values of the affected cells in the extra candidate
array are recomputed, which can be separated into two cases. The
first case is that the ends of the event-pattern cell align with the
ends of the affected cells as shown in Figure 6(a). If the sum of
the values in the affected cells is less than the MNI of the event-
pattern, then the event-pattern cell will replace the affected cells.
The other case is that only one or none of the ends of the event-
pattern cell aligns with the ends of the affected cells as shown in
Figure 6(b). The uncovered part is defined as the identifying
string of the non-overlapping part of the event-pattern cell and the
affected cells. For an uncovered part aiai+1…ax-1ax, the estimated
cost of the unmatched symbols is the sum of the values in
Cell(akak+1) of the candidate array, where k is from i to x-1. When
the sum of the MNI and the estimated costs of the uncovered parts
is larger than the sum of the values in the affected cells, the
affected cells of the extra candidate array are replaced by the
event-pattern cell with the associated MNI, and for the uncovered
parts the corresponding cells from the candidate array with their
associated values are filled. Moreover, since the values of the
cells in the candidate array is reused to compute the estimated
costs of the uncovered parts in the extra candidate array, these
values have to be kept up to date by the event-patterns with two
events. For the event-pattern axax+1, if the MNI is larger than the
value in Cell(axax+1) of the candidate array, it will be replaced
with the MNI as shown in Figure 6(c).

After the adjustment of the extra candidate array, the refined LB
distance can be computed by the values inside the cells.

(a)

(b)

(c)

Event-pattern axax+1

ax ax+1

Candidate array

Affected cells

MNI

a1ax ax+1.............ay-1 ay................an

Event-pattern cell of ax ax+1 ...ay-1ay

Extra candidate array

Affected cells

MNI

uncovered partuncovered part

a1ai......ax.ax+1..................ay-1 ay.....aj...............an

Event-pattern cell of ax ax+1 ...ay-1ay

Extra candidate array

)MNI),(()(1 xxx CLmaxaaCell =+

Figure 6 Adjustment of the affected cells for an event-

pattern

167

Consider the query Sq in Figure 4 as an example. The refinement
of the LB distance is shown in Figure 7(a). Assume there is an
event-pattern a16 a17 a18 a19 with the MNI=5. The three affected
cells are a16 a17, a17 a18 and a18 a19. Because the MNI is larger
than 3, which is the sum of the values in the affected cells, we
replace these three cells to one and store the MNI, i.e., 5 in this
extended cell. As another example shown in Figure 7(b), there is
an event-pattern a15 a16 a17 with the MNI=9. The two affected
cells are a15a16 and a16a17a18a19. Since 11, the sum of the MNI,
Cell(a17a18) and Cell(a18a19) is larger than 7, the sum of the values
in the affected cells a15 a16 and a16 a17 a18 a19, the cells are
adjusted and the LB distance is refined.

a11 a12 a13 a14 a15 a16 a17 a18 a19

0 1 1 2 2 1 1 1

∑
=

+=
9

1
),(11),(

i
iqiq aacostSSLB 11

5

Affected cells

Event-pattern cell

∑
=

+=
9

1
),(15),(

i
iqiq aacostSSLB 11

9

Affected cells

Event-pattern cell

(a)

(b)

a11 a12 a13 a14 a15 a16 a17 a18 a19

0 1 1 2 2 5

a11 a12 a13 a14 a15 a16 a17 a18 a19

0 1 1 2 2 5

a11 a12 a13 a14 a15 a16 a17 a18 a19

0 1 1 2 9 1 1

Figure 7 Examples of the LB distance refinement

4.4 A Query Processing Example
Assume there are two music works in the database and the 1D-list
is constructed as shown in Figure 8(a). A query aba is posed with
the request of the music work containing the most similar segment,
that is, k is set to 1. Suppose g(a, µa)={b} and g(b, µb)={a}, the
distance between a and b is 0.4, and the gap constraint is 3. After
the generation of candidates, 26 candidates are produced with
their LB distances shown in Figure 8(b). The candidate aba with
the minimum LB distance is selected and its associated 1D-list
traversed for searching the answers, refer to Figure 8(c). At this
round of query processing, no answer is found but two event-
patterns ab and ba with their MNIs are recorded. The MNI of the
event-pattern ba is set to infinite because none of the links
constructed satisfy the gap constraint 3. The next step is to refine
the LB distances of all the candidates by the MNIs of the event-
patterns and some of the candidates are dropped out since their LB

distances are infinite, which is shown in Figure 8(e). We repeat
these steps, shown in Figure 8(f), 8(g) and 8(h), until an answer is
found which is from position 1 through position 2 to position 3 in
data 2 with the edit distance 0.8 as shown in Figure 8(i). The
query processing terminates at this point since the LB distances of
all the remaining candidates are larger than the edit distance of
the answer.

Data 1: a x x x b b y y
Data 2: b b b x x x y a

a

1:1

2:8

b

1:5

1:6

2:1

2:2

2:3

x

1:2

1:3

1:4

2:4

2:5

2:6

y

1:7

1:8

2:7

Query: a b a

aba(0)
aaa(0.4)
abb(0.4)
bba(0.4)
aab(0.8)
baa(0.8)
bbb(0.8)
_ba(1)
a_a(1)
ab_(1)
bab(1.2)
_aa(1.4)
bb_(1.4)
aa_(1.4)
_bb(1.4)
a_b(1.4)
b_a(1.4)
b_b(1.8)
ba_(1.8)
_ab(1.8)
b(2)
a_ _(2)
_ _a(2)
_ _b(2.4)
b_ _(2.4)
a(2.4)

a

1:1

2:8

b

1:5

1:6

2:1

2:2

2:3

a

1:1

2:8

Start End

(a) (b)

(c)

(d)

aaa(0.4)
bbb(0.8)
a_a(1)
_aa(1.4)
bb_(1.4)
aa_(1.4)
_bb(1.4)
b_b(1.8)
b(2)
a_ _(2)
_ _a(2)
_ _b(2.4)
b_ _(2.4)
a(2.4)
a_b(3.4)
abb(3.4)
aab(3.8)
ab_(4)
_ab(4.8)

a

1:1

2:8

Start

a

1:1

2:8

a

1:1

2:8

End

bbb(0.8)
bb_(1.4)
_bb(1.4)
b_b(1.8)
b(2)
a_ _(2)
_ _a(2)
_ _b(2.4)
b__(2.4)
a(2.4)
a_b(3.4)
abb(3.4)
ab_(4)
_ab(4.8)

Start End

b

1:5

1:6

2:1

2:2

2:3

b

1:5

1:6

2:1

2:2

2:3

b

1:5

1:6

2:1

2:2

2:3

(e)

(f)

(g) (h)

(i)

Event-pattern Interval

ab

ba

3

infinite

Event-pattern Interval

ab

ba

3

infinite

aa infinite

Candidates

Candidates Candidates

 Figure 8: An example of query processing

5. PERFORMANCE ANALYSIS
In this section, we show the experiment results about the
efficiency of our method. For comparison, we modify a dynamic
programming algorithm named piano roll [3] by adding the
similarity measure as defined in this paper. We also compare our
method with the suffix tree method proposed in [12]. In that
method, the suffix tree is traversed by using the depth first
search and its branches are pruned by the gap constraint to
speed up the processing time.

There are two data sets used in the experiments. One is a real data
set, which contains 2800 pieces of classical music with average
2954 events in each MIDI file. The other is a synthetic data set,
which contains 2800 randomly generated text files with average
3000 events for each file. The parameters k, µ and δ are set to 10,
0.8 and 5, respectively. Moreover, we set fa

i such that each note in
a has an equal weight. Figure 9(a) and Figure 9(b) illustrate the

168

elapsed time versus the query length for the two data sets
respectively. In both types of data, the elapsed time of the piano
roll algorithm grows linearly with the query length, which follows
the property of the dynamic programming algorithm. Moreover,
the elapsed time of the suffix tree method grows rapidly. The
reason is that because the common prefixes between any two
suffixes in our data sets are rare, there are a large number of
branches in the suffix tree. When the query length increases, the
number of branches to be traversed also increases. Figure 9(a) and
Figure 9(b) indicate that our method performs much better than
the other methods. Figure 10(a) illustrates the elapsed time versus
the threshold µ for the real data set. The parameters k, δ and
query length are set to 10, 5 and 15, respectively. Figure 10(b)
shows the elapsed time versus different k values for the real data
set. Figure 10(a) and Figure 10(b) indicate that the elapsed time of
our approach is influenced by the threshold µ and the k value. The
reason is that when the threshold µ is looser or the k value is
larger, our method will generate more candidates and spend more
time to produce the answers. Moreover, the elapsed time of the
suffix tree method is also influenced by the two parameters which
have impacts on the number of traversed branches.

0

5

10

15

20

25

30

35

5 10 15 20 25

query length (number of events)

el
ap

se
d

tim
e

(s
ec

.)

RDPR

RDST

RDOA

0

5

10

15

20

25

30

35

5 10 15 20 25
query length (number of events)

el
ap

se
d

tim
e

(s
ec

.)

SDPR

SDST

SDOA

RDPR: Real Data with Piano-Roll SDPR: Synthetic Data with Pinao-Roll
RDST: Real Data with Suffix Tree SDST: Synthetic Data with Suffix Tree
RDOA: Real Data with Our Approach SDOA: Synthetic Data with Our Approach

(a) Elapsed time vs. query length (real music data set)

(b) Elapsed time vs. query length (synthetic data set)

Figure 9: Experiment results of different query lengths

0

2

4

6

8

10

12

14

16

18

20

1 5 10 15 20

K most similar segments
el

ap
se

d
tim

e(
se

c.
) RDPR

RDST

RDOA

0

2

4

6

8

10

12

14

16

18

20

0.9 0.8 0.7 0.6 0.5

threshold

el
ap

se
d

tim
e

(s
ec

.) RDPR

RDST

RDOA

RDPR: Real Data with Piano-Roll SDPR: Synthetic Data with Pinao-Roll
RDST: Real Data with Suffix Tree SDST: Synthetic Data with Suffix Tree
RDOA: Real Data with Our Approach SDOA: Synthetic Data with Our Approach

(b) Elapsed time vs. K value

(a) Elapsed time vs. similarity degree threshold

Figure 10: Experiment results of threshold and K value

6. CONCLUSION
This paper provides a novel approach to support approximate
search in the polyphonic music databases. The similarity measure
for the polyphony and the efficient methods for indexing and
query processing are proposed. In this approach, the candidate
approximate answers for a query are generated, followed by the
computation of the LB distances for efficient K-NN search.
According to the experiment results, this approach performs better
than the previous works using real data and synthetic data.

The main contribution of this paper is to provide an efficient K-
NN search method for the polyphonic music. Unlike the
traditional methods which use a predefined distance measure
when taking account of the efficiency, our approach provides a
lower bounding mechanism to efficiently derive the answers,
given a flexibly defined distance measure.

Some important issues of our approach need to be further
investigated. First, when the number of the candidates is large,
this approach costs a lot to refine the LB distances of candidates.
To deal with this problem, we will design a new approach to
reduce the number of the candidates in the future. A
straightforward way is to use an inverted file [15] to associate

169

each event with a set of music works that contain this event. By
this way, we can prune a candidate when no music works contain
all the events associated with this candidate. Second, the
adjustment of the extra candidate array uses a heuristic method.
Better strategies should be considered to tighten the lower bound
of the edit distance under a feasible load of the computation.
Third, the weighted function in the similarity measure can be
enhanced based on musicology. Finally, the effectiveness of our
method should be further investigated using the music evaluation
platform [5].

7. ACKNOWLEDGEMENTS
This work was partially supported by the MOE Program for
Promoting Academic Excellent of Universities under the grant
number 89-E-FA04-1-4, and NSC under the contract number 91-
2213-E-259-010.

8. REFERENCES
[1] M. Clausen, R. Engelbrecht, D. Meyer and J. Schmitz.

Proms: A web-based tool for searching in polyphonic music.
In Proceedings of the 1st International Symposium on Music
Information Retrieval (ISMIR), 2000.

[2] M. Crochemore and W. Rytter, Text Algorithms, Oxford
University Press, 1994.

[3] M. J. Dovey. A technique for "regular expression" style
searching in polyphonic music. In Proceedings of the 2nd
International Symposium on Music Information Retrieval
(ISMIR), 2001.

[4] S. Downie and M. Nelson. Evaluation of a simple and
effective music information retrieval method. In Proceedings
of ACM Special Interest Group on Information Retrieval
(SIGIR), 2000.

[5] J. L. Hsu, A. L. P. Chen, H. C. Chen and N. H. Liu. The
Effectiveness Study of Various Music Information Retrieval
Approaches. In Proceedings of ACM International
Conference on Information and knowledge Management
(CIKM), 2002.

[6] A. Kornstadt. Themefinder: A Web-Based Melodic Search
Tool. Computing in Musicology 11, MIT Press, 1998.

[7] K. Lemstrőm and S. Perttu. SEMEX – An Efficient Music
Retrieval Prototype. In Proceedings of the 1st International
Symposium on Music Information Retrieval (ISMIR), 2000.

[8] C. C. Liu, J. L. Hsu and A. L. P. Chen. An Approximate
String Matching Algorithm for Content-based Music Data
Retrieval. In Proceedings of International Conferences on
Multimedia Computing and Systems (ICMCS), 1999.

[9] R. J. MacNab, L. A. Smith, D. Bainbridge and I. H. Witten.
The New Zealand Digital Library MELodyinDEX. Digital
Library Magazine, May 1997.

[10] E. M. McCreight. A space-economical suffix tree
construction algorithm. Journal of the ACM, 23(2): 262—
272, 1976.

[11] MIDI Manufaturers Association, Los Angeles, California.
The Complete Detailed MIDI 1.0 Specification, 1996.

[12] S. Park, W. W. Chu, J. Yoon and C. Hsu. Efficient Searches
for Similar Subsequences of Different Lengths in Sequence
Databases. In Proceedings of the International Conference on
Data Engineering (ICDE), 2000.

[13] J. Pickens. A Survey of Feature Selection Techniques for
Music Information Retrieval. In Proceedings of the 2nd
International Symposium on Music Information Retrieval
(ISMIR), 2001.

[14] J. Pickens and T. Crawford. Harmonic Models for Polyphonic
Music Retrieval. In Proceedings of ACM International
Conference on Information and knowledge Management
(CIKM), 2002.

[15] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. Mc Graw Hill. 1983.

[16] A. Uitdenbogerd and J. Zobel. Melodic Matching
Techniques for Large Music Databases, In Proceedings of
ACM Multimedia, 1999.

[17] G. Wiggins, E. Miranda, A. Smaill and M. Harris. A
framework for the evaluation of music representation
systems, Computer Music Journal, 17(3): 31--42, 1997.

[18] S. Wu and U. Manber. Fast text searching allowing errors.
Communications of the ACM, 35(10): 83--91, October 1992.

170

