Skip to main content
Log in

Semi-automatic cartoon generation by motion planning

  • Interactive Multimedia Computing
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

To reduce tedious work in cartoon animation, some computer-assisted systems including automatic Inbetweening and cartoon reusing systems have been proposed. In existing automatic Inbetweening systems, accurate correspondence construction, which is a prerequisite for Inbetweening, cannot be achieved. For cartoon reusing systems, the lack of efficient similarity estimation method and reusing mechanism makes it impractical for the users. The semi-supervised graph-based cartoon reusing approach proposed in this paper aims at generating smooth cartoons from the existing data. In this approach, the similarity between cartoon frames can be accurately evaluated by calculating the distance based on local shape context, which is expected to be rotation and scaling invariant. By the semi-supervised algorithm, given an initial frame, the most similar cartoon frames in the cartoon library are selected as candidates of the next frame. The smooth cartoons can be generated by carrying out the algorithm repeatedly to select new cartoon frames after the cartoonists specifying the motion path in a background image. Experimental results of the candidate frame selection in our cartoon dataset suggest the effectiveness of the proposed local shape context for similarity evaluation. The other experiments show the excellent performance on cartoon generation of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Catmull, E.: The problems of computer-assisted animation. In: ACM International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’78), pp. 348–353 (1978)

  2. Durand, C.X.: The toon project: requirements for a computerized 2D animation system. Comput. Graphics 15(2), 285–293 (1991)

    Article  Google Scholar 

  3. Parent, R.E., Wade, L.: Automated generation of control skeletons for use in animation. Vis. Comput. 18(2), 97–110 (2002)

    Article  MATH  Google Scholar 

  4. Chuang, E., Bregler, C.: Performance driven facial animation using blendshape interpolation. Technical report CS-TR-2002-02

  5. Petrovic, L., Fujito, B., Williams, L., Finkelstein, A.: Shadows for cel animation. In: Proceedings of the ACM International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’00), New Orleans, July 2000, pp. 511–516

  6. Correa, W.T., Jensen, R.J., Thayer, C.E., Finkelstein, A.: Texture mapping for cel animation. In: Proceedings of the ACM International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’98), Orlando, July 1998, pp. 435–446

  7. Fekete, J.D,, Bizouarn, E., Cournarie, E., Galas, T., Taillefer, F.: Tic-TacToon: a paperless system for professional 2D animation. In: ACM International Conference on Computer Graphics and Interactive Techniques, 1995, pp. 79–90

  8. Kort, A.: Computer aided inbetweening. In: Proceedings of International Conference on Non-photorealistic Animation and Rendering, Annecy, June 2002, pp. 125–132

  9. Christoph, B., Lorie, L., Erika, C., Hrishi, D: Turning to the masters: motion capturing cartoons. In: Proceedings of the ACM International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’02), San Antonio, Texas, July 2002, pp. 399–407

  10. Chang, C., Lee, S.: Automatic Cel painting in computer-assisted cartoon production using similarity recognition. Vis. Comput. Anim. 8(3), 165–185 (1998)

    Article  Google Scholar 

  11. Juan, C., Bodenheimer, B.: Cartoon textures. In: Proceedings of ACM International Symposium on Computer animation, 2004, pp. 267–276

  12. Yu, J., Zhuang, Y.T., Xiao, J., Chen, C.: Adaptive control in cartoon data reusing. Comput. Anim. Virtual Worlds 18(4–5), 571–582 (2007)

    Article  Google Scholar 

  13. Lu, J., Seah, H.S., Feng, T.: Computer-assisted cel animation: post-processing after inbetweening. In Proceedings of ACM International Conference on Computer graphics and interactive techniques in Australasia and South East Asia, Melbourne, Australia, 2003, pp. 13–20

  14. Wallach, M.: On psychological similarity. Psychol. Rev. 65(2), 103–116 (1958)

    Article  Google Scholar 

  15. Tversky, A., Krantz, D.H.: The dimensional representation and the metric structure of similarity data. J. Math. Psychol. 7, 572–597 (1977)

    Article  MathSciNet  Google Scholar 

  16. Wang, M., Hua, X.S., Tang, J.H., Hong, R.C.: Beyond distance measurement: constructing neighborhood similarity for video annotation. IEEE Trans. Multimed. 11(3), 465–476 (2009)

    Article  Google Scholar 

  17. Wang, M., Hua, X.S., Hong, R.C., Tang, J.H., Qi, G.J., Song, Y.: Unified video annotation via multi-graph learning. IEEE Trans. Circuits Syst. Video Technol. 19(5), 733–746 (2009)

    Article  Google Scholar 

  18. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  19. Papadimitriou C, Stieglitz K (1992) Combinatorial Optimization: Algorithms and Complexity. Prentice Hall

  20. Mikolajczyk, K., Schmid, C.A.: performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  21. Zhu, X., Ghaharmani, Z., Lafferty, J.: Semisupervised learning using Gaussian fields and harmonic functions. In: Proceedings of International Conference on Machine Learning, pp. 912–919, August 2003

  22. Bian, W., Tao, D.: Biased discriminant euclidean embedding for content based image retrieval. IEEE Trans. Image Process. 19(2), 545–554 (2010)

    Article  MathSciNet  Google Scholar 

  23. Tao, D., Tang, X., Li, X., Wu, X.: Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1088–1099 (2006)

    Article  Google Scholar 

  24. Criminisi, A., Reid, I., Zisserman, A.: Single view metrology. Int. J. Comput. Vis. 40(2), 123–148 (2000)

    Article  MATH  Google Scholar 

  25. Chen, Q., Tian, F., Seah, H., Wu, Z., Qiu, J., Konstantin, M.: DBSC-based animation enhanced with feature and motion. Comput. Anim. Virtual Worlds 17(3–4), 189–198 (2006)

    Article  Google Scholar 

  26. Seah, H., Lu, J.: Computer-assisted inbetweening of line drawings: image matching. In: Proceedings of IEEE International Conference on Computer Aided Design and Computer Graphics, pp. 193–200, 2001

  27. Wallach, M.: On psychological similarity. Psychol. Rev. 65(2), 103–116 (1958)

    Article  Google Scholar 

  28. Tversky, A., Krantz, D.: The dimensional representation and the metric structure of similarity data. J. Math. Psychol. 7, 572–597 (1977)

    Article  MathSciNet  Google Scholar 

  29. Tenenbaum, J., Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290(22), 2319–2323 (2000)

    Article  Google Scholar 

  30. Wu, M., Schölkopf, B.: Transductive classification via local learning regularization. In Proceedings of International Conference on Artificial Intelligence and Statistics, pp. 628–835, 2007

  31. Zhou, T., Tao, D., Wu, X.: Manifold elastic net: a unified framework for sparse dimension reduction. Data Min. Knowl. Disc. (2010). doi:10.1007/s10618-010-0182-x

    Google Scholar 

  32. Song, D., Tao, D.: Biologically inspired feature manifold for scene classification. IEEE Trans. Image Process. 19(1), 174–184 (2010)

    Article  MathSciNet  Google Scholar 

  33. Si, S., Tao, D., Geng, B.: Bregman divergence based regularization for transfer subspace learning. IEEE Trans. Knowl. Data Eng. 22(7), 929–942 (2010)

    Article  Google Scholar 

  34. Tao, D., Li, X., Wu, X., Maybank, S.J.: Geometric mean for subspace selection. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 260–274 (2009)

    Article  Google Scholar 

  35. Zhang, T.H., Tao, D.C., Li, X.L., Yang, J.: Patch alignment for dimensionality reduction. IEEE Trans. Knowl. Data Eng. 21(9), 1299–1313 (2009)

    Google Scholar 

  36. Kruskal J.B., Wish, M.: Multidimensional Scaling. Sage Publications. Beverly Hills, CA (1977)

  37. Yang, Y., Dong, X., Nie, F., Luo, J., Zhuang, Y.: Ranking with local regression and global alignment for cross-media retrieval. In: Proceedings of the seventeen ACM international conference on Multimedia (MM’09), Beijing, China, October 2009, pp. 175–184

  38. Zhuang, Y., Yu, J., Xiao, J., Chen, C.: Perspective-aware cartoon clips synthesis. Computer Anim. Virtual Worlds 19(3–4), 355–364 (2008)

    Google Scholar 

Download references

Acknowledgments

The project was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KGCX2-YW-156, KGCX2-YW-154), Key Laboratory of Robotics and Intelligent System of Guangdong Province (2009A060800016), Shenzhen Technology Project (JC200903160416A), National Natural Science Foundation of China (60806050) and Shenzhen Nanshan Research Project (2009016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Tao, D., Wang, M. et al. Semi-automatic cartoon generation by motion planning. Multimedia Systems 17, 409–419 (2011). https://doi.org/10.1007/s00530-010-0225-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-010-0225-6

Keywords

Navigation