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ABSTRACT 
Querying polyphonic music from a large data collection is an 
interesting and challenging topic. Recently, researchers attempt to 
provide efficient techniques for content-based retrieval in 
polyphonic music databases where queries can also be polyphonic. 
However, most of the techniques do not perform the approximate 
matching well. In this paper, we present a novel method to 
efficiently retrieve k music works that contain segments most 
similar to the user query based on the edit distance. A list-based 
index structure is first constructed using the feature of the 
polyphony. A set of candidate approximate answers is then 
generated for the user query. A lower bounding mechanism is 
proposed to prune these candidates such that the k answers can be 
obtained efficiently. The efficiency of the proposed method is 
evaluated by real data set and synthetic data set, reporting 
significant improvement over existing approaches in the response 
time yielded.   

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing – indexing methods.  H.3.3 [Information Storage 
and Retrieval]: Information Search and Retrieval – search 
process. 

General Terms 
Algorithms, Management, Performance  

Keywords 
Polyphonic music information retrieval, indexing methods, search 
process, lower bounded edit distance 

 

 

 

1. INTRODUCTION 
The amount of music data in digital formats has been increasing 
with the progress of computer and network technologies. To 
provide content-based retrieval on these music data, a variety of 
approaches [13] have been proposed, which address the issues 
including data representation and index structure. Regarding the 
representation of music data, several approaches [13] have been 
introduced to model music data based on various features, such as 
pitch, rhythm, interval, chord, and contour. To deal with the 
efficiency issue, different techniques [2] have been presented in 
the literature, including string matching, dynamic programming, 
n-gram indexing, list-based indexing, and tree-based indexing. 

Two types of approaches are commonly used for content-based 
retrieval on polyphonic data. The first type of approaches is to 
transform the polyphony into a monophony and then apply the 
techniques on monophonic data for content-based retrieval. For 
example, Themefinder [6] represents each polyphonic datum by 
monophonic themes. Given a query, similar themes are retrieved 
by using the string matching algorithms. Meldex [9] transforms 
each polyphonic datum into a monophony based on the highest-
pitch approach proposed by Uitdenbogerd and Zobel [16]. The 
common drawback in this type of approaches lies in its 
assumption that the polyphonic data can be represented as 
monophonic data, which is not always true [13].  

The second type of approaches is to design specialized algorithms 
for content-based retrieval on polyphonic data. SEMEX [7] 
extends the well-known shift-or algorithm [18] for string 
matching to find all the segments in the polyphonic data, which 
contain the monophonic query. This system also enables its 
searching with transposition invariant. To enable polyphonic 
query processing, PROMS [1] adopts the inverted-file based 
method to record the information about every note in the 
polyphonic data. The recorded information includes pitch, bar, 
and note onset time. It only returns the music segments with 
exactly the same pitches and onset times of notes as the ones of 
the query. This system is good for exact matching but ineffective 
for approximate matching because the onset times of notes still 
have to match with those of the query. On the other hand, Dovey 
[3] proposes a dynamic programming based algorithm for 
processing a polyphonic query. In addition to exact matching, this 
algorithm further takes approximate matching into consideration. 
However, due to the limitation of dynamic programming, its 
performance suffers from both the long length of a music datum 
and the large number of data in the database. Pickens [14] uses 
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HMM (Hidden Markov Model) to describe the probability 
distributions of chords in polyphonic data and polyphonic queries 
respectively. These probability distributions are represented as the 
probability matrices. In this way, the distance between a query 
and a datum can be estimated according to the difference between 
their probability matrices. Such approach is appropriate for the 
music with variation. However, the probability distribution of a 
string can be very different from the probability distribution of its 
substring. Therefore, the HMM-based approach can only be used 
for the case where the query and data have almost the same 
lengths.  

Given any two strings, a variety of scoring functions can be used 
to estimate the similarity degree between them. Given a query 
string and a scoring function, two approaches are commonly used 
to select the proper answers, i.e., to prune the improper ones. One 
is to prune the data whose scores are below a predefined threshold. 
However, it is difficult to find a threshold that is suitable for 
different queries. The other is to select only a fixed number of 
data whose scores are the highest (named the k nearest neighbors 
search and abbreviated as K-NN search). This approach is more 
suitable for music retrieval since only a pre-determined number of 
music works are returned to the users.  

The set of notes that begin at the same time is defined as an event 
[3]. Therefore, a piece of music is regarded as a string of events. 
Owing to the variety of events, the conventional indexing method 
such as suffix tree [10, 12] or n-gram [4] may generate a complex 
and costly index and the K-NN search can be inefficient. Some 
methods for music reduction [13] have been proposed to reduce 
the complexity of the index structure by grouping similar events 
into one. However, a change of the similarity measure for events 
may result in the reconstruction of the index.  

In this paper, we design a query processing method that is 
efficient to K-NN search given a query and a similarity measure 
of events. An index structure is constructed which keeps the 
position of every event in a music datum. Given a query as a 
string of events, all candidate approximate answers under the user 
provided similarity measure will be identified from the index 
structure. A method to prune impossible candidates is then 
designed such that the K-NN results can be obtained efficiently. 
From the experimental results, our method performs much better 
than the previous works [3, 12]. The remainder of this paper is 
organized as follows. In Section 2, we define a similarity measure 
for polyphonic data. Section 3 presents the indexing structure and 
the methods for query processing are introduced in Section 4. 
Section 5 shows the experiment results and performance analysis. 
Finally, Section 6 summarizes the contributions of this work with 
some future research directions. 

2. SIMILARITY MEASURE FOR THE 
POLYPHONY 

There are several symbolic representations in digital music, such 
as MIDI [11] and CHARM [17]. We adopt the MIDI 
representation because of its popularity. Moreover, we focus on 
the classical music because most of them are polyphonic music. 
We determine the pitch scales following the MIDI standard, 
where the pitch values are non-negative integers smaller than 128. 
In this way, an event is represented as a set of pitch values and a 
piece of music is represented by a string of events, where only the 

ordering of the note onsets is preserved. The representation is 
often named homophonic reduction [13] that assumes 
independence between the notes with the overlapping duration. 
Figure 1 is an example of the above representation for the 
polyphony. The signs ‘<’ and ‘>’ imply an event and the values 
between them are the pitch values of the notes. For example, 
<60> means the event only contains the middle-C note and 
<64,67> means the event contains both the E note and the G note. 

 
Figure 1: An example of a string of events 

 
To provide the ability of approximate matching, we adopt the 

edit distance based approach to measure the similarity degree 
between two strings. Based on the definition in [2], there are three 
types of local transformations from string A (denoted as a1…am) 
to string B (denoted as b1…bn) as follows, where ai and bi denote 
a single symbol (or value) and λ means a null character. 

 Insertion: λ→bj 

 Deletion: ai→λ 

 Replacement: ai→ bj 

The edit distance between strings A and B is the minimum 
number of local transformations required to transform A into B. 
The cost of the local transformations is defined as follow:  

Both the costs of insertion and deletion are set to 1. For the cost 
of replacement cost(a,b), we define the similarity degree sim(a,b) 
first, where 0≤ sim(a,b) ≤1. Moreover, we define g(a,µa) as the set 
of events whose similarity degrees with a are larger than a 
predefined threshold µa. The cost function cost(a,b) for a 
replacement between a and b is then computed as 1-sim(a,b) if 
b∈g(a,µa), and 1 otherwise. Notice that since events a and b may 
have different thresholds, b∈g(a, µa) does not imply a∈g(b, µb) 
and vice versa. From the cost of replacement as defined above, it 
implies that an event b matches with an event a when b is similar 
enough with a. Otherwise, it is considered as an unmatched 
symbol in A and B, which spends the same cost as insertion and 
deletion. The unmatched symbols include the symbols of deletion, 
insertion and replacement with cost 1. The gap is defined as the 
number of consecutive unmatched symbols between two strings. 
In our method, we also adopt the gap constraint δ [3] to limit the 
maximum length of gaps between two strings such that none of 
the gaps in the returned answers has a length larger than the gap 
constraint. In this way, both the edit distance and the gap 
constraint are used to determine the final answers. 

To perform the experiments for our approach, a similarity 
measure of the events is proposed in the following. This measure 
is based on the number of pitches in common between the events, 
which follows the proposed methods in [3, 14]. Moreover, the 
user can specify the degree of significance to each note in the 
event based on the user’s need. An event is regarded as a vector 
with 128 dimensions following the MIDI standard. For example, 
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an event <60, 63> corresponds to the vector with 128 dimensions 
in which only the dimensions 60 and 63 have values of 1 and the 
others are 0. Furthermore, for each event a, a weighting function 
fa

i is used to adjust the value of dimension i whose original value 
is 1 to keep the degree of significance for the corresponding pitch 
with respect to this event. In this way, we can use the parametric 
cosine function to measure the similarity degree between two 
events as follows.  
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U, V: the vectors of events with 128 dimensions 
ui, vi: the values of dimension i in U, V vectors respectively 
fU

i(ui), fV
i(vi): the weighted functions of U, V for dimension i 

respectively 

From this formula, when two events are the same, the cosine 
value is 1. When all of the notes in these two events are different, 
the cosine value is 0. For example, assume there are three events 
<65,67>, <60,63>, and <60,67>. If the user feels that the highest 
note in an event plays the most important role in the polyphony, 
by respectively assigning the higher and lower notes the weights 
of 70% and 30%, the above formula will compute the similarity 
degree between <65,67> and <60,67> as 0.845. Similarly, the 
similarity degree between <60,63> and <60,67> is computed as 
0.5. Therefore, it implies that <65,67> is closer to <60,67>. By 
contrast, if the user assigns the same weights to both notes (i.e., 
50%), the similarities will become the same. 

3.  INDEXING STRUCTURE 
Many data structures such as suffix trees and suffix arrays 
[2] have been proposed to store the substrings of a string 
for fast string searching. However, these index structures 
are not adequate to solve the problem mentioned in this 
paper, because they do not deal with the k approximate 
strings searching efficiently. On the other hand, the n-gram 
based indexing techniques [2] are also not adequate to this 
problem, because too many types of events in the 
polyphony will make their performance poor. In our 
previous work [8], we designed an index structure called 
the 1D-list [8] to index music strings. An example is shown 
in Figure 2(a). Each node in the linked list keeps a pair of 
information (i : j), which indicates the j-th event of the i-th 
music in the database. All the events in the database of the 
same type are linked together in order.  
For instance, in Figure 2(a), the 1D-list of event <60> has 
three nodes, indicating the 7th event of the 1st music, the 1st 
event of the 2nd and the 9th events of the 3rd music piece, 
respectively. 
Based on the 1D-list, the query processing for exact answer is 
illustrated by an example as follows. Given a query Q=(<60>, 
<64,67>, <62>), the three 1D-lists involved in Q are retrieved and 
two dummy nodes are added as shown in Figure 2(b). We check 
every pair of nodes in the adjacent two linked lists. For two nodes 
x (ix:jx) and y (iy:jy) where x is to the left of y, we build a link 
from x to y if ix=iy and jx=jy-1. Such a link indicates a segment in 
a music work that matches a part of Q. In Figure 2(b), four such 
links are found and drawn as solid bold lines. We then start from 

the dummy node “start” to traverse these links. If there exists a 
path to the dummy node “end”, it represents an exact answer to Q. 

 
<60,62>

1:10

2:7

2:8

1:4

<62>

1:3

1:9

2:2

1:2

2:6

3:12

<64,67>

1:6

1:8

2:5

1:5

3:10

<65>

1:11

1:12

1:13

1:1

2:3

2:4

<60>

2:1

3:9

1:7

<60>

2:1

3:9

1:7

<64,67>

1:6

1:8

2:5

1:5

3:10

<62>

1:3

1:9

2:2

1:2

2:6

3:12

start end

(a)

(b)
 

Figure 2: (a) A 1D-list (b) Traversal of the 1D-list 

For approximate matching, three kinds of errors, i.e., deletion, 
insertion and replacement, should be considered. Among them, 
the processing of deletion and replacement will be discussed in 
Section 4. In this section, we consider the matched segments with 
insertion errors. The query processing is similar to the case of 
exact matching except that extra links from x to y where ix=iy, 
jx<jy-1 and jy-jx-1 ≤ δ are allowed. The value of jy-jx-1 implies the 
number of insertion errors between x and y. For instance, in 
Figure 2(b), the dotted lines indicate the extra links. Two paths 
from “start” to “end,” which contain an extra link are constructed 
to form possible approximate answers, as shown in Figure 2(b). 
Further comparison with other approximate answers generated 
from considering deletion and replacement is needed to determine 
the final K-NN answers. 

4. QUERY PROCESSING FOR K-NN 
ANSWERS 

In this section, we introduce our strategy of query processing in 
detail. The user submits a segment of music as a query that is 
transformed into a string of events. In addition, the user also 
specifies the following parameters to control the quality of query 
results. 

1. The number of query results k that the system has to return. 
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2. The weighting function fa
i to adjust the value of the i-th 

dimension in event a. 

3. The threshold µa for event a to determine the set of events 
g(a,µa). 

4. The gap constraint δ to restrict the number of continuous 
differences between two strings. 

Our approach of query processing is summarized as follows. It 
will be detailed in Sections 4.1, 4.2, and 4.3. 

All the candidate approximate answers (abbreviated as candidates) 
with deletion and replacement errors are first generated from a 
query based on the above parameters. After the candidates are 
generated, the system evaluates the distance of each candidate and 
the query by summing up the costs of deletions and replacements 
between them. This distance is called the lower-bound distance 
(abbreviated as LB distance) of the candidate. The system then 
selects the candidate with the minimal LB distance to search for 
possible answers from the 1D-list index structure. The edit 
distances of the possible answers are computed considering the 
insertion errors. In the next iteration, the LB distances of the 
remaining candidates are refined and the above process is 
repeated until none of the LB distances of the remaining 
candidates are less than the maximum of the edit distances of the 
k possible answers with the minimal edit distances. At this 
moment, all the answers are returned to the user. 

4.1 Generation of Candidates 
The generation of all candidates consists of three steps.  

Step 1: For each event a in the query, the similarity degree 
between a and each event in the database, i.e., all the different 
types of events in the 1D-list, is computed by formula (1) and the 
events with similarity degrees larger than µa are collected as g(a, 
µa). Note that one event may be involved in more than one group. 
For example, Figure 3 shows the four groups generated from a 
query, where each alphabet stands for a distinct event. 

a b
d

Query: adbc

ab
e

dc
e

d
e

 

Figure 3: A query and its associated groups 
 

Step 2: A candidate is formed from concatenating the events, 
each from a distinct group. Considering the groups in Figure 3, 
the candidates generated includes adbc, adbd, adb, etc. Define a 
segment in the query, which does not match with the events in a 
candidate, as a cut of the candidate, and the length of the cut the 
cut length. For example, the candidate adb has a cut c. Notice that 
any cut length must be smaller or equal to δ since a candidate 
cannot have a gap larger than δ. 

Step 3: For each candidate, we evaluate the initial value of the LB 
distance as follows. Without loss of generality, we represent the 
query Sq with respect to the candidate S1=a11a12…a1n as 
Sq=C0aq1C1aq2C2…aqnCn.  
Note that aqi and a1i are events where a1i∈g(aqi,µ), and Ci is a cut 
of S1 with respect to Sq. Let L(Ci) be the cut length of Ci. The 

function cost(aqi,a1i) as defined in Section 2 stands for the cost for 
a local transformation from event aqi to a1i. We initialize the LB 
distance (denoted by LB(S1,Sq)) by the following formula: 

∑ ∑
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i
iqiiq aaCLSSLB

0 1
)2(),()(),( 11 cost  

For the refinement of the LB distance, we use an array (named 
candidate array) to store the costs of the unmatched symbols, i.e., 
deletions, insertions and replacements with cost 1 for the 
candidate. The value in each cell of the array is denoted as 
Cell(axay) where axay is the identifying string of the cell. In the 
beginning, only the costs of deletions are stored. Figure 4 shows 
an example where x is an unmatched symbol (deletions): 

Sq=aq1 aq2 x aq3 x aq4 x x aq5 x x aq6 x aq7 x aq8 x aq9   (query)

S1=a11 a12  a13  a14  a15  a16  a17  a18  a19                  (candidate)

a11   a12   a13   a14   a15   a16   a17   a18   a19

0 1 1 2 2 1 1 1

∑
=

+=
9

1
),(9),(

i
i1qiq aacostSSLB 1

Figure 4: An example candidate array 

 

4.2 Computing Edit Distances of Possible 
Answers 

After candidates are generated, the candidate with the minimal LB 
distance is selected to process. Denote this candidate as 
S1=a11a12…a1n. We use the method of approximate matching 
described in Section 3 to find the possible answers and compute 
their edit distances. The possible answers include all the events in 
S1 and keep the order of the events, which can be represented as 
S1

ans=a11I11a12I12…I1n-1a1n where I1i denotes insertion errors. Let 
L(I1i) be the number of the insertions between a1i and a1i+1, which 
can be obtained by traversing the 1D-list. The edit distance 
between the possible answer S1

ans and the query Sq is evaluated by 
the following formula: 

∑ ∑
−

= =
+++=

1

1 1
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n

i

n

i
iqiniiq

ans aaCLILCLCLSSdist 111 costmax

 
Because each event in the candidate aligns with an event in the 
query, the events of a possible answer that appear in the candidate 
aligns with the same events in the query. Under this alignment of 
events, the cost of unmatched symbols between any two 
consecutive events in the candidate is the maximum of the cost on 
deletions (i.e., L(Ci)) and the one on insertions (i.e., L(I1i)). From 
formula (2) and (3), we see that LB(S1,Sq)≤dist(S1

ans,Sq). 

4.3 Refinement of the LB Distances 
The query processing terminates when none of the LB distances 
of the remaining candidates is less than the maximum edit 
distance of the k possible answers with the minimal edit distances. 
This is because none of the remaining candidates can produce a 
possible answer better than the current k answers. In this way, the 
LB distance can be used to reduce the generations of possible 
answers. 
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Because the initial LB distance only considers the costs of 
deletions and replacements, it is a loose bound to the real 
minimum edit distance of the possible answers. To reduce the 
generations of possible answers, the minimum number of the 
insertions, which can be computed after the traversal of the 1D-
list, is used to tighten the bounds of the remaining candidates. 
Based on the max function in formula (3) if we consider the 
minimal number of the insertions to increase the LB distance, the 
refined LB distance is guaranteed to be lower than the edit 
distance of the associated possible answers. 

Event-Pattern

ab

bc

abc

Interval

1

1

3

Data1: acb  Data2: addbec

cd infinite

1:1

a

2:1

b c

1:3

2:4

1:2

2:6

2:2

2:3

d

Start End

1

2 1

Candidate: abcd

abcd infinite

 
Figure 5: Evaluation of MNIs 

 
During a traversal of the 1D-list, two sets of substrings of the 
candidate are collected, which are called event-patterns. One set 
consists of all the substrings containing only two events. The 
other set contains all the substrings that are prefixes of the 
candidate. For each event-pattern, the minimum number of the 
insertions (denoted MNI) can be computed. Consider the example 
shown in Figure 5. For the candidate abcd, the 1D-lists of a, b, c, 
d are traversed. After the links are constructed, it can be seen that 
there are two links connecting list a to list b. We compute the 
MNI of ab as follows. Since the insertion from node (1:1) to node 
(1:3) is 1 and from node (2:1) to node (2:4) is 2, the MNI of ab is 
1. The MNI of an event-pattern implies the lowest cost of the 
insertions between the query and any string in the database, which 
contains the event-pattern. Moreover, for the event-patterns with 
more than two events, which is a prefix of the candidate, we can 
compute their MNIs in the same way. For instance, the MNI of 
abc is 3 because there is only one such path and the total number 
of the insertions from event a to event c through event b is 3. In 
addition, the MNI of an event-pattern is set to infinite if there is 
no path connecting all the evens in the event-pattern, which 
implies the candidates containing this pattern are not needed to be 
further considered. 

After the MNIs of the event-patterns are computed, we refine the 
LB distance of the remaining candidates as follows. 

We use a heuristic method to refine the LB distance using the 
MNIs. First, for each remaining candidate, an extra candidate 
array that initially is a duplicate of the candidate array is created 
for recording the refined costs of the unmatched symbols. 

Moreover, referring to Figure 6(a), we associate with an event-
pattern axax+1…ay-1ay, y ≥x+1, a single cell named event-pattern 
cell with the value of the cell being the MNI of the event-pattern. 
Second, the values of the affected cells in the extra candidate 
array are recomputed, which can be separated into two cases. The 
first case is that the ends of the event-pattern cell align with the 
ends of the affected cells as shown in Figure 6(a). If the sum of 
the values in the affected cells is less than the MNI of the event-
pattern, then the event-pattern cell will replace the affected cells. 
The other case is that only one or none of the ends of the event-
pattern cell aligns with the ends of the affected cells as shown in 
Figure 6(b). The uncovered part is defined as the identifying 
string of the non-overlapping part of the event-pattern cell and the 
affected cells. For an uncovered part aiai+1…ax-1ax, the estimated 
cost of the unmatched symbols is the sum of the values in 
Cell(akak+1) of the candidate array, where k is from i to x-1. When 
the sum of the MNI and the estimated costs of the uncovered parts 
is larger than the sum of the values in the affected cells, the 
affected cells of the extra candidate array are replaced by the 
event-pattern cell with the associated MNI, and for the uncovered 
parts the corresponding cells from the candidate array with their 
associated values are filled. Moreover, since the values of the 
cells in the candidate array is reused to compute the estimated 
costs of the uncovered parts in the extra candidate array, these 
values have to be kept up to date by the event-patterns with two 
events. For the event-pattern axax+1, if the MNI is larger than the 
value in Cell(axax+1) of the candidate array, it will be replaced 
with the MNI as shown in Figure 6(c). 

After the adjustment of the extra candidate array, the refined LB 
distance can be computed by the values inside the cells.  

(a)

(b)

(c)

Event-pattern axax+1

ax       ax+1

Candidate array

Affected cells

MNI

a1 .......................ax       ax+1.............ay-1    ay................an

Event-pattern cell of  ax ax+1 ...ay-1ay

Extra candidate array

Affected cells

MNI

uncovered partuncovered part

a1 .............ai......ax.ax+1..................ay-1 ay.....aj...............an

Event-pattern cell of  ax ax+1 ...ay-1ay

Extra candidate array

)MNI),(()( 1 xxx CLmaxaaCell =+

  
Figure 6 Adjustment of the affected cells for an event-

pattern 
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Consider the query Sq in Figure 4 as an example. The refinement 
of the LB distance is shown in Figure 7(a). Assume there is an 
event-pattern a16 a17 a18 a19 with the MNI=5. The three affected 
cells are a16 a17, a17 a18 and a18 a19. Because the MNI is larger 
than 3, which is the sum of the values in the affected cells, we 
replace these three cells to one and store the MNI, i.e., 5 in this 
extended cell. As another example shown in Figure 7(b), there is 
an event-pattern a15 a16 a17 with the MNI=9. The two affected 
cells are a15a16 and a16a17a18a19. Since 11, the sum of the MNI, 
Cell(a17a18) and Cell(a18a19) is larger than 7, the sum of the values 
in the affected cells a15 a16 and a16 a17 a18 a19, the cells are 
adjusted and the LB distance is refined. 

 

 

a11         a12       a13      a14        a15       a16       a17       a18      a19

0 1 1 2 2 1 1 1

∑
=

+=
9

1
),(11),(

i
iqiq aacostSSLB 11

5

Affected cells

Event-pattern  cell

∑
=

+=
9

1
),(15),(

i
iqiq aacostSSLB 11

9

Affected cells

Event-pattern  cell

(a)

(b)

a11         a12       a13      a14        a15       a16       a17       a18      a19

0 1 1 2 2 5

a11         a12       a13      a14        a15       a16       a17       a18      a19

0 1 1 2 2 5

a11         a12       a13      a14        a15       a16       a17       a18      a19

0 1 1 2 9 1 1

Figure 7 Examples of the LB distance refinement 

 

 

4.4 A Query Processing Example 
Assume there are two music works in the database and the 1D-list 
is constructed as shown in Figure 8(a). A query aba is posed with 
the request of the music work containing the most similar segment, 
that is, k is set to 1. Suppose g(a, µa)={b} and g(b, µb)={a}, the 
distance between a and b is 0.4, and the gap constraint is 3. After 
the generation of candidates, 26 candidates are produced with 
their LB distances shown in Figure 8(b). The candidate aba with 
the minimum LB distance is selected and its associated 1D-list 
traversed for searching the answers, refer to Figure 8(c). At this 
round of query processing, no answer is found but two event-
patterns ab and ba with their MNIs are recorded. The MNI of the 
event-pattern ba is set to infinite because none of the links 
constructed satisfy the gap constraint 3. The next step is to refine 
the LB distances of all the candidates by the MNIs of the event-
patterns and some of the candidates are dropped out since their LB 

distances are infinite, which is shown in Figure 8(e). We repeat 
these steps, shown in Figure 8(f), 8(g) and 8(h), until an answer is 
found which is from position 1 through position 2 to position 3 in 
data 2 with the edit distance 0.8 as shown in Figure 8(i). The 
query processing terminates at this point since the LB distances of 
all the remaining candidates are larger than the edit distance of 
the answer. 

Data 1: a x x x b b y y
Data 2: b b b x x x y a
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 Figure 8: An example of query processing 

 
5. PERFORMANCE ANALYSIS 
In this section, we show the experiment results about the 
efficiency of our method. For comparison, we modify a dynamic 
programming algorithm named piano roll [3] by adding the 
similarity measure as defined in this paper. We also compare our 
method with the suffix tree method proposed in [12]. In that 
method, the suffix tree is traversed by using the depth first 
search and its branches are pruned by the gap constraint to 
speed up the processing time. 

There are two data sets used in the experiments. One is a real data 
set, which contains 2800 pieces of classical music with average 
2954 events in each MIDI file. The other is a synthetic data set, 
which contains 2800 randomly generated text files with average 
3000 events for each file. The parameters k, µ and δ are set to 10, 
0.8 and 5, respectively. Moreover, we set fa

i such that each note in 
a has an equal weight. Figure 9(a) and Figure 9(b) illustrate the 
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elapsed time versus the query length for the two data sets 
respectively. In both types of data, the elapsed time of the piano 
roll algorithm grows linearly with the query length, which follows 
the property of the dynamic programming algorithm. Moreover, 
the elapsed time of the suffix tree method grows rapidly. The 
reason is that because the common prefixes between any two 
suffixes in our data sets are rare, there are a large number of 
branches in the suffix tree. When the query length increases, the 
number of branches to be traversed also increases. Figure 9(a) and 
Figure 9(b) indicate that our method performs much better than 
the other methods. Figure 10(a) illustrates the elapsed time versus 
the threshold µ for the real data set. The parameters k, δ and 
query length are set to 10, 5 and 15, respectively. Figure 10(b) 
shows the elapsed time versus different k values for the real data 
set. Figure 10(a) and Figure 10(b) indicate that the elapsed time of 
our approach is influenced by the threshold µ and the k value. The 
reason is that when the threshold µ is looser or the k value is 
larger, our method will generate more candidates and spend more 
time to produce the answers. Moreover, the elapsed time of the 
suffix tree method is also influenced by the two parameters which 
have impacts on the number of traversed branches. 
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Figure 9: Experiment results of different query lengths 
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6. CONCLUSION 
This paper provides a novel approach to support approximate 
search in the polyphonic music databases. The similarity measure 
for the polyphony and the efficient methods for indexing and 
query processing are proposed. In this approach, the candidate 
approximate answers for a query are generated, followed by the 
computation of the LB distances for efficient K-NN search. 
According to the experiment results, this approach performs better 
than the previous works using real data and synthetic data. 

The main contribution of this paper is to provide an efficient K-
NN search method for the polyphonic music. Unlike the 
traditional methods which use a predefined distance measure 
when taking account of the efficiency, our approach provides a 
lower bounding mechanism to efficiently derive the answers, 
given a flexibly defined distance measure. 

Some important issues of our approach need to be further 
investigated. First, when the number of the candidates is large, 
this approach costs a lot to refine the LB distances of candidates. 
To deal with this problem, we will design a new approach to 
reduce the number of the candidates in the future. A 
straightforward way is to use an inverted file [15] to associate 
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each event with a set of music works that contain this event. By 
this way, we can prune a candidate when no music works contain 
all the events associated with this candidate. Second, the 
adjustment of the extra candidate array uses a heuristic method. 
Better strategies should be considered to tighten the lower bound 
of the edit distance under a feasible load of the computation. 
Third, the weighted function in the similarity measure can be 
enhanced based on musicology. Finally, the effectiveness of our 
method should be further investigated using the music evaluation 
platform [5]. 
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